[1] DE BANG T C, HUSTED S, LAURSEN K H, et al. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants[J]. The New phytologist, 2021, 229(5):2446-2469 [2] 刘允熙, 罗佳佳, 雷健, 等.柱花草磷高效种质筛选及根系形态对低磷胁迫的响应分析[J].草地学报, 2021, 29(5):876-883 [3] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition:improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65(1):95-123 [4] 黄睿, 罗佳佳, 吴远航, 等.狼尾草属象草PpPAPs基因的克隆及响应低磷胁迫的表达模式分析[J].草地学报, 2021, 29(3):425-433 [5] 储成才, 王毅, 王二涛.植物氮磷钾养分高效利用研究现状与展望[J].中国科学:生命科学, 2021, 51(10):9 [6] LAMBERS H. Phosphorus acquisition and utilization in plants[J]. Annual review of plant biology, 2022, 73:17-42 [7] LIU D. Root developmental responses to phosphorus nutrition[J]. Journal of integrative plant biology, 2021, 63(6):1065-1090 [8] CHAI Y N, SCHACHTMAN D P. Root exudates impact plant performance under abiotic stress[J]. Trends in plant science, 2022;27(1):80-91 [9] SUGIYAMA A. The soybean rhizosphere:Metabolites, microbes, and beyond-A review[J]. Journal of advanced research, 2019, 19:67-73 [10] WANG Y, LAMBERS H. Root-released organic anions in response to low phosphorus availability:recent progress, challenges and future perspectives[J]. Plant and Soil, 2020, 447:135-156 [11] 李德华, 向春雷, 姜益泉, 等.低磷胁迫下水稻不同品种根系有机酸分泌的差异[J].中国农学通报, 2005(11):186-188+201. [12] LIPTON D S, BLANEHAR R W, BLEVINS D G.Citrate, malate and succinate concentration in exudation from P sufficient and P stressed Medicago sativa L. seedlings[J]. Plant Physiology, 1987, 85(2):315-317 [13] SHEN J, RENGEL Z, TANG C, et al. Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus[J]. Plant and Soil, 2003, 248:199-206 [14] DENG M H, WEN J F, HUO J L, et al. Molecular cloning, sequence characterization of a novel pepper gene NADP-ICDH and its effect on cytoplasmic male sterility[J]. Genetics and molecular research:GMR, 2012, 11(3):3020-3031 [15] GAYATRI, RANI M, MAHATO A K, et al. omeologue Specific Gene Expression Analysis of Two Vital Carbon Metabolizing Enzymes-Citrate Synthase and NADP-Isocitrate Dehydrogenase-from Wheat (Triticum aestivum L.) Under Nitrogen Stress:Homeologue Specific gene expression of CS and NADP-ICDH[J]. Applied biochemistry and biotechnology, 2019, 188(3):569-584 [16] MHAMDI A, MAUVE C,GOUIA H, et al. Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves[J]. Plant Cell and Environment, 2010, 33(7):1112-1123 [17] LETERRIER M, DEL RÍO L A, CORPAS F J. Cytosolic NADP-isocitrate dehydrogenase of pea plants:genomic clone characterization and functional analysis under abiotic stress conditions.[J]. Free Radical Research, 2007, 41(2):191-199 [18] LIU P, CAI Z, CHEN Z, et al. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis[J]. Plant Cell and Environment, 2018, 41(12):2821-2834 [19] LIU P, HUANG R, HU X, et al. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity[J]. BMC Plant Biology, 2019, 19(1):212 [20] FAMOSO A N, CLARK R T, SHAFF J E, et al. Development of a Novel Aluminum Tolerance Phenotyping Platform Used for Comparisons of Cereal Aluminum Tolerance and Investigations into Rice Aluminum Tolerance Mechanisms[J]. Plant Physiology, 2010, 153(4):1678-1691 [21] MURPHY J, RILEY J P. A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 27(C):678-681 [22] SUN L, CAO X, TAN C, et al. Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics[J]. Ecotoxicology and Environmental Safety, 2020, 205:111152 [23] NING K, HOU C, WEI X, et al. Metabolomics Analysis Revealed the Characteristic Metabolites of Hemp Seeds Varieties and Metabolites Responsible for Antioxidant Properties[J]. Frontiers in plant science, 2022, 13:904163. [24] PANTIGOSO H A, YUAN J, HE Y, et al. Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants[J]. PLOS ONE, 2020, 15(6):e0234216 [25] CHEN Z, SONG J, LI X, et al. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency[J]. BMC Plant Biology, 2021, 21(1):466 [26] LUO J, LIU Y, ZHANG H, et al. Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency[J]. BMC Plant Biology, 20220, 20(1):85 [27] 蔡银美, 赵庆霞, 张成富.低磷下植物根系分泌物对土壤磷转化的影响研究进展[J].东北农业大学学报, 2021, 52(2):79-86 [28] 张豆豆, 梁新华, 王俊.植物根系分泌物研究综述[J].中国农学通报, 2014, 30(35):7 [29] TIAN D, SU M, ZOU X, et al. Influences of phosphate addition on fungal weathering of carbonate in the red soil from karst region[J]. Science of The Total Environment, 2021, 755(Pt 2):142570 [30] DING W, CONG W F, LAMBERS H. Plant phosphorus-acquisition and use strategies affect soil carbon cycling[J]. Trends in ecology and evolution.2021, 36(10):899-906 [31] TOMASI N, WEISSKOPF L, RENELLA G, et al. Flavonoids of white lupin roots participate in phosphorus mobilization from soil[J]. Soil Biology and Biochemistry, 2008, 40(7):1971-1974 [32] MASAOKA Y, KOJIMA M, SUGIHARA S, et al. Dissolution of ferric phosphate by alfalfa (Medicago sativa L.) root exudates[J]. Plant and Soil, 1993, 155/156(1):75-78 |