[1] SCHLESINGER W H,ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry,2000(48):7-20 [2] DAVIDSON E A,JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006(440):165-173 [3] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science,2014,65(1):10-21 [4] 代景忠,卫智军,何念鹏,等. 封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响[J]. 植物生态学报,2012,36(12):1226-1236 [5] 黄耀,刘世梁,沈其荣,等. 环境因子对农业土壤有机碳分解的影响[J]. 应用生态学报,2002(6):709-714 [6] 陈心悦. 长期干旱后亚热带森林土壤有机碳矿化对干湿交替事件的响应及机制[D]. 上海:华东师范大学,2022:2-15 [7] 尹艳,刘岩,尹云锋,等. 生物质炭添加对杉木人工林土壤原有有机碳矿化的影响[J]. 应用生态学报,2018,29(5):1389-1396 [8] 龙静泓. 有机质梯度的农田黑土有机碳矿化及微生物作用研究[D]. 哈尔滨:中国科学院大学(中国科学院东北地理与农业生态研究所),2023:13-17 [9] 荣慧,房焕,张中彬,等. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响[J]. 土壤学报,2022,59(2):476-485 [10] CONANT R T,RYAN M G,AGREN G I,et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology,2011,17(11):3392-3404 [11] BIRCH H F. The effect of soil drying on humus decomposition and nitrogen availability[J]. Plant and Soil,1958,10(1):9-31 [12] KIM D G,MU S,KANG S,et al. Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous,coniferous,and mixed forests in Korea[J]. Soil Biology and Biochemistry,2010,42(4):576-585 [13] ZHANG S,YU Z,LIN J,et al. Responses of soil carbon decomposition to drying-rewetting cycles:a meta-analysis[J]. Geoderma,2020(361):1-13 [14] BARNARD R L,BLAZEWICZ S J,FIRESTONE M K. Rewetting of soil:revisiting the origin of soil CO2 emissions[J]. Soil Biology and Biochemistry,2020(147):107-119 [15] MURRAY V,EBI K L. IPCC Special Report on Managing the risks of extreme events and disasters to advance climate change adaptation(SREX)[J]. Journal of Epidemiology and Community Health,2012,66(9):759-760 [16] WANG L,MANZONI S,RAVI S,et al. Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems[J]. Ecosphere,2015,6(8):1-27 [17] MORILLAS L,DURAN J,RODRIGUEZ A,et al. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange[J]. Global Change Biology,2015,21(10):3854-3863 [18] XIANG S,DOYLE A,HOLDEN A,et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry,2008(40):2281-2289 [19] 陈洋洋,慈恩,李松,等. 人为破碎和见光风干对干湿交替培养下土壤有机碳矿化的影响[J]. 土壤通报,2023,54(3):636-644 [20] MILLER A E,SCHIMEL J P,MEIXNER T,et al. Episodic rewetting enhances carbon and nitrogen release from chaparral soils[J]. Soil Biology and Biochemistry,2005,37(12):2195-2204 [21] 张梦瑶,高永恒,谢青琰. 干湿交替对土壤有机碳矿化影响的研究进展[J]. 世界科技研究与发展,2017,39(1):17-23 [22] 谢志煌,高志颖,郭丽丽,等. 土壤微生物活性和生物量对干湿交替的响应[J]. 土壤与作物,2020,9(4):348-354 [23] JONES D L,MURPHY D V. Microbial response time to sugar and amino acid additions to soil[J]. Soil Biology and Biochemistry,2007,39(8):2178-2182 [24] LAL R,SMITH P,JUNGKUNST H F,et al. The carbon sequestration potential of terrestrial ecosystems[J]. Journal of Soil and Water Conservation,2018,73(6):145-152 [25] HALL S,HUANG W,TIMOKHIN V,et al. Lignin lags,leads,or limits the decomposition of litter and soil organic carbon[J]. Ecology,2020,101(9):1-7 [26] 张向茹,程曼,祝飞华,等. 宁南山区半干旱草原典型植物立枯物的碳矿化特征[J]. 草地学报,2014,22(2):277-282 [27] 王晓峰,汪思龙,张伟东. 杉木凋落物对土壤有机碳分解及微生物生物量碳的影响[J]. 应用生态学报,2013,24(9):2393-2398 [28] GAO J,FENG J,ZHANG X,et al. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil[J]. Catena,2016(145):285-290 [29] 张振华,刘振杰,陈白洁,等. 枯落物添加对三江源区退化高寒草甸土壤碳矿化的影响[J]. 草地学报,2021,29(1):156-164 [30] LUO Z,WANG E,SMITH C J. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems[J]. Ecology,2016,96(10):2806-2813 [31] BENESCH M,GLASER B,DIPPOLD M,et al. Soil microbial C and N turnover under Cupressus lusitanica and natural forests in southern Ethiopia assessed by decomposition of 13C-and 15N-labelled litter under field conditions[J]. Plant and Soil,2015(388):133-146 [32] MATESANZ S,ESCUDERO A,VALLADARES F. Impact of three global change drivers on a Mediterranean shrub[J]. Ecology,2009,90(9):2609-2621 [33] 伍旖旎,许依,傅童成,等. 施氮对贫瘠红壤定植芒草根际土有机碳矿化过程的影响[J]. 草地学报,2022,30(4):801-809 [34] FRIEDL J,DELTEDESCO E,KEIBLINGER K M,et al. Amplitude and frequency of wetting and drying cycles drive N2 and N2O emissions from a subtropical pasture[J]. Biology and Fertility of Soils,2022,58(5):593-605 [35] HICKS L C. Drying-rewetting of permanent pasture and agricultural soils induces a shift towards microbial use of more C-rich organic matter[J]. Soil Biology and Biochemistry,2023(178):108-118 [36] HE N,WANG R,YANG G,et al. Changes in the temperature sensitivity of SOM decomposition with grassland succession:implications for soil C sequestration[J]. Ecology and Evolution,2013,3(15):5045-5054 [37] 张亚强,解婷婷,梁冠军. 降水变化下红砂凋落物分解对干旱荒漠区土壤化学计量特征的影响[J]. 草地学报,2023,31(5):1445-1453 [38] MOYANO F E,MANZONI S,CHENU C. Responses of soil heterotrophic respiration to moisture availability:An exploration of processes and models[J]. Soil Biology and Biochemistry,2013(59):72-85 [39] 高雅晓玲,苗淑杰,乔云发,等. 干湿循环促进风沙土土壤有机碳矿化[J]. 干旱区资源与环境,2020,34(1):140-147 [40] 陈甜,元方慧,张琳梅,等. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响[J]. 应用生态学报,2022,33(10):2602-2610 [41] CHEN R,SENBAYRAM M,BLAGODATSKY S,et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology,2014,20(7):2356-2367 [42] 韦昌林,李毅,单立山,等. 降水变化对典型荒漠植物凋落物分解的影响[J]. 草地学报,2022,30(5):1280-1289 [43] ZHANG Y,LI X,LIU X,et al. Effects of drying and rewetting cycles on carbon dioxide emissions and soil microbial communities[J]. Forests,2022,13(11):1916-1918 [44] MIKHA M M,RICE C W,MILLIKEN G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles[J]. Soil Biology and Biochemistry,2005,37(2):339-347 [45] SALEEM M,HU J,JOUSSET A. More than the sum of its parts:microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology,Evolution,and Systematics,2019(50):145-168 [46] WU J,BROOKES P C. The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology and Biochemistry,2005,37(3):507-515 [47] SOLTAU S M. Assessing soil drying and rewetting effects on greenhouse gas emissions across contrasting montane meadows[D]. Merced,California:University of California Merced,2019:21-23 [48] STOYAN H,DE-POLLI H,BOHM S,et al. Spatial heterogeneity of soil respiration and related properties at the plant scale[J]. Plant and Soil,2000,222(2):203-214 [49] 王越,罗雪媛,李永春,等. 毛竹与阔叶林凋落物添加对土壤细菌群落的影响[J]. 农业生物技术学报,2020,28(6):951-962 [50] WEGNER L H,LI X,ZHANG J,et al. Biochemical and biophysical pH clamp controlling net H+ efflux across the plasma membrane of plant cells[J]. New Phytologist,2021,230(2):408-415 [51] NEMERGUT D R,CLEVELANG C C,WIEDER W R,et al. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest[J]. Soil Biology and Biochemistry,2010,42(12):2153-2160 [52] 梅孔灿. 凋落叶和磷添加对马尾松林土壤激发效应的影响及机制[D]. 福州:福建师范大学,2022:2-13 [53] SULLIVAN B W,HART S C. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient[J]. Soil Biology and Biochemistry,2013(58):293-301(责任编辑 刘婷婷)第32卷 第3期 Vol.32 No. 3草 地 学 报 ACTAAGRESTIASINICA 2024年 3月 |