[1] 蒲小朋,董世魁,阎宝生,等. 高寒地区豆科牧草引种试验[J]. 中国草地,2001,23(3):18-22,26 [2] 韩学俊,王文乾,陈鉴文,等. 高寒牧区红豆草栽培技术[J]. 草与畜杂志,1988(4):32 [3] 徐长林,曹致中,贾笃敬. 优良抗寒牧草新品种——甘农一号杂花苜蓿[J]. 中国畜牧杂志,1992(6):44 [4] 陆福根,黄金宁,李福龙,等. 澳大利亚豆科牧草引种试验简报[J]. 青海草业,1994,3(3):28-32 [5] 周青平. 高寒地区优良豆科牧草的筛选及生产性能的研究[J]. 草原与草坪,2002(1):50-53 [6] 王晓勇,畅喜云,彭启芳,等. 青大1号紫花苜蓿在环湖地区生长发育规律的研究[J]. 草业与畜牧,2012(10):1-5 [7] 畅喜云,范月君,王晓力,等. 青藏高原高海拔地区极抗寒苜蓿新品系选育报告[J]. 种子,2013,32(6):101-106 [8] 马玉寿,施建军,董全民,等. 适宜黑土滩栽培的牧草品种筛选研究[J]. 青海畜牧兽医杂志,2011,41(4):1-4 [9] 牟丹,马戈亮,卡着才让,等. 不同降温模式下高加索三叶草的转录组比较分析[J]. 草地学报,2021,29(7):1386-1396 [10] 牟丹,杨帆,卡着才让,等. 高加索三叶草响应不同降温模式低温胁迫的代谢组学分析[J]. 草地学报,2021,29(9):1877-1884 [11] 崔英. 三种三叶草的耐盐性和抗寒性研究[D]. 呼和浩特:内蒙古农业大学,2006:32-33 [12] LIN W,HOFMANN R W,STILWELL S A. Physiological responses of five species of trifolium to drought stress[J]. Chinese Journal of Applied and Environmental Biology,2011,17(4):580-584 [13] 牟丹,杨帆,卡着才让,等. 高加索三叶草对不同降温模式的抗寒生理响应[J]. 草原与草坪,2022,42(3):125-131,138 [14] MOU D,LI Z,LIU W,et al. Integrated transcriptomic and metabolomic analyses of caucasian clover (Trifolium ambiguum Bieb.) in response to freezing stress[J]. Brazilian Journal of Botany,2022,45(2):573-585 [15] 柴华. 低温胁迫下黄花苜蓿(Medicago falcata L.)的生理应答及分子调控机制研究[D]. 哈尔滨:东北农业大学,2020:8-10 [16] CUI G,CHAI H,YIN H,et al. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots[J]. BMC Plant Biology,2019,19(1):1-16 [17] PAN C,WANG Y,TAO L,et al. Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress[J]. PLos One,2020,15(9):e0238942 [18] 刘俊,金钰,吴耀松,等. 植物Dof基因结构特点及功能研究进展[J]. 生物技术通报,2020,36(10):180-190 [19] 王泽民,晋昕,张飞燕,等. Dof转录因子在作物逆境胁迫响应及农艺性状改良中的作用[J]. 生物学杂志,2023,40(4):98-106 [20] CHEN S,ZHOU Y,CHEN Y,et al. Fastp:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):884-890 [21] GORDON S P,TSENG E,SALAMOV A,et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing[J]. PLos One,2015,10(7):e0132628 [22] SALMELA L,RIVALS E. LoRDEC:accurate and efficient long read error correction[J]. Bioinformatics,2014,30(24):3506-3514 [23] 毛轩睿,苏旭,刘玉萍,等. 沙鞭全长转录组测序及生物信息学分析[J]. 草地学报,2023,31(6):1673-1681 [24] YIN X,YI K,ZHAO Y,et al. Revealing the full-length transcriptome of caucasian clover rhizome development[J]. BMC Plant Biology,2020,20(1):1-15 [25] 邹丽秋,匡雪君,李滢,等. 人参属药用植物转录组研究进展[J]. 中国中药杂志,2016,41(22):4138-4143 [26] BATISTI O,KUDLA J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2012,1820(8):1283-1293 [27] RITONGA F N,CHEN S. Physiological and molecular mechanism involved in cold stress tolerance in plants[J]. Plants,2020,9(5):560 [28] 吴玲利. 油茶花期对低温胁迫响应的生理及分子机理研究[D]. 长沙:中南林业科技大学,2020:9-10 [29] 丁杨林,施怡婷,杨淑华. 植物响应低温胁迫的分子机制研究[J]. 生命科学,2015,27(3):398-405 [30] 易籽林,徐立,黄绵佳,等. 钙信号系统与植物激素信号的研究进展[J]. 中国农学通报,2010,26(15):221-226 [31] 陈乃钰,张国香,张力爽,等. ABF转录因子在植物响应非生物胁迫中的作用[J]. 植物遗传资源学报,2021,22(4):930-938 [32] GARCÍA M N M,GIAMMARIA V,GRANDELLIS C,et al. Characterization of StABF1,a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro[J]. Planta,2012,235(4):761-778 [33] DUHAN N,MESHRAM M,LOAIZA C D,et al. citSATdb:Genome-wide simple sequence repeat (SSR) marker database of Citrus species for germplasm characterization and crop improvement[J]. Genes,2020,11(12):1486 [34] 刘志宇,曹安,蒋林树,等. 长链非编码RNA (lncRNA)生物学功能及其调控机制[J]. 农业生物技术学报,2018,26(8):1419-1430 [35] 刘琳营,苏晓俊,闵玲. 植物中长链非编码RNA研究进展综述[J]. 江苏农业科学,2021,49(12):12-19 [36] 冯雅岚,熊瑛,张均,等. 可变剪切在植物发育和非生物胁迫响应中的作用[J]. 核农学报,2020,34(1):62-70 [37] 赵春旭. 青藏高原野生草地早熟禾抗寒筛选及对低温胁迫的生理与分子响应研究[D]. 兰州:甘肃农业大学,2022:7-10 [38] 刘辉,李德军,邓治. 植物应答低温胁迫的转录调控网络研究进展[J]. 中国农业科学,2014,47(18):3523-3533 [39] 悦曼芳,张春,吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报,2022,38(12):11-26 [40] 秦智慧,杨青川,晁跃辉,等. CCCH型锌指蛋白研究进展[J]. 生物技术通报,2010(8):1-6 [41] XIE Z,LIN W,YU G,et al. Improved cold tolerance in switchgrass by a novel CCCH-type zinc finger transcription factor gene,PvC3H72,associated with ICE1-CBF-COR regulon and ABA-responsive genes[J]. Biotechnology for Biofuels,2019,12(1):1-11 [42] 李娅,丁文杰,江海燕,等. Dof基因家族调节植物生长发育功能的研究进展[J]. 西北植物学报,2018,38(9):1758-1766 [43] WANG Z,WANG Y,TONG Q,et al. Transcriptomic analysis of grapevine Dof transcription factor gene family in response to cold stress and functional analyses of the VaDof17 d gene[J]. Planta,2021,253(2):1-14 [44] LIJAVET D,CARBONERO P,VICENTE-CARBAJOSA J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology,2003(3):17 [45] CHOI I S,RUHLMAN T A,JANSEN R K. Comparative mitogenome analysis of the genus trifolium reveals independent gene fission of ccmFn and intracellular gene transfers in Fabaceae[J]. International Journal of Molecular Sciences,2020,21(6):1959 [46] CORRALES A R,CARRILLO L,LASIERRA P,et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis[J]. Plant Cell and Environment,2017,40 (5):748-764 [47] XU J,DAI H. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance[J]. Plant Growth Regulation,2016,80(3):315-322 |