草地学报 ›› 2023, Vol. 31 ›› Issue (6): 1609-1621.DOI: 10.11733/j.issn.1007-0435.2023.06.002
韩金吉1, 沈小奥2, 杨帆1, 王非1, 覃崇源1, 邹东言1, 胡千怡1, 蔺吉祥1, 王竞红1
收稿日期:
2022-12-03
修回日期:
2023-01-19
出版日期:
2023-06-15
发布日期:
2023-06-30
通讯作者:
王竞红,E-mail:yuanlin@nefu.edu.cn
作者简介:
韩金吉(1999-),男,汉族,山东淄博人,硕士研究生,主要从事植物-丛枝菌根互作的生理与分子机制研究,E-mail:hanjinji04-23@163.com
基金资助:
HAN Jin-ji1, SHEN Xiao-ao2, YANG Fan1, WANG Fei1, QIN Chong-yuan1, ZOU Dong-yan1, HU Qian-yi1, LIN Ji-xiang1, WANG Jing-hong1
Received:
2022-12-03
Revised:
2023-01-19
Online:
2023-06-15
Published:
2023-06-30
摘要: 近年来,由于城市工业的不断发展和化学肥料的过度使用,土壤矿质元素匮乏以及污染等问题严重影响我国农业的可持续发展。丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)作为天然的生物菌肥,可以有效促进植物对矿质元素的吸收并改善其生长状况,同时在重金属污染的土壤中又可以减轻重金属对植物的毒性,增强植物对环境变化的适应性。目前,AMF调控植物矿质元素吸收的生理及分子机制的研究已取得了重大进展,大量的菌根诱导基因被识别,但缺乏系统全面的总结。基于此,本文对国内外AMF调控植物矿质元素吸收的相关研究进行了归纳与总结,从AMF影响植物摄取大量元素和微量元素的生理机制及分子机理、AMF缓解植物重金属毒性的作用机制进行了综述,并根据现有研究的挑战与不足提出了展望,旨在为深入理解AMF影响植物对矿质元素的吸收机制和生物菌肥的农业应用等提供一定的科学依据。
中图分类号:
韩金吉, 沈小奥, 杨帆, 王非, 覃崇源, 邹东言, 胡千怡, 蔺吉祥, 王竞红. 丛枝菌根真菌(AMF)介导植物矿质元素吸收机制的研究进展[J]. 草地学报, 2023, 31(6): 1609-1621.
HAN Jin-ji, SHEN Xiao-ao, YANG Fan, WANG Fei, QIN Chong-yuan, ZOU Dong-yan, HU Qian-yi, LIN Ji-xiang, WANG Jing-hong. Research Progress on the Mechanism of Arbuscular Mycorrhizal Fungi (AMF) Mediated Mineral Elements Uptake by Plants[J]. Acta Agrestia Sinica, 2023, 31(6): 1609-1621.
[1] TEWARI R K,YADAV N,GUPTA R,et al. Oxidative stress under macronutrient deficiency in plants[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):832-859 [2] HANIKENNE M,ESTEVES S M,FANARA S,et al. Coordinated homeostasis of essential mineral nutrients:a focus on iron[J]. Journal of Experimental Botany,2021,72(6):2136-2153 [3] CAVAGNARO T R,BENDER S F,ASGHARI H R,et al. The role of arbuscular mycorrhizas in reducing soil nutrient loss[J]. Trends in Plant Science,2015,20(5):283-290 [4] FRYZOVA R,POHANKA M,MARTINKOVA P,et al. Oxidative stress and heavy metals in plants[J]. Reviews of Environmental Contamination and Toxicology,2017,245:129-156 [5] WIPF D,KRAJINSKI F,VAN TUINEN D,et al. Trading on the arbuscular mycorrhiza market:from arbuscules to common mycorrhizal networks[J]. New Phytologist,2019,223(3):1127-1142 [6] 张海娟,芦光新,范月君,等. 丛枝菌根真菌对高寒草地6种禾本科牧草生长的影响[J]. 草地学报,2022,30(4):1013-1020 [7] AHMAD S,WANG G Y,MUHAMMAD I,et al. Interactive effects of melatonin and nitrogen improve drought tolerance of maize seedlings by regulating growth and physiochemical attributes[J]. Antioxidants,2022,11(2):359 [8] THE S V,SNYDER R,TEGEDER M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency[J]. Frontiers in Plant Science,2021,11:628366 [9] MARSCHNER H. Mineral nutrition of higher plants[M]. 2nd ed. San Diego:CA Academic Press United States,1995:229-312 [10] JANSA J,FORCZEK S T,ROZMOSˇ M,et al. Arbuscular mycorrhiza and soil organic nitrogen:network of players and interactions[J]. Chemical and Biological Technologies in Agriculture,2019,6(1):1-10 [11] WANG Y,ZHOU W,WU J,et al. LjAMT2;2 Promotes ammonium nitrogen transport during arbuscular mycorrhizal fungi symbiosis in Lotus japonicus[J]. International Journal of Molecular Sciences,2022,23(17):9522 [12] 赵飞. 丛枝菌根真菌调控宁夏枸杞氮吸收的机制[D]. 杨凌:西北农林科技大学,2021:18-19 [13] 龚茵茵,燕璐,林建中,等. 低等生物谷氨酸脱氢酶基因用于作物遗传改良的研究进展[J]. 生命科学研究,2021,25(1):31-38 [14] TANG D,JIAO Z,ZHANG Q,et al. Glutamate dehydrogenase isogenes CsGDHs cooperate with glutamine synthetase isogenes CsGSs to assimilate ammonium in tea plant (Camellia sinensis L.)[J]. Plant Science,2021,312:111031 [15] ROBINSON S A,SLADE A P,FOX G G,et al. The role of glutamate dehydrogenase in plant nitrogen metabolism[J]. Plant Physiology,1991,95(2):509-516 [16] TOUSSAINT J P,ST-ARNAUD M,CHAREST C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system[J]. Canadian Journal of Microbiology,2004,50(4):251-260 [17] KHAN Y,YANG X,ZHANG X,et al. Arbuscular mycorrhizal fungi promote plant growth of Leymus chinensis (Trin.) Tzvelev by increasing the metabolomics activity under nitrogen addition[J]. Grassland Science,2021,67(2):128-138 [18] CHEN A Q,GU M,WANG S S,et al. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis[J]. Seminars in Cell & Developmental Biology,2018,74:80-88 [19] WANG S,CHEN A,XIE K,et al. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(28):16649-16659 [20] PÉREZ-TIENDA J,TESTILLANO P S,BALESTRINI R,et al. GintAMT2,a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices[J]. Fungal Genetics and Biology,2011,48(11):1044-1055 [21] CALABRESE S,PéREZ-TIENDA J,ELLERBECK M,et al. GintAMT3-a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis[J]. Frontiers in Plant Science,2016,7:679 [22] GUETHER M,NEUHAUSER B,BALESTRINI R,et al. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi[J]. Plant Physiology,2009,150(1):73-83 [23] XU Y,LIU F,REHMAN S,et al. Genome-Wide Analysis of AMT Gene Family and its Response to Mycorrhizal Symbiosis in Maize[J]. Journal of Plant Growth Regulation,2022:1-10 [24] TOLJANDER J F,LINDAHL B D,PAUL L R,et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS Microbiology Ecology,2007,61(2):295-304 [25] MENG L L,HE J D,ZOU Y N,et al. Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange[J]. Plant,Soil and Environment,2020,66(4):183-189 [26] BIELESKI R L. Phosphate pools,phosphate transport,and phosphate availability[J]. Annual Review of Plant Physiology,1973,24(1):225-252 [27] BENDER S F,CONEN F,VAN DER HEIJDEN M G A. Mycorrhizal effects on nutrient cycling,nutrient leaching and N2O production in experimental grassland[J]. Soil Biology and Biochemistry,2015,80:283-292 [28] BATTINI F,GRØNLUND M,AGNOLUCCI M,et al. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria[J]. Scientific Reports,2017,7(1):1-11 [29] HUANG G M,ZOU Y N,WU Q S,et al. Mycorrhizal roles in plant growth,gas exchange,root morphology,and nutrient uptake of walnuts[J]. Plant,Soil and Environment,2020,66(6):295-302 [30] 竹嘉妮,黄弘,杜勇,等. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应[J]. 生态学杂志,2022,41(5):912-918 [31] BINI D,DOS SANTOS C A,DE SILVA M C P,et al. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis[J]. Scientia Agricola,2018,75:102-110 [32] 刘春艳,吴强盛,邹英宁. AM真菌对枳吸收磷和分泌磷酸酶的影响[J]. 菌物学报,2017,36(7):942-949 [33] DUTTA S C,NEOG B. Inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in modulating phosphorus dynamics in turmeric rhizosphere[J]. National Academy Science Letters,2017,40(6):445-449 [34] SAITO K,EZAWA T. Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis[J]. Molecular Mycorrhizal Symbiosis,2016,12:197-216 [35] WANG E,YU N,BANO S A,et al. A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula[J]. The Plant Cell,2014,26(4):1818-1830 [36] LIU J,CHEN J,XIE K,et al. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake[J]. Plant,Cell and Environment,2020,43(4):1069-1083 [37] KIKUCHI Y,HIJIKATA N,OHTOMO R,et al. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis:application of virus-induced gene silencing[J]. New Phytologist,2016,211(4):1202-1208 [38] GOMEZ-ARIZA J,BALESTRINI R,NOVERO M,et al. Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots[J]. Biology and Fertility of Soils,2009,45(8):845-853 [39] 张怡. 小麦与丛枝菌根共生关系及共生参与磷转运蛋白TaPT29-6A基因功能的分析[D]. 郑州:河南农业大学,2019:75-76 [40] NAGY R,KARANDASHOV V,CHAGUE V,et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species[J]. The Plant Journal,2005,42(2):236-250 [41] 徐丽娇,姜雪莲,郝志鹏,等. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报,2017,41(8):815-825 [42] LIU F,XU Y,HAN G,et al. Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation[J]. Plant and Cell Physiology,2018,59(8):1683-1694 [43] JOHNSON R,VISHWAKARMA K,HOSSEN M S,et al. Potassium in plants:Growth regulation,signaling,and environmental stress tolerance[J]. Plant Physiology and Biochemistry,2022,172:56-69 [44] OLSSON P A,HAMMER E C,PALLON J,et al. Elemental composition in vesicles of an arbuscular mycorrhizal fungus,as revealed by PIXE analysis[J]. Fungal Biology,2011,115(7):643-648 [45] ZHANG H,WEI S,HU W,et al. Arbuscular Mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum[J]. Frontiers in Plant Science,2017,8:440 [46] KUMAR P,KUMAR T,SINGH S,et al. Potassium:A key modulator for cell homeostasis[J]. Journal of Biotechnology,2020,324:198-210 [47] BAHRAMINIA M,ZAREI M,RONAGHI A,et al. Ionomic and biochemical responses of maize plant (Zea mays L.) inoculated with Funneliformis mosseae to water-deficit stress[J]. Rhizosphere,2020,16:100269 [48] LEVENTIS G,TSIKNIA M,FEKA M,et al. Arbuscular mycorrhizal fungi enhance growth of tomato under normal and drought conditions,via different water regulation mechanisms[J]. Rhizosphere,2021,19:100394 [49] ROUPHAEL Y,FRANKEN P,SCHNEIDER C,et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Scientia Horticulturae,2015,196:91-108 [50] 陆潭,陈华涛,沈振国,等. 植物钾通道与钾转运体研究进展[J]. 华北农学报,2019,34(S1):372-379 [51] AHMAD I,MIAN A,MAATHUIS F J M. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance[J]. Journal of Experimental Botany,2016,67(9):2689-2698 [52] NIEVES-CORDONES M,RÓDENAS R,CHAVANIEU A,et al. Uneven HAK/KUP/KT protein diversity among angiosperms:species distribution and perspectives[J]. Frontiers in plant science,2016,7:127 [53] HAN X,DU X,WU Y,et al. Foliar-applied potassium improved mycorrhizal Goji (Lycium barbarum L.) growth of the potassium free-compartment in a compartmented culture system[J]. Scientia Horticulturae,2022,293:110681 [54] LIU J J,LIU J L,LIU J H,et al. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake[J]. Plant Physiology,2019,180(1):465-479 [55] ESTRADA B,AROCA R,MAATHUIS F J M,et al. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis[J]. Plant,Cell and Environment,2013,36(10):1771-1782 [56] SILLANPAEAE M. Micronutrient assessment at the country level:an international study[J]. Fao Soils Bulletin,1990,63:20 [57] 李芳,高萍,段廷玉. AM菌根真菌对非生物逆境的响应及其机制[J]. 草地学报,2016,24(3):491-500 [58] LEHMANN A,RILLIG M C. Arbuscular mycorrhizal contribution to copper,manganese and iron nutrient concentrations in crops–a meta-analysis[J]. Soil Biology and Biochemistry,2015,81:147-158 [59] DEHGHANIAN H,HALAJNIA A,LAKZIAN A,et al. The effect of earthworm and arbuscular mycorrhizal fungi on availability and chemical distribution of Zn,Fe and Mn in a calcareous soil[J]. Applied Soil Ecology,2018,130:98-103 [60] COCCINA A,CAVAGNARO T R,PELLEGRINO E,et al. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain[J]. BMC Plant Biology,2019,19(1):1-14 [61] JARRAH M,GHASEMI-FASAEI R,RONAGHI A,et al. Enhanced Ni phytoextraction by effectiveness of chemical and biological amendments in sunflower plant grown in Ni-polluted soils[J]. Chemistry and Ecology,2019,35(8):732-745 [62] KABIR A H,DEBNATH T,DAS U,et al. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense[J]. Plant Physiology and Biochemistry,2020,150:254-262 [63] RAHMAN M,PARVIN M,DAS U,et al. Arbuscular mycorrhizal symbiosis mitigates iron (Fe)-deficiency retardation in alfalfa (Medicago sativa L.) through the enhancement of Fe accumulation and sulfur-assisted antioxidant defense[J]. International Journal of Molecular Sciences,2020,21(6):2219 [64] PRITY S A,SAJIB S A,DAS U,et al. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status[J]. Protoplasma,2020,257(5):1373-1385 [65] WATTS-WILLIAMS S J,CAVAGNARO T R. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar[J]. Plant Science,2018,274:163-170 [66] WATTS-WILLIAMS S J,TYERMAN S D,CAVAGNARO T R. The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity:linking plant physiology and gene expression[J]. Plant and Soil,2017,420(1):375-388 [67] 杨满元,杨宁,刘慧娟,等. 衡阳紫色土丘陵坡地不同土地利用方式对球囊霉素相关土壤蛋白分布的影响[J]. 草地学报,2020,28(5):1260-1265 [68] WU Z,MCGROUTHER K,HUANG J,et al. Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration:field experiment[J]. Soil Biology and Biochemistry,2014,68:283-290 [69] SIANI N G,FALLAH S,POKHREL L R,et al. Natural amelioration of zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin[J]. Plant Physiology and Biochemistry,2017,112:227-238 [70] NAFADY N A,ELGHARABLY A. Mycorrhizal symbiosis and phosphorus fertilization effects on Zea mays growth and heavy metals uptake[J]. International Journal of Phytoremediation,2018,20(9):869-875 [71] MA Y,RAJKUMAR M,OLIVEIRA R S,et al. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils[J]. Journal of Hazardous Materials,2019,379:120813 [72] ZHOU X,FU L,XIA Y,et al. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae[J]. Metallomics,2017,9(7):936-948 [73] GONZALEZ-GUERRERO M,MELVILLE L H,FERROL N,et al. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology,2008,54(2):103-110 [74] WU S,VOSAÁTKA M,VOGEL-MIKUS K,et al. Nano zero-valent iron mediated metal (loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science and Technology,2018,52(14):7640-7651 [75] FERROL N,TAMAYO E,VARGAS P. The heavy metal paradox in arbuscular mycorrhizas:from mechanisms to biotechnological applications[J]. Journal of Experimental Botany,2016,67(22):6253-6565 [76] 赵圣博,李友国,赵斌,等. 蒺藜苜蓿中CDF家族锌转运体MtMTP3的鉴定和表达调控分析[J]. 华中农业大学学报,2018,37(3):52-60 [77] BAHMANI-BABANARI L,MIRZAHOSSEINI Z,SHABANI L,et al. Effect of arbuscular mycorrhizal fungus,Funneliformis fasciculatum,on detoxification of Nickel and expression of TIP genes in Lolium perenne L[J]. Biologia,2021,76(6):1675-1683 [78] BREUILLIN F,SCHRAMM J,HAJIREZAEI M,et al. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning[J]. The Plant Journal,2010,64(6):1002-1017 [79] BREUILLIN-SESSOMS F,FLOSS D S,GOMEZ S K,et al. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3[J]. The Plant Cell,2015,27(4):1352-1366 |
[1] | 阚海明, 徐恒康, 鲁佳男, 孙鑫博, 武菊英. 不同丛枝菌根真菌接种对3种草地植物生长特性的影响[J]. 草地学报, 2023, 31(7): 1922-1930. |
[2] | 郭川, 周冀琼, 张英俊. 宿主和养分介导了AMF和根瘤菌对植物生长的协同效应[J]. 草地学报, 2023, 31(7): 1931-1938. |
[3] | 臧家艺, 马玉荣, 梁瑞泽, 李豫悦, 杨鑫. 接种菌根真菌与施磷对豆禾混播体系生物量及竞争力的影响[J]. 草地学报, 2022, 30(9): 2469-2476. |
[4] | 肖海龙, 马源, 周会程, 张成君, 姚玉娇, 陈建纲, 张德罡. 三江源退化高寒草原土壤微量元素与植被特征及其关系[J]. 草地学报, 2022, 30(8): 1925-1933. |
[5] | 甄莉娜, 刘丽珍, 牛艳, 李侠, 李朕, 吴娜, 王润梅. 煤矸石山不同植物根际土壤AM真菌群落多样性分析[J]. 草地学报, 2022, 30(8): 2009-2018. |
[6] | 张海娟, 芦光新, 范月君, 周华坤, 周学丽, 窦声云, 姚世庭, 颜珲璘, 赵阳安, 马坤, 祁岩慧, 邱鹏滢. AM真菌对高寒草地2种禾本科牧草的接种效果研究[J]. 草地学报, 2022, 30(7): 1684-1691. |
[7] | 李强, 文铜, 何国兴, 武亚堂, 纪童, 张德罡, 韩天虎, 潘冬荣, 柳小妮. 不同海拔高寒草甸土壤微量元素含量及其与植被的关系[J]. 草地学报, 2022, 30(7): 1731-1737. |
[8] | 张海娟, 芦光新, 范月君, 周华坤, 周学丽, 窦声云, 姚世庭, 颜珲璘, 马坤, 赵阳安, 祁岩慧, 苟恒瑞. 丛枝菌根真菌对高寒草地6种禾本科牧草生长的影响[J]. 草地学报, 2022, 30(4): 1013-1020. |
[9] | 耿依仪, 于露, 张万通, 周华坤, 邓艳芳, 康海燕, 冶文哥, 邵新庆. 丛枝菌根真菌对垂穗披碱草的生长发育和防御性酶活的影响[J]. 草地学报, 2022, 30(12): 3225-3232. |
[10] | 瞿宋林, 吴一凡, 刘忠宽, 王国良, 陈妍静, 戎郁萍. 丛枝菌根真菌对紫花苜蓿生长发育特性的影响[J]. 草地学报, 2022, 30(10): 2529-2534. |
[11] | 李春玥, 马飞, 杨高文, 刘楠, 张英俊. 接种AMF替代磷肥促进退化草地黄花苜蓿的补播建植[J]. 草地学报, 2022, 30(10): 2541-2548. |
[12] | 石国玺, 王芳萍, 马丽, 张中华, 王弋博, 汪之波, 姚步青, 周华坤. 长期、短期增温对高寒草甸AM真菌群落结构的影响[J]. 草地学报, 2021, 29(S1): 179-189. |
[13] | 潘越, 周冀琼, 郭川, 杨喆, 刘琳, 闫艳红, 赵艳兰, 刘珊, 孙飞达. 丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响[J]. 草地学报, 2021, 29(4): 644-654. |
[14] | 张海娟, 芦光新, 范月君, 周华坤, 周学丽, 窦声云, 颜珲璘, 马坤, 赵阳安. 不同染色方法对两种禾本科牧草菌根侵染率的影响[J]. 草地学报, 2021, 29(12): 2838-2844. |
[15] | 齐晨汐, 易观涛, 付晓璇, 王海龙, 王佳琳, 吴建慧. 丛枝菌根真菌对干旱胁迫下鹅绒委陵菜生理指标的影响[J]. 草地学报, 2021, 29(11): 2407-2412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||