[1] Jiang Q,Li S B,Pan Z B,et al. Evaluations on construction of artificial Caragana intermedia to improved effects of degenerated sand land[J]. Journal of Soil and Water Conservation,2006,20(4):23-27 [2] 马千虎,周玉蓉,徐金鹏,等. 宁夏东部荒漠草原不同植被恢复模式的土壤响应特征[J]. 中国草地学报,2018,40(5):50-56 [3] 陈林,杨新国,翟德苹,等. 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响[J]. 农业工程学报,2015,31(2):108-116 [4] 李欣玫,左易灵,薛子可,等. 不同荒漠植物根际土壤微生物菌落结构特征[J]. 生态学报,2018,38(8):2855-2863 [5] Six J,Frey S D,Thiet R K,et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society of American Journal,2006,70(2):555-569 [6] Marschiner P,Yang C H,Lieberei R,et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry,2001,33(11):1437-1445 [7] Shao K W,Xue Y Z,Hao Q,et al. Effects of shrub litter addition on dune soil microbial community in Horqin sandy land,Northern China[J]. Arid Land Research&Management,2011,25(3):203-216 [8] Bais H P,Weir T L,Perry L G,et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology,2006,57(1):233-266 [9] 吴海燕,范作伟,陈帅民,等. 吉林省不同黑土土壤微生物学肥力指标差异[J]. 玉米科学,2020,28(2):163-168 [10] 李新荣,刘新民. 试论鄂尔多斯高原灌木多样性的若干特点[J]. 资源学报,2000,22(3):54-59 [11] 栗文玉,刘小芳,赵勇钢,等. 黄土丘陵区人工柠条恢复为主小流域土壤有机碳空间变异性及其影响因素[J]. 水土保持研究,2020,27(2):15-22 [12] Schlesinger W H,Reynolds J F,Cunningham G L,et al. Biological feedbacks in global desertification[J]. Science,1990,247(4946):1043-1048 [13] 熊小刚,韩兴国. 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布[J]. 生态学报,2005,25(7):1678-1683 [14] 王冰冰,曲来叶,宋成军,等. 岷江干旱河谷优势灌丛对土壤微生物群落组成的影响[J]. 生态学报,2015,35(8):2481-2493 [15] 卞莹莹,陈林,柳博文,等. 荒漠草原区不同植被恢复模式下土壤可溶性氮组分特征[J]. 中国草地学报,2019,41(5):94-103 [16] 蔡国军,杨磊,柴春山,等. 半干旱黄土丘陵区不同土地利用类型植物物种多样性研究[J]. 中南林业科技大学学报,2020,40(1):95-104 [17] 牛宋芳. 荒漠草原不同土壤类型人工柠条林根际微生物菌落结构及多样性特征研究[D]. 宁夏:宁夏大学,2018:49-50 [18] 舒维花,蒋齐,王占军,等. 宁夏盐池沙地不同密度人工柠条林对土壤微生物的影响[J]. 宁夏大学学报(自然科学版),2012,33(2):205-209 [19] 杜雅仙,康扬眉,牛玉斌,等. 宁夏荒漠草原不同植物菌落微斑块内土壤微生物区系特征. 应用生态学报,2019,30(9):3057-3065 [20] 鲍士旦. 土壤农化分析(第三版)[M]. 北京:中国农业出版社,2013:30-34,81-82,22-24 [21] Anderson J P E,Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soils[J]. Soil Biology and Biochemistry,1978,10(3):215-221 [22] Brookes P C,Powlscin D S,Jenkinson D S. Phosphorus in the soil microbial biomass[J]. Soil Biology and Biochemistry,1984,16(2):169-175 [23] 林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社,2010:37 [24] 李雪萍,李建宏,刘永刚,等. 甘南草原不同退化草地植被和土壤微生物特性[J]. 草地学报,2020,28(5):1252-1259 [25] 邓娜. 黄土丘陵区退耕地植被恢复过程中土壤氮转化过程及机制研究——以反硝化和矿化过程为例[D]. 杨凌:西北农林科技大学:2019:19-21 [26] 刘艳萍,马驰,莫保儒,等. 柠条人工林下草本植被特征与土壤特性相关性研究[J]. 草地学报,2020,28(2):468-473 [27] 张义凡,刘学东,陈林,等. 荒漠草原3种典型菌落类型的土壤微生物量碳氮研究[J]. 西北植物学报,2017,37(2):363-371 [28] 蒲洁,雁冰,王茵茵,等. 农牧交错带不同植被菌落对土壤微生物量碳氮磷的影响[J]. 干旱地区农业研究,2015,33(4):279-285 [29] 卞莹莹,陈林,王建明,等. 平茬对荒漠草原区人工柠条林地土壤理化性质的影响[J]. 草地学报,2018,26(6):1347-1353 [30] 闫宝龙,吕世杰,王忠武,等. 草地灌丛化成因及其对生态系统的影响研究进展[J]. 中国草地学报,2019,41(2):95-101 [31] 赵路红,李昌珍,康迪,等. 黄土丘陵区退耕地土壤可溶性氮组分季节变化与水热关系[J]. 生态学报,2017,37(10):3533-3542 [32] 黄懿梅. 黄土丘陵区植被自然恢复过程中土壤微生物指标的演变[D]. 杨凌:西北农林科技大学,2008:54-58 [33] Steenwerth K L,Jackson L E,Calderon F J,et al. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California[J]. Soil Biology and Biochemistry,2002,34(11):1599-1611 [34] Nie X D,Li Z W,Huang J Q,et al. Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition[J]. Soil & Tillage Research,2018,175:82-90 [35] Huang J Q,Li Z W,Zeng G M,et al. Microbial responses to simulated water erosion in relation to organic carbon dynamics on a hilly cropland in subtropical China[J]. Ecological Engineering,2013,60(40):67-75 [36] 张宇婷,肖海兵,聂小东,等. 基于文献计量分析的近30年国内外土壤侵蚀研究进展[J]. 土壤学报,2020,57(4):97-810 [37] Li C H,Ma B L,Zhang T Q. Soil bulk density effects on microbial populations and enzyme activities during the growth of Maize (Zea Mays L) planted in large pots under field exposure[J]. Canadian Journal of Soil Science,2002,82(2):1024-1032 [38] Rasanen N,Kankaala P,Tahvanainen T,et al. Changes in dissolved organic matter and microbial activity in runoff waters of boreal mires after restoration[J]. Aquatic Sciences,2018,80:20-34 [39] Sergio A,Luisella C,Ruby J,et al. Effect of long-term soil management on the mutual interaction among soil organic matter,microbial activity and aggregate stability in a vineyard[J]. Pedosphere,2018,28(2):288-298 [40] 朱世硕,夏彬,郝旺林,等. 黄土区侵蚀坡面土壤微生物菌落功能多样性研究[J]. 中国环境科学,2020,40(9):4099-4105 [41] De Vries F T,Hoffland E,van Eekeren N,et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biology and Biochemistry,2006,38:2092-2103 [42] Cwalina-Ambroziak B,Bowszys T. Changes in fungal communities in organically fertilized soil[J]. Plant Soil Environment,2009,55(1):25-32 [43] Wardle D A,Bardgett R D,Klironomos J N,et al. Ecological linkages between aboveground and belowground biota[J]. Science,2014(304):1629-1633 |