Acta Agrestia Sinica ›› 2020, Vol. 28 ›› Issue (4): 873-880.DOI: 10.11733/j.issn.1007-0435.2020.04.002
Previous Articles Next Articles
CUI Hui-ting, SUN Xi-nuo, MA Cheng-ze, HU Qian-nan, SUN Yan
Received:
2019-12-28
Revised:
2020-04-03
Online:
2020-08-15
Published:
2020-07-28
崔会婷, 孙熙喏, 马承泽, 胡倩楠, 孙彦
通讯作者:
孙彦
作者简介:
崔会婷(1988-),女,汉族,河南周口人,博士研究生,主要从事草坪科学与管理研究,E-mail:Cuihting@163.com
基金资助:
CLC Number:
CUI Hui-ting, SUN Xi-nuo, MA Cheng-ze, HU Qian-nan, SUN Yan. Advances in Applications of Metabolomics Technology in Stress Resistance of Forage and Turfgrass[J]. Acta Agrestia Sinica, 2020, 28(4): 873-880.
崔会婷, 孙熙喏, 马承泽, 胡倩楠, 孙彦. 代谢组学在牧草与草坪草抗逆性中的研究进展[J]. 草地学报, 2020, 28(4): 873-880.
[1] Loka D,Harper J,Humphreys M,et al. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses:A review[J]. Food and Energy Security,2019,8(1):1-29 [2] 产祝龙,张慧,刘梦垚. 植物生长调节物质与草坪草及牧草的非生物逆境应答[J]. 草业科学,2019,36(12):3007-3023 [3] Obata T,Fernie A. The use of metabolomics to dissect plant responses to abiotic stresses[J]. Cellular and Molecular Life Sciences,2012,69(19):3225-3243 [4] Zandalinas S,Mittler R,Balfagon D,et al. Plant adaptations to the combination of drought and high temperatures[J]. Physiologia Plantarum,2017,162(1):2-12 [5] Jaleel C A,Manivannan P,Lakshmanan G M A,et al. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits[J]. Colloids and Surfaces B:Biointerfaces,2008,61(2):298-303 [6] 张磊,侯云鹏,王立春. 盐碱胁迫对植物的影响及提高植物耐盐碱性的方法[J]. 东北农业科学,2018,43(4):15-20 [7] Wang Z,Wang M,Liu L,et al. Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia L.) Subjected to Salt Stress[J]. International Journal of Molecular Sciences,2013,14(10):20299-20325 [8] 李红,李波,邬婷婷,等. 紫花苜蓿耐苏打盐碱相关基因的转录组学分析[J]. 草地学报,2019,27(4):848-858 [9] 贾琪,吴名耀,梁康迳,等. 基因组学在作物抗逆性研究中的新进展[J]. 中国生态农业学报,2014,22(4):375-385 [10] 李宁,范雪梅,王义明,等.代谢组学及其分析技术的研究进展[J]. 中南药学,2014,12(7):668-673 [11] Kell D B,Oliver S G. The metabolome 18 years on:a concept comes of age[J]. Metabolomics,2016,12(9):148 [12] Llanes A,Andrade A,Alemano S,et al. Metabolomic Approach to Understand Plant Adaptations to Water and Salt Stress[C]//Parida A,et al.,ed. Plant Metabolites and Regulation Under Environmental Stress,New York:Academic Press,2018:133-144 [13] Muscolo A,Junker A,Klukas C,et al. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions[J]. Journal of Experimental Botany,2015,66(18):5467-5480 [14] Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Molecular Biology,2002,48(1-2):155-171 [15] Maritim T,Kamunya S,Mireji P,et al. Physiological and biochemical response of tea [Camellia sinensis (L.) O. Kuntze] to water-deficit stress[J]. Journal of Pomology and Horticultural Science,2015,90(4):395-400 [16] Sauter H,Lauer M,Fritsch H. ChemInform Abstract:Metabolic Profiling of Plants. A New Diagnostic Technique[J]. ChemInform,1991(443):288-299 [17] Misra B,Mohapatra S. Tools and resources for metabolomics research community:A 2017-2018 update[J]. Electrophoresis,2019,40(2):227-246 [18] Freund D,Hegeman A. Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics[J]. Current Opinion in Biotechnology,2017,(43):41-48 [19] 王亚东,罗洪. 基于核磁共振的代谢组学及其在临床应用中的研究进展[J]. 贵州医药,2010,34(12):1134-1136 [20] Parida A K,Panda A,Rangani J. Metabolomics-Guided Elucidation of Abiotic Stress Tolerance Mechanisms in Plants[C]//Parida A,et al.,ed. Plant Metabolites and Regulation Under Environmental Stress,New York:Academic Press,2018:89-131 [21] Ramautar R,Somsen G,Jong G. CE-MS for metabolomics:Developments and applications in the period 2014-2016[J]. Electrophoresis,2017,38(1):190-202 [22] Lei Z,Huhman D V,Sumner L W. Mass spectrometry strategies in metabolomics.[J]. Journal of Biological Chemistry,2011,286(29):25435-25442 [23] 王霄霄,王海霞,左徳筠,等. 代谢组学及其分析技术在医学研究中的应用进展[J].中国现代医生,2019,57(1):165-169 [24] Wang W S,Zhao X Q,Li M,et al. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J]. Journal of Experimental Botany,2016,67(1):405-419 [25] Barrero G J,Huertas R,José L,et al. Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments[J]. Plant Cell Environment,2016,39(10):2303-2318 [26] Page A,Cseke L,Minocha R,et al. Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome[J]. BMC Plant Biology,2016,16(1):113 [27] Moschen S,Bengoa L,Di R,et al. Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower[J]. Plant Biotechnol Journal,2016,14(2):719-734 [28] Cao J,Li M,Chen J,et al. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency[J]. Scientific Reports,2016(6):37674 [29] D'Esposito D,Ferriello F,Molin A,et al. Unraveling the complexity of transcriptomic,metabolomic and quality environmental response of tomato fruit[J]. BMC Plant Biology,2017,17(1):66 [30] Fasano C,Diretto G,Aversano R,et al. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization[J]. New Phytologist,2016,210(4):1382-1394 [31] Sousa S,Cordeiro C,Roessner U,et al. Editorial:Metabolomics in crop research—current and emerging methodologies[J]. Frontiers in Plant Science,2019(10):1013 [32] Sumner L,Lei Z,Nikolau B,et al. Modern plant metabolomics:advanced natural product gene discoveries,improved technologies,and future prospects[J]. Natural Product Reports,2015,32(2):212-229 [33] Yıldırım K,Kaya Z. Gene regulation network behind drought escape,avoidance and tolerance strategies in black poplar (Populus nigra L.)[J]. Plant Physiology and Biochemistry,2017,(115):183-199 [34] Wu D,Cai S,Chen M,et al. Tissue metabolic responses to salt stress in wild and cultivated barley[J]. PLoS One,2013,8(1):e55431 [35] Hu L,Chen L,Liu L,et al. Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (Cynodon dactylon)[J]. Physiologia Plantarum,2014,155(2):166-179 [36] Hu T,Jin Y,Li H,et al. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress[J]. Physiologia Plantarum,2016,156(1):54-69 [37] Keunen E,Peshev D,Vangronsveld J,et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress:extending the traditional concept[J]. Plant Cell and Environment,2013,36(7):1242-1255 [38] Hu T,Chen K,Hu L,et al. H2O2 and Ca2+-based signaling and associated ion accumulation,antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass[J]. Scientific Reports,2016(6):36396 [39] Hu L,Zhang P,Jiang Y,et al. Metabolomic Analysis Revealed Differential Adaptation to Salinity and Alkalinity Stress in Kentucky Bluegrass (Poa pratensis)[J]. Plant Molecular Biology Reporter,2014,33(1):56-68 [40] Liu T,Zhuang L,Huang B. Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species[J]. Plant and Soil,2019,443(1-10):219-232 [41] Dimitrios S,Chrysanthi K,Georgios K,et al. Global metabolomics analysis reveals distinctive tolerance mechanisms in different plant organs of lentil (Lens culinaris) upon salinity stress[J]. Plant and Soil,2018,429(1-2):451-468 [42] Basu P S,Ali M,Chaturvedi S K. Osmotic adjustment increases water uptake,remobilization of assimilates and maintains photosynthesis in chickpea under drought[J]. Indian Journal of Experimental Biology,2007,45(3):261-267 [43] Zhang J,Zhang Y,Du Y,et al. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress[J]. Proteome Research,2011,10(4):1904-1914 [44] Zhang J,Cruz D,Carvalho M,et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering[J]. Plant Cell and Environment,2014,37(11):2553-2576 [45] Li Z,Yu J,Peng Y,et al. Metabolic pathways regulated by abscisic acid,salicylic acid and gamma-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera)[J]. Physiologia Plantarum,2017,159(1):42-58 [46] Li Z,Cheng B,Yong B,et al. Metabolomics and physiological analyses reveal β-sitosterol as an important plant growth regulator inducing tolerance to water stress in white clover[J]. Planta,2019,250(6):2033-2046 [47] Foito A,Byrne S,Shepherd T,et al. Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress[J]. Plant Biotechnology Journal,2009,7(8):719-732 [48] Perlikowski D,Augustyniak A,Masajada K,et al. Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex[J]. Plant Science,2019(283):211-223 [49] Pan L,Meng C,Wang J,et al. Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress[J]. BMC Plant Biology,2018,18(1):26 [50] Du H,Wang Z. Metabolic responses of hybrid bermudagrass to short-term and long-term drought stress[J]. Journal of the American Society for Horticultural Science,2012,137(6):411-420 [51] Ye T,Shi H,Wang Y,et al. Contrasting proteomic and metabolomic responses of bermudagrass to drought and salt stresses[J]. Frontiers in Plant Science,2016(7):1694 [52] Hu Z,Fan J,Xie Y,et al. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin[J]. Plant Physiology and Biochemistry,2016(100):94-104 [53] Wei W,Li D,Wang L,et al. Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.)[J]. Plant Science,2013(208):102-111 [54] Shi Y,Zhang J,Li H,et al. Butanediol-enhanced heat tolerance in Agrostis stolonifera in association with alteration in stress-related gene expression and metabolic profiles[J]. Environmental and Experimental Botany,2018(153):209-217 [55] Li Z,Yu J,Peng Y,et al. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)[J]. Scientific Reports,2016(6):30338 [56] David J,Yu J,Huang B. Metabolite responses to exogenous application of nitrogen,cytokinin,and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass[J]. PLoS One,2015,10(3):e0123744 [57] Král'ová K,Jampilek J,Ostrovsky I. Metabolomics-useful tool for study of plant responses to abiotic stresses[J]. Ecological Chemistry And Engineering S-Chemia I Inzynieria Ekologiczna S,2012(19):133-161 [58] Jespersen D,Yu J,Huang B R. Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass[J]. Frontiers in Plant Science,2017(8):1224 [59] 董文科,马祥,张玉娟,等. 低温胁迫对不同早熟禾品种糖酵解代谢及其相关基因表达的影响[J]. 草地学报,2019,27(6):1503-1510 [60] Shi H,Ye T,Zhong B,et al. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass [Cynodon dactylon (L.) Pers.] by exogenous calcium[J]. Journal of Integrative Plant Biology,2015,56(11):1064-1079 [61] Shi H,Jiang C,Ye T,et al. Comparative physiological,metabolomic,and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin[J]. Journal of Experimental Botany,2015,66(3):681-694 [62] Rasmussen S,Cao M,Fraser K,et al. Cold stress in white clover-an integrated view of metabolome and transcriptome responses[R]. New Zealand,Christchurch:Proceedings of the 13th Australasian Plant Breeding Conference,2006:750-757 [63] Ye T,Shi H,Wang Y,et al. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)[J]. Frontiers in Plant Science,2015(6):951 [64] 侯静静,李葆春,汪军成,等. NaCl胁迫下盐生草在不同重金属处理下的萌发特性分析[J]. 草地学报,2019,27(1):112-122 [65] Farooq M A,Ali S,Hameed A,et al.,Cadmium stress in cotton seedlings:Physiological,photosynthesis and oxidative damages alleviated by glycinebetaine[J]. South African Journal of Botany,2016(104):61-68 [66] Yang S,Zu Y,Li B,et al. Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress[J]. Chemosphere,2019(220):69-76 [67] Kiiskila J,Li K,Sarkar D,et al. Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage[J]. Chemosphere,2020(240):124961 [68] Roche J,Love J,Guo Q,et al. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne[J]. Physiologia Plantarum,2015,156(4):497-511 |
[1] | YAO Xi-xi, WANG Li-ya, YAN Zhen-ying, LI Quan-lin, WANG You-bin, MA Bing-yun, LEI Yan-min, ZHOU Rui, XIE Jiu-xiang. Characteristics of Forage Nutritional Quality and Digestibility in Different Types of Grassland in Qinghai Tibet Plateau and their Correlation [J]. Acta Agrestia Sinica, 2021, 29(S1): 113-120. |
[2] | YAO Xi-xi, WANG Li-ya, YAN Zhen-ying, ZHANG Wen-juan, SUN Hai-qun, ZHOU Rui. Effects of Grazing on Vegetation Characteristics and Forage Nutrientional Quality in a Temperate Desert Steppe [J]. Acta Agrestia Sinica, 2021, 29(S1): 165-172. |
[3] | ZHANG Xin-fei, SHE Mu-zi, LI Han-yu, JING Song, JIANG Hui-na, GAO Hao, ZHU Yan-xiao, FU Juan-juan. Growth Promotion Mechanisms of flavobacterium succinicans and Their Physiological Regulation on the Growth and Stress Tolerance in Lolium perenne [J]. Acta Agrestia Sinica, 2021, 29(8): 1704-1711. |
[4] | HE Zhen-fu, HE Chun-gui, WANG Fei, CHEN Ping. Analysis of Production Performance and Quality of Different Types of Forage Sorghum [J]. Acta Agrestia Sinica, 2021, 29(7): 1446-1453. |
[5] | ZHANG Feng, ZHAO Tian-qi, QIAO Ji-rong, ZHAO Meng-li, ZHANG Xin-yue, WU Jian-xin. Effects of Stubble Height on productivity and Sustainable Utilization in the Stipa grandis Steppe [J]. Acta Agrestia Sinica, 2021, 29(7): 1491-1498. |
[6] | DONG Zhi-xiao, HE Run-hao, KUANG Jian-yang, NIE Cong, YANG Jian, ZHANG Jian-bo, GOU Wen-long, MA Xiao. Effects of Sweet Sorghum Intercropping with Lablab Purpureus on Yield and Quality of Mixed Forage in Chengdu Plain,China [J]. Acta Agrestia Sinica, 2021, 29(7): 1578-1583. |
[7] | GUO Chao-fan, CHEN Ze-wei, ZHANG Zhi-gao. Research on Remote Sensing Estimation of Forage Above-ground Biomass Based on Optimal Model Selection [J]. Acta Agrestia Sinica, 2021, 29(5): 946-955. |
[8] | NIE Cong, YANG Xiao-peng, LIU Zhe-chuan, ZHAO Yu-han, CHEN Wan-ting, HE Run-hao, LIU Wei, GOU Wen-long, MA Xiao. Effects of Different Preceding Combination and Planting Density on Production Performance and Quality of Forage Corn [J]. Acta Agrestia Sinica, 2021, 29(4): 709-716. |
[9] | WANG Wei-qiang, LIU Jing, TIAN Xin-hui, DU Wen-hua. Adaptability Evaluation of Secale cereale ‘Gannong No.2’ in Different Regions of Qinghai Province [J]. Acta Agrestia Sinica, 2021, 29(3): 504-514. |
[10] | XU Zheng, XU Qian, LIU Ming-xi, XIANG Zuo-xiang. Effect of ‘Henace’ Herbicide on the Spring Transition of Zoysia japonica ‘Lantai No.3’ Overseeding Turfgrass [J]. Acta Agrestia Sinica, 2021, 29(3): 603-609. |
[11] | WANG Bin, YANG Yan-jun, DONG Xiu, LI Man-you, SHEN Xiao-tian, CAO Li-juan, LAN Jian. Effects of Reseeding Grass on Production Performance and Forage Quality of Degraded Alfalfa Grassland [J]. Acta Agrestia Sinica, 2021, 29(3): 618-624. |
[12] | SU Bei-bei, ZHANG Ying, DAO Ri-na. Study on the Distribution Characteristics of Bacterial Communities in the Rhizosphere Soil of Four Leguminous Cultivated Forages [J]. Acta Agrestia Sinica, 2021, 29(2): 250-258. |
[13] | SU Bei-bei, ZHANG Ying, DAO Ri-na. Correlation Analysis between Fungal Community Characteristics and Soil Physicochemcal Factors in the Rhizosphere of Four Legumes [J]. Acta Agrestia Sinica, 2021, 29(12): 2670-2677. |
[14] | WANG Yu-qin, SONG Mei-ling, WANG Hong-sheng, YIN Ya-li, MA Yu-shou. Effects of Nitrogen Addition on Vegetation and Forage Nutritional Quality of Degraded Alpine Grassland [J]. Acta Agrestia Sinica, 2021, 29(12): 2742-2751. |
[15] | ZHANG Hai-juan, LU Guang-xin, FAN Yue-jun, ZHOU Hua-kun, ZHOU Xue-li, DOU Sheng-yun, YAN Hui-lin, MA Kun, ZHAO Yang-an. Effect of Different Dying Methods on the Mycorrhizal Infection Rate of Two Gramineous Forages [J]. Acta Agrestia Sinica, 2021, 29(12): 2838-2844. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||