[1] 俞雪. 紫花苜蓿生长相关基因的筛选及验证[D].石河子:石河子大学,2021:1 [2] 岑慧芳,黄洁琼,申王晖,等. 紫花苜蓿MsUGT87A1基因克隆及其对非生物胁迫的响应分析[J]. 草地学报,2023,31(6):1682-1692 [3] 孙延亮,赵宇哲,魏孔钦,等. 不同秋眠级紫花苜蓿茎和叶的碳、氮、磷化学计量特征[J]. 中国草地学报,2022,44(5):9-19 [4] KOFFI D,CURTIS O,KOMLAN K,et al. Evaluation of different fall dormancy-rating alfalfa cultivars for forage yield in a semiarid environment[J]. Agronomy,2020,10(1):146 [5] 李丹竹,曾宁波,张志飞,等. 渍水胁迫对不同磷水平下紫花苜蓿根系生长的影响[J]. 草地学报,2020,28(6):1563-1571 [6] ZENG N,YANG Z,ZHANG Z,et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress[J]. International Journal of Molecular Sciences,2019,20(6):1359 [7] 张浩阳,刘美君,卫丹丹,等. 不同秋眠级苜蓿越冬前后叶片光合作用的比较研究[J]. 草地学报,2022,30(4):983-991 [8] DU H,SHI Y,LI D,et al. Screening and identification of key genes regulating fall dormancy in alfalfa leaves[J]. Plos One,2017,12(12):e0188964 [9] LIU Z,LI X,WANG Z,et al. Contrasting strategies of alfalfa stem elongation in response to fall dormancy in early growth stage:the tradeoff between internode length and internode number[J]. Plos One,2015,10(8):e0135934 [10] 张卫红,吴亚,刘大林,等. 水淹对不同秋眠级紫花苜蓿苗期生物学特性的影响[J]. 草学,2019(2):17-23 [11] 安渊,陈凡毅,王俊,等. 半秋眠和非秋眠紫花苜蓿品种耐涝性能研究[J]. 中国草地,2004(4):31-36 [12] BAILEY-SERRES J,VOESENEK L. Flooding stress:acclimations and genetic diversity[J].Annual Review of Plant Biology,2008,59:313-339 [13] LIMAMI A M,DIAB H,LOTHIER J. Nitrogen metabolism in plants under low oxygen stress[J]. Planta,2014,239(3):531-541 [14] GIBBS J,GREENWAY H. Review:Mechanisms of anoxia tolerance in plants. I. Growth,survival and anaerobic catabolism[J]. Functional Plant Biology,2003,30(1):1-47 [15] BAXTER-BURRELL A,YANG Z,SPRINGER P S,et al. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance[J]. Science,2002,296(5575):2026-2028 [16] TAMANG B G,MAGLIOZZI J O,MAROOF M A S,et al. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings[J]. Plant,Cell and Environment,2014,37(10):2350-2365 [17] KATSUHIRO S. Revision of biochemical pH-Stat:Involvement of alternative pathway metabolisms[J]. Plant and Cell Physiology,1998,39(5):467-473 [18] 姜威. 水稻耐淹基因Sub1A的克隆及在玉米中转化的研究[D].合肥:安徽农业大学,2012:2-3 [19] 李丹竹. 渍水胁迫对不同磷水平下紫花苜蓿生长和生理代谢的影响[D].长沙:湖南农业大学,2021:8 [20] 郭家鑫,鲁晓宇,陶一凡,等. 硫酸盐胁迫对棉花生理和代谢的影响[J]. 棉花学报,2022,34(6):479-493 [21] 柴华,杨曌,李红,等. 干旱胁迫下紫花苜蓿抗旱性评价及代谢组学分析[J]. 黑龙江畜牧兽医,2023(7):94-105,135-137 [22] 杨杰,唐志璇,杜雅雯,等. 园林植物对淹水胁迫的生理及分子响应机理研究进展[J]. 南通大学学报(自然科学版),2023,22(1):34-43 [23] EDAS K,EROYCHOUDHURY A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science,2014,2:00053 [24] 赵雪瑶,韩丽霞,张鸽香. 淹水胁迫对美国流苏幼苗生理特性和叶片结构的影响[J]. 西北植物学报,2023,43(3):410-420 [25] 李玲,张春雷,张树杰,等. 渍水对冬油菜苗期生长及生理的影响[J]. 中国油料作物学报,2011,33(3):247-252 [26] 董慧. 淹水胁迫对不同苜蓿品种生长及生理生化变化的影响[D]. 合肥:安徽农业大学,2015:7 [27] 于明倩. 基于代谢组与转录组的黄花苜蓿耐盐碱机制研究[D]. 长春:吉林农业大学,2021:20 [28] 杨艳婷. 扁蓿豆的碳氮代谢规律及其对低温胁迫的响应[D]. 呼和浩特:内蒙古农业大学,2022:7-8 [29] 邢芳芳,高明夫,周传志,等. 氨基酸与植物抗逆性关系的研究进展[J]. 黑龙江农业科学,2018(3):150-155 [30] SANCHEZ H D,LIPPOLD F,REDESTIG H,et al. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus[J]. Plant Journal,2008,53(6):973-987 [31] SANCHEZ H D,PIECKENSTAIN L F,SZYMANSKI J,et al. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics[J]. Plos One,2011,6(2):e17094 [32] TOSHIHIRO O R A F. The use of metabolomics to dissect plant responses to abiotic stresses[J]. Cellular and Molecular Life Sciences,2012,69(19):3225-3243 [33] QUAN J,ZHENG W W,TAN J R,et al. Glutamic acid and Poly-γ-glutamic acid enhanced the heat resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) by improving carotenoid biosynthesis,photosynthesis,and ROS signaling[J]. International Journal of Molecular Sciences,2022,23(19):11671 [34] FRANZONI G,COCETTA G,FERRANTE A. Effect of glutamic acid foliar applications on lettuce under water stress[J]. Physiology and Molecular Biology of Plants,2021,27(5):1059-1072 [35] 邢羽桐,滕永康,吴天凡,等. 高温干旱下缩节胺通过调节碳和氨基酸代谢提高Bt棉杀虫蛋白含量的生理机制[J]. 中国农业科学,2023,56(8):1471-1483 [36] WANG X C,YAN L C,W B,et al. Comparative proteomic analysis of grapevine rootstock in response to waterlogging stress [J]. Frontiers in Plant Science,2021,12:749184 [37] LESS H,GALILI G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses[J]. Plant Physiology,2008,147(1):316-330 [38] KAVI B P K,RENUKA S,GUDDIMALLI R,et al. Lysine,lysine-rich,serine,and serine-rich proteins:link between metabolism,development,and abiotic stress tolerance and the role of ncRNAs in their regulation[J]. Frontiers in Plant Science,2020,11:546213 [39] 杨雄榜. 不同胁迫对不同生长期苦荞黄酮积累及其合成相关酶基因表达的影响[D]. 成都:四川农业大学,2014:5,24-27 [40] 龚意辉,李丽梅,黄华,等. 基于非靶向代谢组学分析黄桃果肉褐变过程中代谢产物的差异[J]. 中国食品学报,2023,23(2):265-275 |