[1] WALMSLEY A R,BARRETT M P,BRINGAUD F,et al. Sugar transporters from bacteria,parasites and mammals:structure-activity relationships[J]. Trends in Biochemical Sciences,1998,23(12):476-481 [2] ZHAO L,YAO J,CHEN W,et al. A genome-wide analysis of SWEET gene family in cotton and their expressions under different stresses[J]. Journal of Cotton Research,2018,1:1-15 [3] RUAN Y L. Sucrose metabolism:gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology,2014,65:33-67 [4] ROLLAND F,MOORE B,SHEEN J. Sugar sensing and signaling in plants[J]. The Plant Cell,2002,14:185-205 [5] SLEWINSKI T L. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants:a physiological perspective[J]. Molecular Plant,2011,4(4):641-662 [6] KVHN C,GROF C P L. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology,2010,13(3):287-297 [7] AYRE B G. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning[J]. Molecular Plant,2011,4(3):377-394 [8] CHEN L Q,HOU B H,LALONDE S,et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature,2010,468(7323):527-532 [9] CHANG A B,LIN R,STUDLEY W K,et al. Phylogeny as a guide to structure and function of membrane transport proteins[J]. Molecular Membrane Biology,2004,21(3):171-181 [10] CHEN L Q,QU X Q,HOU B H,et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science,2012,335(6065):207-211 [11] XUAN Y H,HU Y B,CHEN L Q,et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proceedings of the National Academy of Sciences,2013,110(39):3685-3694 [12] SEO P J,PARK J M,KANG S K,et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity[J]. Planta,2011,233:189-200 [13] 姚利娜. 茶树SWEET家族基因鉴定、表达分析及低温响应基因CsSWEET1α/16/17的功能分析[D]. 北京:中国农业科学院,2020:1-110 [14] LE HIR R,SPINNER L,KLEMENS P A W,et al. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis[J]. Molecular Plant,2015,8(11):1687-1690 [15] MERGOUM M,SAPKOTA S,ELDOLIEFY A E F A,et al. Triticale (×Triticosecale Wittmack) Breeding[J]. Advances in Plant Breeding Strategies:Cereals:Volume 5,2019:405-451 [16] 郭蕊,金星娜,常丹丹,等. 基于小黑麦RIL群体的草产量相关性状QTL分析[J]. 草地学报,2023,31(3):710-718 [17] 杨燕燕,孙宇,吴春会,等. 应用CNCPS体系比较饲用小黑麦和燕麦草的营养价值组分[J]. 草地学报,2022,30(4):931-935 [18] 王雨藤,赵婷,刘怡璇,等. 草地早熟禾光敏色素作用因子基因PpPIFs的鉴定与表达分析[J]. 草原与草坪,2022,42(3):1-8 [19] GASTEIGER E,HOOGLAND C,GATTIKER A,et al. Protein identification and analysis tools on the ExPASy server[M]. Clifton:Humana Press,2005:531-552 [20] HALLGREN J,TSIRIGOS K D,PEDERSEN M D,et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks[EB/OL]. http://doi.org/10.1101/2022.04.08.487609,2022-04-08/2023-07-27 [21] CHOU K C,SHEN H B.Cell-PLoc 2.0:an improved package of web-servers for predicting subce lar llulocalization of proteins in various organisms[J]. Natural Science,2010,2:1090-1103 [22] WATERHOUSE A,BERTONI M,BIENERT S,et al. SWISS-MODEL:homology modelling of protein structures and complexes[J]. Nucleic Acids Research,2018,46(W1):296-303 [23] BIENERT S,WATERHOUSE A,DE BEER T A P,et al. The SWISS-MODEL Repository-new features and functionality[J]. Nucleic Acids Research,2017,45:313-319 [24] GUEX N,PEITSCH M C,SCHWEDE T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer:A historical perspective[J]. Electrophoresis,2009,30(S1):162-173 [25] STUDE G,REMPFER C,WATERHOUSE A,et al. QMEANDisCo-distance constraints applied on model quality estimation[J]. Bioinformatics,2020,36:1765-1771 [26] BERTONI M,KIEFER F,BIASINI M,et al. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology[J]. Scientific Reports,2017,7(1):10480 [27] BAILEY T L,ELKAN C. Fitting a mixture model by expectation maximization to discover motifs in bipolymers[J]. Proceedings International Conference on Intelligent Systems for Molecular Biology,1994,2:28-36 [28] 朱瑞婷,牛奎举,张然,等. 草地早熟禾NAC基因鉴定及非生物胁迫下表达模式分析[J]. 草原与草坪,2021,41(4):26-35 [29] 代玥,刘林娅,杨那,等.植物中SWEET蛋白的研究进展[J].分子植物育种,2021,19(4):1128-1135 [30] YE R Q,WANG M Y,DU H,et al. Glucose-driven TOR-FIE-PRC2 signalling controls plant development[J]. Nature,2022,609(7929):986-993 [31] CHEN Q,HU T,LI X,et al. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought[J]. Nature Plants,2022,8(1):68-77 [32] GONG Z,YANG S. Drought meets SWEET[J]. Nature Plants,2022,8(1):25-26 [33] ALBERT B. 细胞的分子生物学[M]. 张新跃,钱万强,译. 第4版. 北京:科学出版社,2008:256-273 [34] ZHANG R,NIU K,MA H. Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses[J]. DNA and Cell Biology,2020,39(9):1606-1620 [35] 张然. 糖转运蛋白SWEETs参与调控草地早熟禾响应干旱胁迫的研究[D]. 兰州:甘肃农业大学,2022:1-189 [36] 杨于天程,范会,王姣姣,等. 玉米糖运载蛋白基因ZmSWEET10a的生物信息和表达分析[J]. 分子植物育种,2018,16(20):6537-6544 [37] 车佳俐,楼同济,闫黎明,等. 基于转录组测序的蔓越橘SWEET转运蛋白基因筛选及表达分析[J/OL]. 吉林农业大学学报.https://doi.org/10.13327/j.jjlau.2021.1585 [38] 虢成莹. 菠萝SWEET基因家族的进化和功能分析[D]. 泰安:山东农业大学,2018:1-59 [39] ALLEN A M,THOROGOOD C J,HEGARTY M J,et al. Pollen-pistil interactions and self-incompatibility in the Asteraceae:new insights from studies of Senecio squalidus (Oxford ragwort)[J]. Annals of Botany,2011,108(4):687-698 [40] 徐磊,王伟伟,苏世超,等. 小麦糖转运蛋白基因TaSWEET6的克隆与表达分析[J]. 麦类作物学报,2016,36(11):1411-1418 |