[1] 中国科学院中国植物志编辑委员会. 中国植物志:第78(1)卷[M]. 北京:科学出版社,1987:61 [2] 刘建泉. 祁连山保护区种子植物属的区系研究[J]. 干旱区资源与环境,2005,19(7):221-228 [3] 史惠兰. 青海湖地区4种荒漠植物抗逆性指标的研究[J]. 安徽农业科学,2011,39(23):14227-14229 [4] 张丽. 三种药用植物次生代谢物结构及其生物活性研究[D]. 兰州:兰州大学,2014:33-64 [5] 王国强. 全国中草药汇编-卷二[M]. 第3版.北京:人民卫生出版社,2014:529 [6] 赵汝能. 甘肃中草药资源志(下册)[M]. 兰州:甘肃科学技术出版社,2007:480 [7] ZHANG L,CHEN C J,CHEN J,et al. Thiophene acetylenes and furanosesquiterpenes from Xanthopappus subacaulis and their antibacterial activities[J]. Phytochemistry,2014,106:134-140 [8] 田永清,庄流东,徐汉虹. 光活化杀虫植物的1种新型筛选方法[J]. 华中农业大学学报,2008,27(3):370-372 [9] WANG Y J,LIU J Q,MIEHE G. Phylogenetic origins of the Himalayan endemic Dolomiaea,Diplazoptilon and Xanthopappus (Asteraceae:Cardueae) based on three DNA regions[J]. Annals of Botany,2007,99(2):311-322 [10] 张阳,马子兰,徐珊珊,等. 青藏高原东北部黄缨菊的谱系地理学[J]. 植物研究,2022,42(4):565-573 [11] MA Z L,XU S S,ZHANG Y,et al. Characterization and phylogenetic analysis of the complete chloroplast genome of Xanthopappus subacaulis (Asteraceae),an endemic species from the Qinghai-Tibet Plateau in China[J]. Cytology and Genetics,2022,56(1):77-83 [12] 郑长远. 黄缨菊SSR分子标记开发及遗传多样性研究[D]. 西宁:青海师范大学,2023:36-51 [13] 孙浩男,田琳,温春秀,等. 28个中国紫苏属种质资源的染色体核型分析[J]. 草地学报,2021,29(6):1242-1248 [14] 杨萍,苏旭,刘玉萍,等. 扇穗茅不同居群染色体数目及核型分析[J]. 草地学报,2022,30(7):1712-1720 [15] 胡夏宇,刘玉萍,苏旭,等. 苦豆子不同居群染色体数目及核型分析[J]. 植物研究,2023,43(1):9-19 [16] 杨慧芳. 冰草居群核型变异研究[D]. 成都:四川农业大学,2016:7-10 [17] 王亚男,刘玉萍,刘雪利,等. 沙鞭不同居群染色体数目及核型分析[J]. 西北植物学报,2021,41(9):1489-1499 [18] 梁凤萍,文祥宁,高赫一,等. 菊科植物叶绿体基因组特征分析[J]. 基因组学与应用生物学,2018,37(12):5437-5447 [19] 王钦昊,卢丹阳. 鹤岗市东山区菊科药用植物资源调查研究[J]. 林业勘查设计,2024,53(2):22-25 [20] STEBBINS G L,JENKINS J A,WALTERS M S. Chromosomes and phylogeny in the Compositae,tribe Cichorieae[J]. University of California Publications in Botany,1953,16:401-430 [21] 肖佳伟,王颖嘉,黄文轩,等. 长柄马兰(菊科)的形态补充描述及细胞学研究[J]. 植物研究,2022,42(5):741-745 [22] SOEJIMA A,HAMASHIMA T. Karyological and phylogenetic analyses of Aster koshikiensis kitamura (Asteraceae,astereae),endemic to the koshiki islands,Kagoshima (Kyushu,Japan)[J]. Acta Phytotaxonomica et Geobotanica,2019,70(3): 141-147 [23] MELAHAT O,HAYRLOGLU-AYAZ S,INCEER H. Chromosome reports in some Cirsium(Asteraceae,Cardueae) taxa from north-east Anatolia[J]. Caryologia,2011,64(1):55-66 [24] 杨大翔. 用Adobe Photoshop进行核型分析[J]. 农业网络信息,2005(3):45-46,44 [25] LEVAN A,FREDGA K,SANDBERG A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas,2009,52(2):201-220 [26] KUO S,WANG T,HUANG T C. Karyotype analysis of some Formosan gymnosperms[J]. Taiwania,1972,17(1):66-80 [27] ARANO H. Cytological studies in subfamily carduoideae (Compositae) of Japan IX. the karyotype analysis and phylogenic considerations on Pertya and Ainsliaea (2)[J]. Shokubutsugaku Zasshi,1963,76(895):32-39 [28] STEBBINS G L. Chromosomal evolution in higher plants[M]. London: Edward Arnold,1971:85-104 [29] 李懋学,陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究,1985(4):297-302 [30] 邢世岩,高进红,姜岳忠,等. 银杏特异种质核型进化趋势[J]. 林业科学,2007,43(1):21-27,127 [31] 李晓莉,贺新桠,肖鑫辉,等. 5个木薯品种染色体核型与聚类分析[J]. 热带作物学报,2019,40(1):79-86 [32] 孙浩男,李明阳,刘冬云,等. 不同种(品种)金鸡菊的染色体数目鉴定及核型分析[J]. 草地学报,2021,29(11):2477-2485 [33] MATOBA H,MIZUTANI T,NAGANO K,et al. Chromosomal study of lettuce and its allied species (Lactuca spp.,Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization[J]. Hereditas,2007,144(6):235-243 [34] WANG S,WANG A Q,CHEN R,et al. Haplotype-resolved chromosome-level genome of hexaploid Jerusalem artichoke provides insights into its origin,evolution,and inulin metabolism[J]. Plant Communications,2024,5(3):100767 [35] RODRÍGUEZ J D,MUÑOZ-ACEVEDO A,MÉNDEZ A L,et al. Analysis of the germination rate,mitotic index and karyotype of Chromolaena barranquillensis (Hieron.) R.M. King H. Rob.—Asteraceae[J]. South African Journal of Botany,2014,94:149-154 [36] PELLICER J,GARCIA S,CANELA M A,et al. Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy[J]. Plant Biology,2010,12(5):820-830 [37] 张建波,白史且,张新全,等. 川西北高原12个垂穗披碱草居群的核型研究[J]. 西北植物学报,2008,28(5):946-955 [38] 乔永刚,王勇飞,曹亚萍,等.13种蒲公英属植物核型似近系数聚类分析[J]. 草地学报,2020,28(1):285-290 [39] 齐宇晴,李新玲,张彦妮,等. 四种草本花卉的染色体核型分析[J]. 生物技术通报,2013,29(2):72-75 [40] WANG Y Y,LI Y C,LUO A,et al. Evolutionary history and climate co-determine the geographical variation in pollination modes of angiosperms in China[J]. Global Ecology and Biogeography,2023,32(12):2189-2198 [41] HERBERT D T,LAWRENCE K T,TZANOVA A,et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience,2016,9(7537):843-847 [42] 马子兰,刘峰,张阳,等. 青藏高原特有植物黄缨菊研究现状及种质资源收集[J]. 青海师范大学学报(自然科学版),2020,36(2):41-44 [43] CULLEY T M,WELLER S G,SAKAI A K. The evolution of wind pollination in angiosperms[J]. Trends in Ecology & Evolution,2002,17(8):361-369 [44] SHAHZAD A,ULLAH S,DAR A A,et al. Nexus on climate change:agriculture and possible solution to cope future climate change stresses[J]. Environmental Science and Pollution Research,2021,28(12):14211-14232 [45] 谭培. 两种扁穗雀麦核型分析与种子萌发期抗旱性研究[D]. 咸阳:西北农林科技大学,2017:4-8 [46] 张俊,王静毅,陈友,等. 基于模型的香蕉种质资源群体结构聚类分析及其亲缘关系分析[J]. 热带作物学报,2014,35(2):232-238 [47] 马子兰. 青藏高原特有种黄缨菊谱系地理学研究[D]. 西宁:青海师范大学,2022:10-27 [48] 秦进. 基于树木年轮的秦岭林线典型树种对气候的响应与区域气温重建[D]. 西安:西北大学,2018:101-104 [49] 曲荣举,刘玉萍,陈金元,等. 苦马豆(Sphaerophysa salsula)6个不同居群的染色体核型分析[J]. 草地学报,2024,32(8):2469-2477 |