[1] 姚喜喜,孙海群,李长慧,等. 高寒草原天然牧草营养品质近红外光谱预测模型的建立[J]. 动物营养学报,2021,33(7):4088-4097 [2] 陈懂懂,李奇,霍莉莉,等. 长江源和黄河源区草地牧草养分、理论承载力及饲用价值[J]. 草地学报,2023,31(7):2186-2193 [3] 宾振钧,王静静,张文鹏,等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报,2014,38(3):231-237 [4] 高金龙,侯尧宸,白彦福,等. 基于高光谱数据的高寒草甸氮磷钾含量估测方法研究——以青海省贵南县及玛沁县高寒草甸为例[J]. 草业学报,2016,25(3):9-21 [5] 高宏元,侯蒙京,葛静,等. 基于随机森林的高寒草地地上生物量高光谱估算[J]. 草地学报,2021,29(8):1757-1768 [6] OBERMEIER W A,LEHNERT L W,POHL M J,et al. Grassland Ecosystem Services in a Changing Environment:The Potential of Hyperspectral Monitoring[J]. Remote Sensing of Environment,2019,232:111273 [7] COLORADO J D,CERA-BORNACELLI N,CALDAS J S,et al. Estimation of Nitrogen in Rice Crops From Uav-Captured Images[J]. Remote Sensing,2020,12(20):3396 [8] FENG H,FAN Y,TAO H,et al. Monitoring of Nitrogen Content in Winter Wheat Based On Uav Hyperspectral Imagery[J]. Spectroscopy and Spectral Analysis,2023,43(10):3239-3246 [9] 陈志超,蒋贵印,张正,等. 基于无人机高光谱遥感的春玉米氮营养指数反演[J]. 河南理工大学学报(自然科学版),2022,41(03):81-89 [10] 高金龙. 青藏高原东缘高寒天然草地牧草氮磷养分和生长状况的高光谱遥感研究[D]. 兰州:兰州大学,2020:47-58 [11] 谢树刚. 基于高光谱的黄河三角洲土壤有机质含量估测模型研究[D]. 泰安:山东农业大学,2021:13-14 [12] PANG H,ZHANG A,YIN S,et al. Estimating Carbon, Nitrogen, and Phosphorus Contents of West-East Grassland Transect in Inner Mongolia Based on Sentinel-2 and Meteorological Data[J]. Remote Sensing,2022,14(2):242 [13] WU L,GONG Y,BAI X,et al. Nondestructive Determination of Leaf Nitrogen Content in Corn by Hyperspectral Imaging Using Spectral and Texture Fusion[J]. Applied Sciences,2023,13(3):1910 [14] HUANG W,LI W,XU J,et al. Hyperspectral Monitoring Driven by Machine Learning Methods for Grassland Above-Ground Biomass[J]. Remote Sensing,2022,14(9):2086 [15] FERNANDEZ-HABAS J,CARRIERE CANADA M,GARCIA MORENO A M,et al. Estimating Pasture Quality of Mediterranean Grasslands Using Hyperspectral Narrow Bands From Field Spectroscopy by Random Forest and Pls Regressions[J]. Computers and Electronics in Agriculture,2022,192:106614 [16] CAO C,WANG T,GAO M,et al. Hyperspectral Inversion of Nitrogen Content in Maize Leaves Based On Different Dimensionality Reduction Algorithms[J]. Computers and Electronics in Agriculture,2021,190:106461 [17] 聂磊超,崔丽娟,刘志君,等. 盐城滨海湿地优势植物碳氮磷生态化学计量高光谱反演[J]. 生态学报,2023,43(12):5173-5185 [18] KARILA K,OLIVEIRA R A,EK J,et al. Estimating Grass Sward Quality and Quantity Parameters Using Drone Remote Sensing with Deep Neural Networks[J]. Remote Sensing,2022,14(11):2692 [19] CUI L,DOU Z,LIU Z,et al. Hyperspectral Inversion ofPhragmites CommunisCarbon,Nitrogen,and Phosphorus Stoichiometry Using Three Models[J]. Remote Sensing,2020,12(12):1998 [20] 何文,余玲,姚月锋. 基于光谱指数的喀斯特植物叶片叶绿素含量定量估算[J]. 广西植物,2022,42(6):914-926 [21] EPPRECHT C,GUGAN D,VEIGA,et al. Variable Selection and Forecasting Via Automated Methods for Linear Models:Lasso/Adalasso and Autometrics[J]. Communications in Statistics-Simulation and Computation,2021,50(1):103-122 [22] SCHUMACHER P,MISLIMSHOEVA B,BRENNING A,et al. Do Red Edge and Texture Attributes From High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?[J]. Remote Sensing (Basel,Switzerland),2016,8(7):540 [23] LIU J,FENG Q,LIANG T,et al. Estimating the Forage Neutral Detergent Fiber Content of Alpine Grassland in the Tibetan Plateau Using Hyperspectral Data and Machine Learning Algorithms[J]. Ieee Transactions On Geoscience and Remote Sensing,2022,60 [24] ADJORLOLO C,MUTANGA O,CHO M A. Predicting C3 and C4 Grass Nutrient Variability Using in Situ Canopy Reflectance and Partial Least Squares Regression[J]. International Journal of Remote Sensing,2015,36(6):1743-1761 [25] PULLANAGARI R R,DEHGHAN-SHOAR M,YULE I J,et al. Field Spectroscopy of Canopy Nitrogen Concentration in Temperate Grasslands Using a Convolutional Neural Network[J]. Remote Sensing of Environment,2021,257:112353 [26] 陈积山,朱瑞芬,张强,等. 建立近红外特征波长模型快速测定羊草常规营养成分的研究[J]. 草地学报,2019,27(4):867-873 [27] GAO J,LIANG T,YIN J,et al. Estimation of Alpine Grassland Forage Nitrogen Coupled with Hyperspectral Characteristics During Different Growth Periods On the Tibetan Plateau[J]. Remote Sensing,2019,11(18):2085 [28] GAO J,LIANG T,LIU J,et al. Potential of Hyperspectral Data and Machine Learning Algorithms to Estimate the Forage Carbon-Nitrogen Ratio in an Alpine Grassland Ecosystem of the Tibetan Plateau[J]. Isprs Journal of Photogrammetry and Remote Sensing,2020,163:362-374 [29] 朱怡,吴永波,周子尧,等. 基于高光谱数据的互花米草营养成分反演[J]. 北京林业大学学报,2020,42(9):92-99 [30] ZHOU Z,MOREL J,PARSONS D,et al. Estimation of Yield and Quality of Legume and Grass Mixtures Using Partial Least Squares and Support Vector Machine Analysis of Spectral Data[J]. Computers and Electronics in Agriculture,2019,162:246-253 [31] SAPTORO A,TADE M O,VUTHALURU H. A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models[J]. Chemical Product and Process Modeling,2012,7(1):131 [32] 孙问娟,李新举. 煤矿区土壤有机碳含量的遥感反演与分布特征[J]. 水土保持学报,2018,32(3):328-333 [33] PENG Y,ZHANG M,XU Z,et al. Estimation of Leaf Nutrition Status in Degraded Vegetation Based On Field Survey and Hyperspectral Data[J]. Scientific Reports,2020,10(1):4361 [34] 祁琼. 基于高光谱数据的苔草营养成分反演方法研究[J]. 地理空间信息,2017,15(10):90-93 [35] 杨迈,李晓琳,郑毅,等. 基于高光谱技术的滇池流域湿地植物氮含量估算模型构建[J]. 西南林业大学学报(自然科学),2024,44(4):1-10 [36] ADJORLOLO C,MUTANGA O,CHO M A,et al. Spectral Resampling Based On User-Defined Inter-Band Correlation Filter:C3 and C4 Grass Species Classification[J]. International Journal of Applied Earth Observation and Geoinformation,2013,21:535-544 [37] GAO J,MENG B,LIANG T,et al. Modeling Alpine Grassland Forage Phosphorus Based On Hyperspectral Remote Sensing and a Multi-Factor Machine Learning Algorithm in the East of Tibetan Plateau,China[J]. Isprs Journal of Photogrammetry and Remote Sensing,2019,147:104-117 [38] GONG Z,KAWAMURA K,ISHIKAWA N,et al. Estimation of Herbage Biomass and Nutritive Status Using Band Depth Features with Partial Least Squares Regression in Inner Mongolia Grassland,China[J]. Grassland Science,2016,62(1):45-54 [39] 宋雪莲,王志伟,张文,等. 冷杉叶片氮含量高光谱反演技术研究[J]. 草原与草坪,2021,41(6):139-147 [40] BRATSCH S,EPSTEIN H,BUCHHORN M,et al. Relationships Between Hyperspectral Data and Components of Vegetation Biomass in Low Arctic Tundra Communities at Ivotuk,Alaska[J]. Environmental Research Letters,2017,12(2):25003 [41] KYAW T Y,SIEGERT C M,DASH P,et al. Using Hyperspectral Leaf Reflectance to Estimate Photosynthetic Capacity and Nitrogen Content Across Eastern Cottonwood and Hybrid Poplar Taxa[J]. Plos One,2022,17(3):e264780 [42] 苗春丽,伏帅,刘洁,等. 基于UAV成像高光谱图像的高寒草甸地上生物量——以海北试验区为例[J]. 草业科学,2022,39(10):1992-2004 [43] YANG S,FENG Q,LIANG T,et al. Modeling Grassland Above-Ground Biomass Based On Artificial Neural Network and Remote Sensing in the Three-River Headwaters Region[J]. Remote Sensing of Environment,2018,204:448-455 [44] 胡林,刘婷婷,李欢,等. 机器学习及其在农业中应用研究的展望[J]. 农业图书情报学报,2019,31(10):12-22 [45] WIJESINGHA J,ASTOR T,SCHULZE-BRVNINGHOFF D,et al. Predicting Forage Quality of Grasslands Using Uav-Borne Imaging Spectroscopy[J]. Remote Sensing (Basel,Switzerland),2020,12(1):126 [46] PULLANAGARI R,KERESZTURI G,YULE I. Integrating Airborne Hyperspectral,Topographic,and Soil Data for Estimating Pasture Quality Using Recursive Feature Elimination with Random Forest Regression[J]. Remote Sensing (Basel,Switzerland),2018,10(7):1117 |