[1] 龙瑞军. 青藏高原草地生态系统之服务功能[J]. 科技导报,2007,25(9):26-28 [2] 姚檀栋,朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展,2006,21(5):459-464 [3] 吴建国,吕佳佳. 气候变化对青藏高原高寒草甸适宜气候分布范围的潜在影响[J]. 草地学报,2009,17(6):699-705 [4] SCHWABEDISSEN S G,LOHSE K A,REED S C,et al. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems[J]. Biogeochemistry,2017,134:57-76 [5] 尚占环,董全民,施建军,等. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题[J]. 草地学报,2018,26(1):1-21 [6] MIEHE G,MIEHE S,BHNER J,et al. How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint[J]. Quaternary Scientific revolution,2014(86):190-209 [7] WANG Y,WESCHE K. Vegetation and soil responses to livestock grazing in Central Asian grasslands:a review of Chinese literature[J]. Biodiversity and Conservation,2016,25:2401-2420 [8] ABDALLA M,HASTINGS A,CHADWICK D R,et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands[J]. Agriculture,Ecosystems & Environment,2018,253:62-81 [9] 张蒙,李晓兵. 放牧对土壤有机碳的影响及相关过程研究进展[J]. 草地学报,2018,26(2):267-276 [10] HERRERO-JÁUREGUI C,OESTERHELD M. Effects of grazing intensity on plant richness and diversity:a meta-analysis[J]. Oikos,2018,127:757-766 [11] GVSEWELL S,GESSNER M O. N∶P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms[J]. Functional Ecology,2009,23:211-219 [12] CLEVELAND C C,LIPTZIN D. C∶N∶P stoichiometry in soil:Is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry,2007,85:235-252 [13] 李海云. 祁连山高寒草地退化过程中“植被-土壤-微生物”互作关系[D]. 兰州:甘肃农业大学,2019:20-21,63-64 [14] 马源,李林芝,张德罡,等. 高寒草甸根际土壤化学计量特征对草地退化的响应[J]. 应用生态学报,2019,30(9):3039-3048 [15] MOORHEAD D L,SINSABAUGH R L. A theoretical model of litter decay and microbial interaction[J]. Ecological Monographs,2006,76:151-174 [16] SINSABAUGH R L,HILL B H,SHAH J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature,2009,462:795-798 [17] SINSABAUGH R L,FOLLSTAD S J J. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology[J]. Evolution and Systematics,2012,43:313-343 [18] MAHARNING A R,MILLS A A S,ADL S M. Soil community changes during secondary succession to naturalized grasslands[J]. Applied Soil Ecology,2009,41(2):137-147 [19] 张成霞,南志标. 不同放牧强度下陇东天然草地土壤微生物三大类群的动态特征[J]. 草业科学,2010,27(11):131-136 [20] 许清涛,黄宁,巴雷,等. 不同放牧强度下草地植物格局特征的变化[J]. 中国草地学报,2007,29(2):7-12 [21] KANDELER E,LUXHØI J,TSCHERKO D,et al. Xylanase,invertase and protease at the soil-litter interface of a loamy sand[J]. Soil Biology and Biochemistry,1999,31:1171-1179 [22] FANIN N,MOORHEAD D,BERTRAND I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C,N,P dynamics in decaying litter along a land-use gradient[J]. Biogeochemistry,2016,129:21-36 [23] TAPIA-TORRES Y,ELSER J J,SOUZA V,et al. Ecoenzymatic stoichiometry at the extremes:How microbes cope in an ultra-oligotrophic desert soil[J]. Soil Biology and Biochemistry,2015,87:34-42 [24] 周国利,程云湘,马青青,等. 牦牛放牧强度对青藏高原东缘高寒草甸群落结构与土壤理化性质的影响[J]. 草业科学,2019,36(4):1022-1031,918 [25] CUCHILLO-HILARIO M,WARAGE-MÖNNIG N,ISSELSTEIN J. Forage selectivity by cattle and sheep co-grazing swards differing in plant species diversity[J]. Grass Forage Science,2017,73(2):320-329 [26] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:81-84 [27] HOOD-NOWOTNY R,UMANA N H,INSELBACHER E,et al. Alternative Methods for Measuring Inorganic,Organic,and Total Dissolved Nitrogen in Soil[J]. Soil Science Society of America Journal,2010,74:1018-1027 [28] BROOKES P C,LANDMAN A,PRUDEN G,et al. Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry,1985,17:837-842 [29] VERCHOT L V,BORELLI T. Application of para-nitrophenol (ρNP) enzyme assays in degraded tropical soils[J]. Soil Biology and Biochemistry,2005,37:625-633 [30] KAISER C,FRANKLIN O,DIECKMANN U,et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay[J]. Ecology Letters,2014,17:680-690 [31] 何贵永,孙浩智,史小明,等. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应[J]. 草业学报,2015,24(4):12-20 [32] 李文,曹文侠,李小龙,等. 放牧管理模式对高寒草甸草原土壤养分特征的影响[J]. 草原与草坪,2016(2):8-13,20 [33] LIU S,ZAMANIAN K,SCHLEUSS P M,et al. Degradation of Tibetan grasslands:Consequences for carbon and nutrient cycles[J]. Agriculture,Ecosystems and Environment,2018,252:93-104 [34] 昝看卓,阿山江·伊米尼江,刘丛,等. 不同秋眠类型紫花苜蓿根际与非根际土壤理化性质及化学计量特征[J]. 草地学报,2022,30(4):957-965 [35] 李岚. 滩羊放牧对典型草原生态化学计量特征和多功能性的影响[D]. 兰州:兰州大学,2021:15-24 [36] 陈安强,付斌,鲁耀,等. 有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮[J]. 农业工程学报,2015,31(21):160-167 [37] KAISER C,FRANKLIN O,DIECKMANN U,et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay[J]. Ecology Letters,2014,17:680-690 [38] HUYGENS D,DÍAZ S,URCELAY C,et al. Microbial recycling of dissolved organic matter confines plant nitrogen uptake to inorganic forms in a semi-arid ecosystem[J]. Soil Biology and Biochemistry,2016,101:142-151 [39] ZECHMEISTER-BOLTENSTERN S,KEIBLINGER K M,MOOSHAMMER M,et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs,2015,85:133-155 [40] 袁晓波. 氮沉降对黄土高原典型草原植物群落稳定性及土壤微生物养分利用过程的影响[D]. 兰州:兰州大学,2020:16 [41] LIN B,ZHAO X,ZHENG Y,et al. Effect of grazing intensity on protozoan community,microbial biomass,and enzyme activity in an alpine meadow on the Tibetan Plateau[J]. Journal of Soils and Sediments,2017,17:2752-2762 [42] 阚海明,庞卓,陈超,等. 北京西北浅山区退化草地植被恢复对土壤微生物群落多样性的影响[J]. 草地学报,2022,30(6):1350-1358 [43] 文都日乐,张静妮,李刚,等. 放牧干扰对贝加尔针茅草原土壤微生物与土壤酶活性的影响[J]. 草地学报,2010,18(4):517-522 [44] THEUERL S,BUSCOT F. Laccases:toward disentangling their diversity and functions in relation to soil organic matter cycling[J]. Biology and Fertility of Soils,2010,46:215-225 [45] MOOSHAMMER M,WANEK W,ZECHMEISTER-BOLTENSTERN S,et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources:mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology,2014,5:1-10 [46] ZUO Y P,LI J P,ZENG H,et al. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts[J]. Biogeochemistry,2018,141:23-39 [47] WARING B G,WEINTRAUB S R,SINSABAUGH R L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J]. Biogeochemistry,2014,117:101-113 |