Acta Agrestia Sinica ›› 2023, Vol. 31 ›› Issue (1): 19-28.DOI: 10.11733/j.issn.1007-0435.2023.01.003

Previous Articles     Next Articles

Response of Soil Nitrogen Pools to A Simulated Freeze-Thaw Test in the Active Layer of Segregated Permafrost on the Qilian Mountains

CHEN Zhe1,2,6,7, XU Wei1, MEN Shuang1, ZHANG Zhen-hua3, ZHANG Zhong-hua3, WANG Ying-dian1,2,6, ZHAO Xin-quan3, WANG Wen-ying1,2,6,7, SUN Jian4, SHAO Xin-qing5, DU Yan-gong3, ZHOU Hua-kun3   

  1. 1. Qinghai Normal University, Xining, Qinghai Province 810016, China;
    2. Academy of Plateau Science and Sustainability, Xining, Qinghai Province 810016, China;
    3. Northwest Institute of Plateau Biology, Chinese Academy of Sciences/Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Regions, Xining, Qinghai Province 810008, China;
    4. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China;
    5. China Agricultural University, Beijing 100083, China;
    6. Qinghai Provincial Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization in Qinghai-Tibetan Plateau, Xining, Qinghai Province 810016, China;
    7. Qinghai Provincial Key Laboratory of Medicinal Animals and Plants Resources in Qinghai-Tibet Plateau, Xining, Qinghai Province 810016, China
  • Received:2022-06-17 Revised:2022-08-28 Online:2023-01-15 Published:2023-02-07

祁连山岛状冻土活动层土壤氮库对模拟冻融响应

陈哲1,2,6,7, 徐巍1, 门双1, 张振华3, 张中华3, 王英典1,2,6, 赵新全3, 王文颖1,2,6,7, 孙建4, 邵新庆5, 杜岩功3, 周华坤3   

  1. 1. 青海师范大学, 青海 西宁 810016;
    2. 高原科学与可持续发展研究院, 青海 西宁 810016;
    3. 中国科学院西北高原生物研究所青海省寒区恢复生态学重点实验室, 青海 西宁 810008;
    4. 中国科学院青藏高原研究所, 北京 100085;
    5. 中国农业大学, 北京 100083;
    6. 青海省青藏高原生物多样性形成机制与综合利用重点实验室, 青海 西宁 810016;
    7. 青海省青藏高原药用动植物资源重点实验室, 青海 西宁 810016
  • 通讯作者: 周华坤, E-mail:hkzhou@nwipb.cas.cn
  • 作者简介:陈哲(1986-),男,汉族,陕西眉县人,博士,副教授,主要从事高寒草地生态系统生态学研究,E-mail:chenzhe@qhnu.edu.cn
  • 基金资助:
    青海省自然科学基金(2018-ZJ-935Q),青藏高原第二次综合科学考察(2019QZKK0302);教育部春晖项目(2018);海南州科技支撑计划项目(2022-KZ01-A)资助

Abstract: Global climate change is profoundly changing the characteristics of precipitation and temperature in the Qinghai-Tibet Plateau,and further affecting the soil freeze-thaw (F-T) pattern during the non-growing season. We used simulation experiments to test how changes in soil available nitrogen relate to different thawing temperatures (5℃,10℃,20℃) and soil waters (15%,30%,45%) under 149 F-T cycles in topsoil (0~20 cm) of an alpine meadow with discontinuous permafrost in the Qilian Mountains. We found that the soil available nitrogen flush occurred in early 50 diurnal F-T cycles and mainly showed the accumulation of dissolved organic nitrogen (DON) and ammonium nitrogen (NH+4). In this process,microorganisms would increase nitrogen fixation and play the role of soil-available nitrogen cache. During F-T process,increased soil water could regulate soil nitrogen availability by promoting the accumulation of DON and MBN. However,the NH+4 had a threshold in response to moisture. Thawing temperature did not affect the nitrogen pool components of water-saturated soil,while the net accumulations of DON,NH+4, and NO-3 in dry and moderate moisture soils had more sensitive to low thawing temperature. Shortly,under the background of global climate change,the mechanisms of coupling effect of temperature and water in F-T for the alpine ecosystem are worth of further study.

Key words: Qinghai-Tibet Plateau, Permafrost, Climate change, Freeze-thaw cycle, Nitrogen transformation

摘要: 气候变化改变了青藏高原降水和温度,并影响非生长季土壤冻融格局。本研究采用冻融模拟试验,探究了祁连山岛状冻土区高寒草甸活动层(0~20 cm)土壤在长期昼夜冻融交替(149次)过程中土壤氮库对融化温度(5℃,10℃,20℃)和含水量(15%,30%,45%)的响应。结果表明:昼夜冻融过程中土壤有效氮大量释放期长达50天,以溶解性有机氮(Dissolved organic nitrogen,DON)、铵态氮(NH+4)累积为主。微生物量氮(Microbial biomass nitrogen,MBN)通过氮固持增加,发挥土壤有效氮“缓存库”作用;土壤含水量增加有利于冻融过程中DON和MBN积累,但含水量对NH+4累积存在阈值效应;融化温度对水分饱和土壤氮组分含量影响差异不显著,而干燥和湿度适中土壤DON,NH+4及硝态氮净累积量对低温融化响应较高温条件更敏感。气候变化驱动下冻融过程中温度和水分耦合效应对冻土区氮转化影响机制值得深入探讨。

关键词: 青藏高原, 多年冻土, 气候变化, 冻融交替, 氮转化

CLC Number: