[1] GROGAN P,MICHELSEN A,AMBUS P,et al. Freeze-thaw Regime Effects on Carbon and Nitrogen Dynamics in Sub-arctic Heath Tundra Mesocosms[J]. Soil Biology and Biochemistry,2004,36(4):641-654 [2] LAWRENCE D M,SLATER A G,SWENSON S C. Simulation of Present-day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4[J]. Journal of Climate,2012,25(7):2207-2225 [3] LOISEL J,YU Z,BEILMAN D W,et al. A Database and Synthesis of Northern Peatland Soil Properties and Holocene Carbon and Nitrogen Accumulation[J]. The Holocene,2014,24(9):1028-1042 [4] KOU D,DING J,LI F,et al. Spatially-explicit Estimate of Soil Nitrogen Stock and its Implication for Land Model Across Tibetan Alpine Permafrost Region[J]. Science of the Total Environment,2019,650:1795-1804 [5] CHAI Y J,ZENG X B,BAI L Y,et al. Effects of Freeze-thaw on Aggregate Stability and the Organic Carbon and Nitrogen Enrichment Ratios in Aggregate Fractions[J]. Soil Use Management,2014,30:507-516 [6] KREYLING J,PERSOH D,WERNER S,et al. Short-term Impacts of Soil Freeze-thaw Cycles on Roots and Root-associated Fungi of Holcus Lanatus and Calluna Vulgaris[J]. Plant Soil,2012,353:19-31 [7] FREPPAZ M,WILLIAMS B L,EDWARDS A C,et al. Simulating Soil Freeze/thaw Cycles Typical of Winter Alpine Conditions:Implications for N and P Availability[J]. Applied Soil Ecology,2007,35:247-255 [8] EDWARDS K A,MCCULLOCH J,PETER K G,et al. Soil Microbial and Nutrient Dynamics in a Wet Arctic Sedge Meadow in Late Winter and Early Spring[J]. Soil Biology and Biochemistry,2006,38(9):2843-2851 [9] NIELSEN C B,GROFFMAN P M,HAMBURG S P,et al. Freezing Effects on Carbon and Nitrogen Cycling in Northern Hardwood Forest Soils[J]. Soil Science Society of America Journal,2001,65(6):1723-1730 [10] HENRY H A L. Climate Change and Soil Freezing Dynamics:Historical Trends and Projected Changes[J]. Climatic Change,2008,87:421-434 [11] ELBERLING B,MICHELSEN A,SCHÄDEL C,et al. Long-term CO2 Production Following Permafrost Thaw. Nature Climate Change,2013,3:890-894 [12] GAËLLE S,CHRISTOPH M,JEAN-PIERRE D,et al. Seasonal Trends and Temperature Dependence of the Snowfall/Precipitation-day Ratio in Switzerland[J]. Geophysical Research Letters,2011,38:128-136 [13] WIPF S,SOMMERKORN M,STUTTER M I,et al. Snow Cover,Freeze-thaw,and the Retention of Nutrients in an Oceanic Mountain Ecosystem[J]. Ecosphere,2015,6:1-16 [14] BRACHO R,NATALI S,PEGORARO E,et al. Temperature Sensitivity of Organic Matter Decomposition of Permafrost-region Soils during Laboratory Incubations[J]. Soil Biology & Biochemistry,2016,97:1-14 [15] TEEPE R,BRUMME R,BEESE F. Nitrous Oxide Emissions from Soil During Freezing and Thawing Periods[J]. Soil Biology & Biochemistry,2001,33(9):1269-1275 [16] 陈哲,杨世琦,张晴雯,等. 冻融作用对土壤氮素损失及有效性的影响[J]. 生态学报,2016,36(4):1083-1094 [17] IPCC:MASSON-DELMOTTE V,ZHAI P,PIRANI A,et al. Climate Change:the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge University Press,2021:1842 [18] SCHUUR E A G,MCGUIRE A D,SCHÄDEL C,et al. Climate Change and the Permafrost Carbon Feedback[J]. Nature,2015,520(7546):171-179 [19] 秦大河. 三江源区生态保护与可持续发展[M]. 北京,科学出版社,2014:29-30 [20] GUO D,WANG H. Simulated Change in the Near-surface Soil Freeze/Thaw Cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletin,2014,59(20):2439-2448 [21] 林笠,王其兵,张振华,等. 温暖化加剧青藏高原高寒草甸土非生长季冻融循环[J]. 北京大学学报:自然科学版,2017,53(1):171-178 [22] WAN G N,YANG M X,LIU Z C,et al. The Precipitation Variations in the Qinghai-Xizang (Tibetan) Plateau during 1961-2015[J]. Atmosphere,2017,8:80 [23] RISK N,SNIDER D,WAGNER-RIDDLE C. Mechanisms Leading to Enhanced Soil Nitrous Oxide Fluxes Induced by Freeze-thaw Cycles[J]. Canadian Journal of Soil Science,2013,93:401-414 [24] BRUIJN A M G D,BUTTERBACH-BAHL K,BLAGODATSKY S. Model Evaluation of Different Mechanisms Driving Freeze-thaw N2O Emissions[J]. Agriculture Ecosystems & Environment,2009,133(3-4):196-207 [25] DAI L C,GUO X W,ZHANG F W,et al. Seasonal Dynamics and Controls of Deep Soil Water Infiltration in the Seasonally-frozen Region of the Qinghai-Tibet Plateau[J]. Journal of Hydrology,2019,571:740-748 [26] WU J. The Turnover of Organic Carbon in Soil (Biomass,Organic Carbon)[D]. Whiteknights: The University of Reading (United Kingdom),1990:1-227 [27] BROOKES P C,LANDMAN A,PRUDEN G,et al. Chloroform Fumigation and the Release of Soil Nitrogen:a Rapid Direct Extraction Method to Measure Microbial Biomass Nitrogen in Soil[J]. Soil Biology & Biochemistry,1985,17:837-842 [28] 周旺明,王金达,刘景双,等. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J]. 生态与农村环境学报,2008(3):1-6 [29] 闫佳雯. 冻融循环条件下生物炭施入对农田黑土土壤氮素矿化及淋溶损失的影响[D]. 哈尔滨:东北农业大学,2020:22-26 [30] 李尚宏,周赓,杜岩功.冻融交替对高寒草甸N2O排放速率的影响[J].草原与草坪,2018,38(3):85-89 [31] 徐欢,王芳芳,李婷,等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报,2020,40(10):3168-3182 [32] MAO C,KOU D,WANG G,et al. Trajectory of Topsoil Nitrogen Transformations along a Thermo Erosion Gully on the Tibetan Plateau[J]. Journal of Geophysical Research Biogeosciences,2019,124(5):1342-1354 [33] 胡仲豪,常顺利,张毓涛,等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应[J]. 生态学报,2019,39(2):571-579 [34] PU J H,JIANG N,JUAN Y H,et al. Effects of Freeze-thaw on Dissolved Nitrogen Pool,Nitrogen Transformation Processes and Diversity of Bacterial Community in Temperate Soils[J]. The journal of applied ecology,2020,31(9):2893-2902 [35] JIANG N,JUANY,TIAN L,et al. Soil Water Contents Control the Responses of Dissolved Nitrogen Pools and Bacterial Communities to Freeze-thaw in Temperate Soils[J]. Biomed Research International,2020:6867081 [36] MAO C,KOU D,CHEN L Y,et al. Permafrost Nitrogen Status and its Determinants on the Tibetan Plateau[J]. Global Change Biology,2020,26(9):5290-5302 [37] 陈哲,韩瑞芸,杨世琦,等. 东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J]. 农业环境科学学报,2016,35(2):387-395 [38] CHEN Z,GE S D,ZhANG Z H,et al. Soil Moisture but not Warming Dominates Nitrous Oxide Emissions during Freeze-thaw Cycles in a Qinghai-Tibetan Plateau Alpine Meadow with Discontinuous Permafrost[J]. Frontiers in Ecology and Evolution,2021,(9):1-12 [39] 周旺明,秦胜金,刘景双,等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报,2011,30(4):806-811 [40] KOPONEN H T,DURAN C E,MALJANEN M,et al. Temperature Responses of NO and N2O Emissions from Boreal Organic Soil[J]. Soil Biology & Biochemistry,2006,38:1779-1787 [41] 马俊杰,李韧,刘宏超,等. 青藏高原多年冻土区活动层水热特性研究进展[J]. 冰川冻土,2020,42(1):195-204 [42] 冉洪伍,范继辉,黄菁. 藏北高寒草地土壤冻融过程水热变化特征[J]. 草业科学,2019,36(4):980-990 [43] LIBBY M D,VANDERZAAG A C,GREGORICH E G,et al. An Improved Laboratory Method Shows that Freezing Intensity Increases N2O Emissions[J]. Canadian Journal of Soil Science,2020,100(2):136-149 [44] 林春英,李希来,张静,等. 高寒沼泽湿地退化过程中土壤腐殖质变化特征的研究[J]. 草地学报,2022,30(5):1027-1036 [45] 贾映兰,魏培洁,吴明辉,等. 多年冻土区“黑土滩”土壤团聚体对人工建植的响应[J]. 草地学报,2022,30(8):1934-1943 [46] 高敏,李艳霞,张雪莲,等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望[J]. 农业环境科学学报,2016,35(12):2269-2274 [47] VITOUSEK P,CASSMAN K,CLEVELAND C. Towards an Ecological Understanding of Biological Nitrogen Fixation[J]. Biogeochemistry,2002,57(1):1-45 [48] TEEPE R,VOR A,BEESE F,et al. Emissions of N2O from Soils during Cycles of Freezing and Thawing and the Effects of Soil Water,Texture and Duration of Freezing[J]. Journal of Urmia Nursing & Midwifery Faculty,2004,63:24-27 [49] 杨帆,李耀明,方震等. 冰川冻融对末端高寒草甸真菌群落结构和功能的影响[J]. 中国草地学报,2022,44(5):91-101 |