›› 2010, Vol. 18 ›› Issue (1): 37-41.DOI: 10.11733/j.issn.1007-0435.2010.01.008

Previous Articles     Next Articles

Study on Classification for Leguminous Forage Based on Image Recognition Technology

WANG Jing-xuan1, FENG Quan1, WANG Yu-tong2, SHAO Xin-qing2   

  1. 1. College of Engineering, Gansu Agricultural University, Gansu Province Lanzhou 730070, China;
    2. Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
  • Received:2009-11-06 Revised:2010-01-08 Online:2010-02-15 Published:2010-02-15

基于图像识别技术的豆科牧草分类研究

王敬轩1, 冯全1, 王宇通2, 邵新庆2   

  1. 1. 甘肃农业大学工学院, 甘肃, 兰州, 730070;
    2. 中国农业大学动物科技学院, 北京, 100193
  • 通讯作者: 邵新庆,E-mail:shaoxinqing@163.com
  • 作者简介:王敬轩(1979- ),男,甘肃人,硕士研究生,研究方向为计算机技术与应用研究,E-mail:ewjx2009@126.com
  • 基金资助:
    国家科技支撑计划项目(2007BAD52B06-2);京承路都市型现代农业走廊工程科技示范项目(D08060500460803)资助

Abstract: Traditionally,measure and species classification of plants are implemented by human experts,which is time-consuming and inefficient.In recent years,information technology including image processing and pattern recognition has been introduced into plant classification.Compared with flowers with 3D structures,leaves are easier to process by computer due to their 2D structures.This paper introduces a method of classifying plants of leguminous forage based on the leave shape features.Firstly,pre-processing method is used to extract the contour of a leaf.Then global and local features of the leaf shape are extracted.The global features include eight geometric features such as axis ratio,rectangularity,circularity,etc,and seven moment invariants.Roughness of leaf edge is selected as the local features.Finally,probabilistic neural network(PNN) and back propagation network(BPN) are applied to constructing classifiers.The experimental results show that the recognition rate of PNN and BPN is 85.1% and 82.4% respectively.

Key words: Leguminous forage, Leaf identification, Image processing, PNN, BPN

摘要: 利用计算机图像处理技术,依据植物叶片图像的形状特征对14种豆科牧草进行分类识别。通过对叶片图像进行预处理,提取出叶片的轮廓。在此基础上提取了叶片形状的全局特征和局部特征;全局特征包括叶片的横纵轴比、矩形度、圆形度等8项几何特征和7个图像不变矩特征;局部特征为叶缘粗糙度。利用PNN(Probabilisticneural network)和BPN(Back propagation network)作为分类器进行识别分类,实现了对豆科牧草叶片图像的分类。识别结果表明,PNN网络的平均识别率为85.1%、BPN网络的平均识别率为82.4%。

关键词: 豆科牧草, 叶片识别, 图像处理, PNN, BPN

CLC Number: