[1] Smith T M, Karl T R, Reynolds R W. Climate modeling. How accurate are climate simulations?[J]. Science, 2002, 296(5567):483-484 [2] DeLucia E H, Hamilton J G, Naidu S L. Net primary production of a forest ecosystem with experimental CO2 enrichment[J]. Science, 1999, 284(5417):1177-1179 [3] Philips O L, Halhi Y, Higuchi N. Changes in carbon balance of tropical forests: Evidence from long-term plots[J]. Science, 1998, 282(5388):439-442 [4] IPCC. Climate Change 2001: Synthesis report: The third assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2001:35-38 [5] 尚宗波, 高琼. 中国水分状况对全球气候变化的敏感性分析[J]. 生态学报, 2001, 21(4):528-537 [6] King J S, Thomas R B, Strain B R. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2 temperature, and nitrogen[J]. Tree Physiology, 1996, 16(7):635-642 [7] Murray M B, Smith R I, Friend A, et al. Effect of elevated[CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis)[J]. Tree Physiology, 2000, 20(7):421-434 [8] 王精明, 李永华, 黄胜琴, 等. CO2浓度升高对红掌光合速率与生长发育的影响[J]. 园艺学报, 2005, 32(2):335-338 [9] 孙加伟, 赵天宏, 付宇, 等. CO2浓度升高对玉米叶片光合生理特征的影响[J]. 玉米科学, 2009, 17(2):81-85 [10] Vasseur P C. Long-term CO2 enrichment of a pasture community: Species richness, dominance, and succession[J]. Ecology, 1997, 78(13):666-677 [11] Joel G, ChaPin F S, Chiariello N R, et al. Species specific responses of plant communities to altered carbon and nutrient availability[J]. Global Change Biology, 2001, 7(4):435-450 [12] Rodiyati A, Arisoesilaningsih E, Isagi Y, et al. Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability[J]. Environmental and Experimental Botany, 2005, 53(3):259-269 [13] 尹丽, 胡庭兴, 刘永安, 等. 干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响[J]. 应用生态学报, 2010, 21(3):569-576 [14] 王美玉, 赵天宏, 张巍巍, 等. CO2 浓度升高与温度、干旱相互作用对植物生理生态过程的影响[J]. 干旱地区农业研究, 2007, 25(2):99-103 [15] Yu J J, Chen L H, Xu M, et al. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stresses[J]. Crop Science, 2012, 52(4):1848-1858 [16] Markelz R J, Strellner R S, Leakey A. Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated CO2 in maize[J]. Journal of Experimental Botany, 2011, 62(9):3235-3246 [17] Vu J C V, Allen L H. Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane[J]. Journal of Plant Physiology, 2009, 166(2):107-116 [18] Wall G W, Garciab R L, Wechsungc F, et al. Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley[J]. Agriculture, Ecosystems and Environment, 2011, 144(1):390-404 [19] 高素华, 郭建平, 周广胜. 高CO2浓度下羊草对土壤干旱胁迫的响应[J]. 中国生态农业学报, 2002, 10(4):31-33 [20] Parry M, Rosenzweig C, Iglesias A, et al. Effects of climate change on global food production under SRES emissions and socio-economic scenarios[J]. Global Environmental Change, 2004, 14(1):53-67 [21] 李清明, 刘彬彬, 邹志荣. CO2浓度倍增对干旱胁迫下黄瓜幼苗光合特性的影响[J]. 中国农业科学, 2011, 44(5):963-971 [22] 李清明, 刘彬彬, 艾希珍. CO2 浓度倍增对干旱胁迫下黄瓜幼苗膜脂过氧化及抗氧化系统的影响[J]. 生态学报, 2010, 30(22):6063-6071 [23] Wullschleger S D, Tschaplinski T J, Norby R J. Plant water relations at elevated CO2 implications for water limited environments[J]. Plant, Cell and Environment, 2002, 25(2):319-331 [24] Leakey A D B, Uribelarrea M, Ainsworth E A, et al. Photosynthesis, productivity and yield of maize are not affected by open air elevation of CO2 concentration in the absence of drought[J]. Plant Physiology, 2006, 140(2):779-790 [25] Wechsung G, Wechsung F, Wall G W, et al. The effects of free air CO2 enrichment and soil water availability on special and seasonal patterns of wheat root growth[J]. Global Change Biology, 1999, 5(5):519-529 [26] 王俊, 刘文兆, 钟良平, 等. 长期连续种植苜蓿草地地上部分生物量与土壤水分的空间差异性[J]. 草业学报, 2009, 18(4): 41-46 [27] Sartory D R, Grobbelaar J U. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis[J]. Hydrobiologia, 1984, 114(3):177-187 [28] 张志安, 张美善, 尉荣海. 植物生理学实验指导[M]. 北京:中国农业技术出版社, 2002:4-7 [29] 邹琦, 孟庆伟, 高辉远, 等. 作物在非生物逆境下的光合作用[M]. 济南:山东科学技术版社, 2004:116-172 [30] 孙谷畴, 赵平, 曾小平, 等. 倍增CO2分压对水稻和矶子草冠层光合潜力的影响[J]. 生态学杂志, 2003, 22(4):1-5 [31] 何平. 温室效应与植物光合作用: CO2浓度升高对植物光合机理影响的分析[J]. 中南林学院学报, 2001, 21(1):1-4 [32] 李伏生, 康绍忠, 张富仓. CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响[J]. 应用生态学报, 2003, 14(3):387-393 [33] 白莉萍, 周广胜. 全球环境变化对农作物影响的研究进展[J]. 应用与环境生物学报, 2004, 10(3):394-397 [34] Qaderi M M, Kurepin L V, Reid D M. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: Temperature, carbon dioxide and drought[J]. Physiologia Plantarum, 2006, 128(4):710-721 [35] Robredo A, Pérez-López U, Maza H S, et al. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis[J]. Environmental and Experimental Botany, 2007, 59(3):252-263 [36] Lichtenthaler H K. Application of chlorophyll fluorescence in research stree physiology, hydrobiology and remote sensing[M]. Dordrecht: Kluwer Academic Publisher, 1991:253-258 [37] 王建程, 严昌荣, 卜玉山. 不同水分与养分水平对玉米叶绿素荧光特性的影响[J]. 中国农业气象, 2005, 26(12):95-98 [38] Hamerlynck E P, Huxman T E, Loik M E, et al. Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentate[J]. Plant Ecology, 2000, 148(4):183-193 [39] Aranjuelo I, Perez P, Hernandez L, et al. The response of nodulated alfalfa to water supply, temperature and elevated CO2: Photosynthetic down regulation[J]. Physiologia Plantarum, 2005, 123(3):348-358 [40] 王可玢, 许春辉, 赵福洪, 等. 水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报, 1997, 13(2):273-278 [41] 赵丽英, 邓西平, 山仑. 不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J]. 中国生态农业学报, 2007, 15(1):63-66 [42] 严美玲, 李向东, 林英杰, 等. 苗期干旱胁迫对不同抗旱花生品种生理特征、产量和品质的影响[J]. 作物学报, 2007, 33(1):113-119 [43] Liang J, Zhang J, Wong M H. Stomatal conductance in relation to xylem sap ABA concentration in two tropical trees, Acacia confusa and Litsea glutinosa[J]. Plant, Cell and Environment, 1996, 19(1):93-100 [44] Hanson A D, Neison C F, Pedersen A R, et al. Capacity for proline accumulation during water stress in barley and its implication for breeding for drought resistance[J]. Crop Science, 1979, 19(2):489-493 [45] Singh T N, Aspnall D, Paleg L G. Proline accumulation and varietal adaptability to drought in barley, a potential metabolic measure of drought resistance[J]. Nature New Biology, 1972, 236(67):188-190 [46] 刘娥娥, 宗会, 郭振飞, 等. 干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J]. 热带亚热带植物学报, 2000, 8(3):235-238 |