[1] 董世魁,汤琳,张相锋,等. 高寒草地植物物种多样性与功能多样性的关系[J]. 生态学报,2017,37(5):1472-1483 [2] 李红琴,张法伟,毛绍娟,等. 放牧强度对青海海北高寒矮嵩草草甸碳交换的影响[J]. 中国草地学报,2019,41(2):16-21 [3] 陈宁,张扬建,朱军涛,等. 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究[J]. 植物生态学报,2018:42(1):50-65 [4] ZHANG Z,HOU G,LIU M,et al. Degradation Induces Changes in the Soil C:N:P Stoichiometry of Alpine Steppe on the Tibetan Plateau[J]. Journal of Mountain Science,2019,16(10):2348-2360 [5] WANG G X,WANG Y B,LI Y S,et al. Influences of Alpine Ecosystem Responses to Climatic Change on Soil Properties on the Qinghai-Tibet Plateau,China[J]. Catena,2007,70(3):506-514 [6] 高英志,韩兴国,汪诗平. 放牧对草原土壤的影响[J]. 生态学报,2004,24(4):790-797 [7] 何贵永,孙浩智,史小明,等. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应[J]. 草业学报,2015,24(4):12-20 [8] CIHACEK L J,SWAN J B. Effects of Erosion on Soil Chemical Properties in the north central Region of the United States[J]. Journal of Soil and Water Conservation,1994,49(3):259-265 [9] FAY P A,PROBER S M,HARPOLE W S,et al. Grassland productivity limited by multiple nutrients[J]. Nature Plants,2015,1(7):1-5 [10] 刘玉祯,刘文亭,杨晓霞,等. 放牧对全球草地生态系统碳氮磷化学计量特征影响的Meta分析[J]. 应用生态学报,2022,33(5),1251-1259 [11] 李玮,郑子成,李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征[J]. 应用生态学报,2015,26(1):9-16 [12] 刘月娇,倪九派,张洋,等. 三峡库区紫色土旱坡地农桑配置模式对土壤养分的影响[J]. 草业学报,2015,24(12):38-45 [13] 汪攀,王霖娇,盛茂银. 西南喀斯特石漠化生态系统植物多样性、土壤生态化学计量特征及其相关性分析[J]. 南方农业学报,2018,49(10):1959-1969 [14] ELSER J J,BRACKEN M E S,Cleland E E,et al. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater,Marine and Terrestrial Ecosystems[J]. Ecology Letters,2007,10(12):1135-1142 [15] VITOUSEK P M,PORDER S,Houlton B Z,et al. Terrestrial Phosphorus Limitation:Mechanisms,Implications and Nitrogen-Phosphorus Interactions[J]. Ecological Applications,2010,20(1):5-15 [16] ZHAO X Q,ZHOU X M. Ecological Basis of Alpine Neadow Ecosystem Management in Tibet:Haibei Alpine Meadow Ecosystem Research Station[J]. Ambio,1999(28):642-647 [17] WANG C T,LONG R J,WANG Q L,et al. Changes in Plant Diversity,Biomass and Soil C,in Alpine Meadows at Different Degradation stages in the Headwater Region of Three Rivers,China[J]. Land Degradation & Development,2009,20(2):187-198 [18] 翟珈莹. 氮磷添加对青藏高原高寒草地土壤微生物及化学计量特征的影响[D]. 北京:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2020:4-5 [19] 李春丽,李奇,赵亮,等. 环青海湖地区天然草地和退耕恢复草地植物群落生物量对氮、磷添加的响应[J]. 植物生态学报,2016,40(10):1015-1027 [20] 乔磊磊. 长期增温和施肥对高寒草地土壤团聚体稳定性及养分积累的作用机制[D]. 杨凌:西北农林科技大学,2020:38-39 [21] 向雪梅,德科加,林伟山,等. 氮素添加对高寒草甸植物群落多样性和土壤生态化学计量特征的影响[J]. 草地学报,2021,29(12):2769-2777 [22] 张璐璐,李艳,王孝安,等. 刈割与施肥对高寒草甸土壤和植物N、P化学计量学特征的影响[J]. 西北植物学报,2017,37(11):2256-2264 [23] 德科加,张德罡,王伟,等. 施肥对高寒草甸植物及土壤N,P,K的影响[J]. 草地学报,2014,22(2):299-305 [24] 刘海威,张少康,焦峰. 氮磷添加对不同退耕年限草本植被群落及土壤化学计量特征的影响[J]. 水土保持学报,2017,31(2):333-338 [25] 景美玲,马玉寿,李世雄,等. 氮肥对大通河上游退化草地的影响[J]. 草地学报,2016,24(3):518-523 [26] 向雪梅,德科加,冯廷旭,等. 三江源区高寒草甸草场植被和土壤对外源氮素输入的响应[J]. 草地学报,2021,29(9):2010-2016 [27] 张文鹏. 氮、硅添加对高寒草甸植物群落结构以及土壤氮含量的影响[D]. 兰州:兰州大学,2016:25-26 [28] 刘永万. 青藏高原高寒沼泽草甸土壤-植被系统碳氮分配对增温与施氮的短期响应[D].兰州:兰州交通大学,2020:13-16 [29] 张涛. 藏北高寒草甸土壤和植被对外源碳、氮添加及围封、刈割的响应[D]. 兰州:兰州大学,2016:44-45 [30] 任灵. 青藏高原高寒草甸土壤与牧草养分在不同培育措施下的季节动态研究[D]. 兰州:甘肃农业大学,2016:11-14 [31] 侯羿林. 施肥对青藏高原高寒草甸土壤有机碳组分及分解动态的影响[D]. 兰州:兰州大学,2018:14-15 [32] 王伟,德科加. 不同氮肥及施氮水平对称多县高寒草甸生物量和养分的影响[J]. 草地学报,2015,23(5):968-977 [33] 宾振钧,张仁懿,张文鹏,等. 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响[J]. 生态学报,2015,35(14):4699-4706 [34] 李恩宇,何贵永. 青藏高原高寒草甸不同季节土壤理化性质及酶活性对施肥处理的响应[J]. 广西植物,2014,34(4):467-472,449 [35] 曹文侠,李文,李小龙,等. 施氮对高寒草甸草原植物群落和土壤养分的影响[J]. 中国沙漠,2015,35(3):658-666 [36] 王长庭,王根绪,刘伟,等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响[J]. 生态学报,2013,33(10):3103-3113 [37] 刘洋. 氮、磷添加对青藏高原亚高寒草甸土壤有机碳的影响[D]. 兰州:兰州大学,2014:12-14,29 [38] 何贵永. 青藏高原东缘不同施肥量及放牧模式对土壤理化性质的影响[D]. 兰州:兰州大学,2014:26-28 [39] 陈凌云. 添加氮磷对亚高寒草甸金露梅群落各功能群化学计量学特征的影响[D]. 兰州:兰州大学,2010:17-18 [40] 辛小娟. 氮、磷添加对亚高山草甸地上/地下生物量分配及植物功能群组成的影响[D]. 兰州:兰州大学,2011:16-18 [41] 德科加. 施肥对三江源区高寒草甸初级生产力和土壤养分的影响[D]. 兰州:甘肃农业大学,2014:34-35 [42] 张东杰. 添加氮肥对高寒嵩草(Kobresia)草甸群落植物N、P生态化学计量特征的影响[J]. 黑龙江畜牧兽医,2016(1):119-122 [43] 华青措. 氮磷钾不同施肥配方对高寒草甸植物养分及土壤养分的影响[J]. 黑龙江畜牧兽医,2017(5):144-145 [44] 唐立涛. 磷添加对川西北高寒草甸植物根系特征及叶片属性的影响[D]. 成都:西南民族大学,2020:57-60 [45] 刘颖楠,唐姣姣,柳鹏飞,等. 青藏高原高寒草甸土壤有机碳,氮对施肥的响应[J]. 农业科技与信息,2017(10):94-97 [46] ZHOU G,ZHOU X,HE Y,et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems:A meta-analysis[J]. Global Change Biology,2017,23(3):1167-1179 [47] 向雪梅,德科加,冯廷旭,等. 外源氮素添加对高寒草甸植物-土壤养分月际变化的影响[J]. 草地学报,2022,30(7):1836-1845 [48] 费璇,锁才序,向双,等.青藏东缘高寒草甸植物群落结构及功能群特征对长期季节放牧的响应[J]. 草地学报,2022,30(8):1954-1963 [49] 吴赞,彭云峰,杨贵彪,等. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报,2022,46(4):461-472 [50] 赖炽敏,薛娴,赖日文,等. 青藏高原北麓河流域不同退化程度高寒草甸土壤呼吸特征[J]. 草业科学,2019,36(4),952-959 [51] 尚占环,丁玲玲,龙瑞军,等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J]. 草业学报,2007,16(1):34-40 [52] SHARPLEY A N,REKOLAINEN S. Phosphorus in Agriculture and Its Environmental Implications[M]. Wallingford:CAB International,1997:1-53 [53] WHIGHAM D F,SIMPSON R L. The Relationship Between Aboveground and Belowground Biomass of Freshwater tidal Wetland Macrophytes[J]. Aquatic Botany,1978(5):355-364 [54] IPCC C W T. Climate Change 2007:Synthesis report[J]. Contribution of working groups I,II and III to the fourth Assessment report of the intergovernmental panel on Climate change,2007:104 [55] LU C,TIAN H. Spatial and Temporal Patterns of Nitrogen Deposition in China:Synthesis of Observational Data[J]. Journal of Geophysical Research:Atmospheres,2007,112(D22):D22S05 [56] LAMARQUE J F,KIEHL J T,BRASSEUR G P,et al. Assessing Future Nitrogen Deposition and Carbon Cycle Feedback Using a Multimodel Approach:Analysis of Nitrogen Deposition[J]. Journal of Geophysical Research:Atmospheres,2005,110(D19):D19303 [57] 刘禹,李兴福,丁成翔,等. 短期增水对高寒草甸补播草地植被群落和土壤养分的影响[J]. 草地学报,2019,27(6):1622-1632 [58] 孟亚妮,李天鹏,施展,等. 施肥和增水对弃耕草地土壤酸中和容量的影响[J]. 应用生态学报,2020,31(5):1579-1586 [59] BORER E T,SEABLOOM E W,Gruner D S,et al. Herbivores and Nutrients Control Grassland Plant Diversity via Light Limitation[J]. Nature,2014,508(7497):517-520 [60] 德科加,周青平,刘文辉,等. 施氮量对青藏高原燕麦产量和品质的影响[J]. 中国草地学报,2007,29(5):23-27 [61] LIEBISCH F,BUNEMANN E K,HUGUENIN-ELIE O,et al. Plant Phosphorus Nutrition Indicators Evaluated in Agricultural Grasslands Managed at Different Intensities[J]. European Journal of Agronomy,2013(44):67-77 [62] VITOUSEK P M,PORDER S,HOULTON B Z,et al. Terrestrial Phosphorus Limitation:Mechanisms,Implications and Nitrogen-Phosphorus Interactions[J]. Ecological Applications,2010,20(1):5-15 [63] SCHOOLMASTER JR D R,MITTELBACH G G,GROSS K L.Resource Competition and Community Response to Fertilization:the Outcome Depends on Spatial Strategies[J]. Theoretical Ecology,2014,7(2):127-135 [64] 徐明岗,张久权,文石林. 南方红壤丘陵区牧草的肥料效应与施肥[J]. 草业科学,1997,14(6):21-23 [65] 魏金明,姜勇,符明明,等. 水,肥添加对内蒙古典型草原土壤碳,氮,磷及pH的影响[J]. 生态学杂志,2011,30(8):1642-1646 [66] ALLISON S D,VITOUSEK P M. Responses of Extracellular Enzymes to Simple and Complex Nutrient Inputs[J]. Soil Biology and Biochemistry,2005,37(5):937-944 [67] 潘攀. 氮磷混施对高寒草甸植物群落及稳定性的长期效应[D]. 成都:西南民族大学,2021:4-6 [68] 施瑶,王忠强,张心昱,等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响[J]. 生态学报,2014,34(17):4943-4949 [69] 田沐雨,于春甲,汪景宽,等. 氮添加对草地生态系统土壤pH、磷含量和磷酸酶活性的影响[J]. 应用生态学报,2020:31(9):2985-2992 [70] 常继方. 氮磷添加对呼伦贝尔草地植物群落物种多样性与稳定性的影响[D]. 大庆:黑龙江八一农垦大学,2020:45-46 [71] 张文娟. 气候变化与放牧管理对三江源草地生物量和土壤有机碳的影响[D]. 兰州:兰州大学,2018:2-4,6 [72] MOOSHAMMER M,HOFHANSL F,FRANK A H,et al. Decoupling of Microbial Carbon,Nitrogen,and Phosphorus Cycling in Response to extreme Temperature Events[J]. Science Advances,2017,3(5):e1602781 [73] SARDANS J,RIVAS-UBACH A,PENUELAS J. The C:N:P Stoichiometry of Organisms and Ecosystems in a Changing World:A Review and Perspectives[J]. Perspectives in Plant Ecology,Evolution and Systematics,2012,14(1):33-47 [74] WILLIAMSON T J,CROSS W F,BENSTEAD J P,et al. Warming Alters Coupled Carbon and Nutrient Cycles in Experimental Streams[J]. Global Change Biology,2016,22(6):2152-2164 |