Acta Agrestia Sinica ›› 2026, Vol. 34 ›› Issue (1): 10-22.DOI: 10.11733/j.issn.1007-0435.2026.01.002
YAN Shi-wei1, GU Yi-zhou1, ZHAO Hao-han1, LIANG Shu-yue1, GAO Gang1, CHEN Ping1, ZHU Ai-guo1,2,3, CHEN Ji-kang1,2,3
Received:2025-03-17
Revised:2025-06-12
Published:2025-12-24
颜世伟1, 顾一舟1, 赵浩含1, 梁舒月1, 高钢1, 陈平1, 朱爱国1,2,3, 陈继康1,2,3
通讯作者:
陈继康,E-mail:chenjikang@caas.cn
作者简介:颜世伟(1997-),男,汉族,湖南衡阳人,硕士研究生,主要从事苎麻抗逆遗传育种与利用研究,E-mail:15273496700@163.com;
基金资助:CLC Number:
YAN Shi-wei, GU Yi-zhou, ZHAO Hao-han, LIANG Shu-yue, GAO Gang, CHEN Ping, ZHU Ai-guo, CHEN Ji-kang. Genome-wide Identification of Glutathione S-Transferases (GSTs) Gene Family and Its Responses to Cadmium Stress in Ramie (Boehmeria nivea)[J]. Acta Agrestia Sinica, 2026, 34(1): 10-22.
颜世伟, 顾一舟, 赵浩含, 梁舒月, 高钢, 陈平, 朱爱国, 陈继康. 苎麻谷胱甘肽S-转移酶家族全基因组鉴定及其对镉胁迫的响应[J]. 草地学报, 2026, 34(1): 10-22.
| [1] DIXON D, LAPTHORN A, EDWARDS R. Plant glutathione transferases[J]. Genome Biology, 2002, 3(3): reviews 3004. [2] YAN H F, MAO P S, XIA F S. Research progress in plant antioxidant glutathione(review)[J]. Acta Agrestia Sinica, 2013, 21(3): 428-434 闫慧芳, 毛培胜, 夏方山. 植物抗氧化剂谷胱甘肽研究进展[J]. 草地学报, 2013, 21(3): 428-434 [3] NUTRICATI E, MICELI A, BLANDO F, et al. Characterization of two Arabidopsis thaliana glutathione S-transferases[J]. Plant Cell Reports, 2006, 25: 997-1005 [4] MCGONIGLE B, KEELER S J, LAU S C, et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize[J]. Plant Physiology, 2000, 124: 1105-1120 [5] SORANZO N, SARI GORLA M, MIZZI L, et al. Organisation and structural evolution of the rice glutathione S-transferase gene family[J]. Molecular Genetics and Genomics, 2004, 271: 511-521 [6] CAO Q, LV W, JIANG H, et al. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress[J]. International Journal of Biological Macromolecules, 2022, 205: 749-760 [7] JIANG W, WANG T, ZHANG M, et al. Genome-wide identification of glutathione S-transferase family from Dendrobium officinale and the functional characterization of DoGST5 in cadmium tolerance[J]. International Journal of Molecular Sciences, 2024, 25: 8439 [8] WANG L, FU H, ZHAO J, et al. Genome-wide identification and expression profiling of glutathione S-transferase gene family in foxtail millet (Setaria italica L.)[J]. Plants, 2023, 12: 1138 [9] NIANIOU-OBEIDAT I, MADESIS P, KISSOUDIS C, et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications[J]. Plant Cell Reports, 2017, 36: 791 - 805 [10] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48: 909-930 [11] KUMAR S, ASIF M H, CHAKRABARTY D, et al. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses[J]. Journal of Hazardous Materials, 2013, 248-249: 228-237 [12] SUN Y, TIAN Z, ZUO D, et al. GhUBC10‐2 mediates GhGSTU17 degradation to regulate salt tolerance in cotton (Gossypium hirsutum)[J]. Plant, Cell & Environment, 2024, 47: 1606-1624 [13] CHEN J, JIANG H, HSIEH E, et al. Drought and salt stress tolerance of an Arabidopsis glutathione s-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid[J]. Plant Physiology, 2012, 158: 340-351 [14] TAKESAWA T, ITO M, KANZAKI H, et al. Over-expression of ζ glutathione S-transferase in transgenic rice enhances germination and growth at low temperature[J]. Molecular Breeding, 2002, 9: 93-101 [15] HAN Q, CHEN R, YANG Y, et al. A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum[J]. Scientia Horticulturae, 2016, 198: 370-378 [16] GEORGE S, VENKATARAMAN G, PARIDA A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco[J]. Journal of Plant Physiology, 2010, 167: 311-318 [17] SECKIN DINLER B, CETINKAYA H, SECGIN Z. The regulation of glutathione s-transferases by gibberellic acid application in salt treated maize leaves[J]. Physiology and Molecular Biology of Plants, 2023, 29: 69-85 [18] LOYALL L, UCHIDA K, BRAUN S, et al. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures[J]. The Plant Cell, 2000, 12: 1939-1950 [19] JIANG H, LIU M, CHEN I, et al. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development[J]. Plant Physiology, 2010, 154: 1646-1658 [20] REHMAN M, GANG D, LIU Q, et al. Ramie, a multipurpose crop: potential applications, constraints and improvement strategies[J]. Industrial Crops and Products, 2019, 137: 300-307 [21] WU Z, TANG Q, WANG Y, et al. Ramie (Boehmeria Nivea) as phytoremediation crop for heavy metal-contaminated paddy soil in southern China: variety comparison, Cd accumulation, and assessment of fiber recycling[J]. Journal of Natural Fibers, 2021, 19: 11078-11091 [22] ZHANG X Y, HE S, QU H Y, et al. Bioinformatic and Expression Profiling Analysis of the CCCH Gene Family in Ramie[J]. Acta Agrestia Sinica, 2024, 32(3): 703-713 张晓洋, 何思, 瞿宏悦, 等. 苎麻CCCH基因家族生物信息学及表达谱分析[J]. 草地学报, 2024, 32(3): 703-713 [23] LIU T, FU Y, LI G, et al. Transcriptomic and physiological responses of Qingye Ramie to drought stress[J]. Agronomy, 2024, 14: 301 [24] AN X, CHEN J, ZHANG J, et al. Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud.) in response to PEG treatment, using Illumina paired-end sequencing technology[J]. International Journal of Molecular Sciences, 2015, 16: 3493-3511 [25] BAO Y, HUANG X, REHMAN M, et al. Identification and expression analysis of the PIN and AUX/LAX gene families in ramie (Boehmeria nivea L. Gaud.)[J]. Agronomy, 2019, 9: 435 [26] BAO Y, ZOU Y, AN X, et al. Overexpression of a ramie (Boehmeria nivea L. Gaud.) Group I WRKY gene, BnWRKY49, increases drought resistance in Arabidopsis thaliana[J]. Plants, 2024, 13: 379 [27] MA Y, JIE H, ZHAO L, et al. BnXTH1 regulates cadmium tolerance by modulating vacuolar compartmentalization and the cadmium binding capacity of cell walls in ramie (Boehmeria nivea)[J]. Journal of Hazardous Materials, 2024, 470: 134172 [28] ZHU S J, SHI W J. Cloning and expression analysis of a glutathione-s-transferase gene BnGSTU1 from ramie (Boehmeria nivea (L.) Gaudich.)[J]. Journal of Plant Genetic Resources, 2018, 19(6): 1197-1204 朱守晶, 史文娟. 苎麻谷胱甘肽-S-转移酶基因BnGSTU1的克隆和表达分析[J]. 植物遗传资源学报, 2018, 19(6): 1197-1204 [29] ZHANG Y, SHI C Y WANG Y M, et al. Expression characteristics of Bn-glutathione transferases gene in different ramie (Boehmeria nivea) varieties under cadmium stress[J]. Molecular Plant Breeding, 2022, 20(21): 6975-6985 张英, 石朝艳, 汪娅梅, 等. 不同苎麻品种镉胁迫下谷胱甘肽硫转移酶基因的表达特征[J]. 分子植物育种, 2022, 20(21): 6975-6985 [30] LAMESCH P, DREHER K, SWARBRECK D, et al. Using the Arabidopsis Information Resource (TAIR) to find information about Arabidopsis genes[J]. Current Protocols in Bioinformatics, 2010, 30: 1-51 [31] CHEN K, MING Y, LUAN M, et al. The chromosome-level assembly of ramie (Boehmeria nivea L.) genome provides insights into molecular regulation of fiber fineness[J]. Journal of Natural Fibers, 2023, 20: 2168819 [32] MISTRY J, CHUGURANSKY S, WILLIAMS L, et al. Pfam: The protein families database in 2021[J]. Nucleic Acids Research, 2020, 49: D412-D419 [33] JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, et al. NCBI BLAST: a better web interface[J]. Nucleic Acids Research, 2008, 36: W5-W9 [34] MISTRY J, FINN RD, EDDY SR, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions[J]. Nucleic Acids Research, 2013, 41: e121 [35] ARTIMO P, JONNALAGEDDA M, ARNOLD K, et al. ExPASy: SIB bioinformatics resource portal[J]. Nucleic Acids Research, 2012, 40: W597-W603 [36] YU C, CHEN Y, LU C, et al. Prediction of protein subcellular localization[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64: 643-651 [37] GEOURJON C, DELÉAGE G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Bioinformatics, 1995, 11: 681-684 [38] CHEN C, WU Y, LI J, et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant, 2023, 16: 1733-1742 [39] WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49 [40] WANG D, ZHANG Y, ZHANG Z, et al. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies[J]. Genomics, Proteomics & Bioinformatics, 2010, 8: 77-80 [41] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11[J]. Molecular Biology and Evolution, 2021, 38: 3022-3027 [42] SUBRAMANIAN B, GAO S, LERCHER M J, et al. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees[J]. Nucleic Acids Research, 2019, 47: W270-W275 [43] BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: W202-W208 [44] LESCOT M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30: 325-327 [45] KRYUCHKOVA-MOSTACCI N, ROBINSON-RECHAVI M. A benchmark of gene expression tissue-specificity metrics[J]. Briefings in Bioinformatics, 2017, 18(2): 205-214 [46] YANAI I, BENJAMIN H, SHMOISH M, et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification[J]. Bioinformatics, 2005, 21: 650-659 [47] SHAO D, ABUBAKAR AS, CHEN J, et al. Physiological, molecular, and morphological adjustment to waterlogging stress in ramie and selection of waterlogging-tolerant varieties[J]. Plant Physiology and Biochemistry, 2024, 216: 109101 [48] MARRS K A. The functions and regulation of glutathione s-transferases in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 127-158 [49] HAYES J D, FLANAGAN J U, JOWSEY I R. Glutathione transferases[J]. Annual Review of Pharmacology and Toxicology, 2005, 45: 51-88 [50] FROVA C. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution[J]. Physiologia Plantarum, 2003, 119: 469-479 [51] OAKLEY A J. Glutathione transferases: new functions[J]. Current Opinion in Structural Biology, 2005, 15: 716-723 [52] KUMAR S, TRIVEDI P K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants[J]. Frontiers in Plant Science, 2018, 9: 751 [53] CICERO L LO, MADESIS P, TSAFTARIS A, et al. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses[J]. Phytochemistry, 2015, 116: 69-77 [54] XU J, TIAN Y, XING X, et al. Over‐expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis[J]. Physiologia Plantarum, 2015, 156: 164-175 [55] GUO R, LI S, GAO Y Q, et al. A novel OsGST gene encoding 9 glutathione reductase negatively regulates cadmium accumulation in rice[J]. Journal of Hazardous Materials, 2024, 476: 135126 [56] ZHU S, LI W, YAN S, et al. Transcriptomic analysis of differentially expressed genes in Arabidopsis thaliana overexpressing BnMYB2 from Boehmeria nivea under cadmium stress[J]. Catalysts, 2023, 13: 662 [57] ZHU S, SHI W, JIE Y, et al. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation[J]. PLoS One, 2020, 15: e0233375 |
| [1] | QIAN Wan-qing, AN Cong, ZHUANG Li-li. Characterization and Analysis of Gibberellin Insensitive Dwarf1 Gene Family and Response to Abiotic Stresses in Tall Fescue [J]. Acta Agrestia Sinica, 2024, 32(6): 1719-1728. |
| [2] | ZHANG Rui, WANG Jing, XU Ya-ling, LIU Qiu-xu, LI Xiang-yan, NIE Gang, ZHU Yong-qun. Comprehensive Evaluation of Cadmium Tolerance of 20 Sorghum bicolor×S. Sudanense Germplasm Resources in Seedling Stage [J]. Acta Agrestia Sinica, 2024, 32(4): 1153-1161. |
| [3] | ZHANG Xiao-yang, HE Si, QU Hong-yue, HAN Xin-ran, ZHANG Jia-min, ZHAO Qing-cheng, XING Hu-cheng. Bioinformatic and Expression Profiling Analysis of the CCCH Gene Family in Ramie [J]. Acta Agrestia Sinica, 2024, 32(3): 703-713. |
| [4] | LI Meng-ying, HU Long-xing, XIANG Zuo-xiang. Effect of Cadmium on the Germination,Growth and Physiology of Seedlings of Amaranthus australis [J]. Acta Agrestia Sinica, 2024, 32(3): 754-762. |
| [5] | ZHANG Xiu-juan, FAN Wen, YANG Le, WU Chu, YANG Yong-sheng. Effects of Cadmium Stress on Physiological Activities and Leaf Ultrastructures of Three Turfgrass Species [J]. Acta Agrestia Sinica, 2023, 31(9): 2663-2670. |
| [6] | LI Qi-dong, LI Cui, CHEN Zhi-min, ZHANG Li-xiang, GUO Qiang. Exploration on the Functions of IlNRAMP5 Mediating the Cd2+ uptake in Iris lactea [J]. Acta Agrestia Sinica, 2023, 31(6): 1640-1647. |
| [7] | REN Ming-hui, ZHANG Yu-peng, XU Tao, ZHU Hui-sen, CEN Hui-fang. Identification and Expression Analyses of R2R3-MYB Subfamily in Alfalfa under Drought Stress [J]. Acta Agrestia Sinica, 2023, 31(4): 972-983. |
| [8] | FENG Zheng-hong, GAO Yu, GAO Bing, CHEN Peng, WU Jian-hui. Effects of Cadmium Stress on the Root Ultrastructure and Physiology of Potentilla sericea-Arbuscular Mycorrhizal Fungi Symbiont [J]. Acta Agrestia Sinica, 2023, 31(3): 719-725. |
| [9] | FENG Guan-nan, AN Cong, DING Yun-jia, ZHANG Xia-xiang, ZHUANG Li-li. Characterization and Analysis of GASA Gene Family and Response to Abiotic Stress in Setaria viridis [J]. Acta Agrestia Sinica, 2022, 30(6): 1379-1387. |
| [10] | MA Zhi-qiang, SHI Yi, ZHONG Pei-fang. Effects of Exogenous Methyl Jasmonate on Seed Germination and Seedling Growth of Kentucky Bluegrass under Cadmium Pollution [J]. Acta Agrestia Sinica, 2022, 30(6): 1475-1484. |
| [11] | MA Zhi-qiang, SHI Yi, ZHONG Pei-fang. Effects of Exogenous Methyl Jasmonate on Growth and Physiological Indexes of Festuca elata under Cadmium Stress [J]. Acta Agrestia Sinica, 2022, 30(4): 974-982. |
| [12] | ZHOU Xiao-mei, DONG Meng, YU Hong-bing, TAN Shu-duan, YANG Nan. Effects of Plant Growth-Promoting Bacteria on Photosynthetic Characteristics of Artemisia selengensis under Cadmium Stress [J]. Acta Agrestia Sinica, 2022, 30(2): 348-355. |
| [13] | YIN Yue-lan, NIU Qi-chen, GAN Lu. Trichoderma virens Strains Exhibited the Potential of Growth Inhibition of Clarireedia homoeocarpa and Tolerance of Cadmium [J]. Acta Agrestia Sinica, 2022, 30(10): 2802-2810. |
| [14] | ZHANG Yang-yang, LI Xi-ming, GAO Peng, SONG Gui-long. Comparison of Tolerance and Enrichment Characteristic for Six Herbaceous Plant under Different Levels Cd Stress [J]. Acta Agrestia Sinica, 2021, 29(6): 1265-1276. |
| [15] | KONG Hai-ming, LI Kai-yuan, GAO Shuang-hong, SUN Luan-zi. Effects of Rhizobium on the Cadmium Bioremediation Function of Alfalfa [J]. Acta Agrestia Sinica, 2021, 29(12): 2763-2768. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||