Acta Agrestia Sinica ›› 2023, Vol. 31 ›› Issue (11): 3423-3435.DOI: 10.11733/j.issn.1007-0435.2023.11.021
Previous Articles Next Articles
YANG Wen-dan1, ZHAO Qiu-mei1, ZHAI Tai-ya2, HE Yan2, MAO Tian-xu3, ZHANG Tao4
Received:2023-04-10
Revised:2023-05-20
Online:2023-11-15
Published:2023-12-01
杨文丹1, 赵秋梅1, 翟泰雅2, 何燕2, 毛天旭3, 张涛4
通讯作者:
张涛,E-mail:zhangtaoeco@outlook.com
作者简介:杨文丹(1998-),女,汉族,贵州遵义人,硕士研究生,主要从事资源利用与植物保护研究,E-mail:wdyang1778457341@163.com
基金资助:CLC Number:
YANG Wen-dan, ZHAO Qiu-mei, ZHAI Tai-ya, HE Yan, MAO Tian-xu, ZHANG Tao. Effects of Hydrothermal Changes on Soil Greenhouse Gas Emissions from Alpine Swamp Meadow in the Permafrost Region[J]. Acta Agrestia Sinica, 2023, 31(11): 3423-3435.
杨文丹, 赵秋梅, 翟泰雅, 何燕, 毛天旭, 张涛. 水热互作对多年冻土区高寒沼泽草甸土壤温室气体排放的影响[J]. 草地学报, 2023, 31(11): 3423-3435.
| [1] IPCC. Climate change 2021:The physical science basis. Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press,2021:1 [2] BRACHO R,NATALI S,PEGORARO E,et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations[J]. Soil Biology and Biochemistry,2016(97):1-14 [3] CUI Q,SONG C C,WANG X W,et al. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region,Northeast China[J]. Science of the Total Environment,2018(616):427-434 [4] SCHUUR E A G,MCGUIRE A D,SCH?DEL C,et al. Climate change and the permafrost carbon feedback[J]. Nature,2015,520(7546):171-179 [5] THOMAS C D,CAMERON A,GREEN R E,et al. Extinction risk from climate change[J]. Nature,2004,427(6970):145-148 [6] SCHUUR E A G,ABBOTT B W,BOWDEN W B,et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013,119(2):359-374 [7] JOHNSTON C E,EWING S A,HARDEN J W,et al. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence[J]. Environmental Research Letters,2014,9(8):085004 [8] SCHUUR E,ABBOTT B. High risk of permafrost thaw[J]. Nature,2011,480(7375):32-33 [9] 陈晓鹏,王根绪,孙菊英,等. 增温和氮添加对长江源区高寒沼泽草甸生态系统呼吸的影响[J]. 草地学报,2020,28(1):193-199 [10] KUANG X,JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research-Atmospheres,2016,121(8):3979-4007 [11] WEI D,ZHAO H,HUANG L,et al. Feedbacks of alpine wetlands on the Tibetan Plateau to the atmosphere[J]. Wetlands,2020,40(4):787-797 [12] 赵林,胡国杰,邹德富,等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊,2019,34(11):1233-1246 [13] COOPER M D A,ESTOP-ARAGONES C,FISHER J P,et al. Limited contribution of permafrost carbon to methane release from thawing peatlands[J]. Nature Climate Change,2017,7(7):507-511 [14] 赵雪雁,张钦,王亚茹,等. 近55a来青藏高原东部气候演变特征[J]. 干旱区研究,2015,32(6):1088-1096 [15] YANG J S,LIU J H,HU X J,et al. Effect of water table level on CO2,CH4 and N2O emissions in a freshwater marsh of Northeast China[J]. Soil Biology and Biochemistry,2013(61):52-60 [16] 党学亚,常亮,卢娜. 青藏高原暖湿化对柴达木水资源与环境的影响[J]. 中国地质,2019,46(2):359-368 [17] WHITAKER K,ROGERS K,SAINTILAN N,et al. Vegetation persistence and carbon storage:Implications for environmental water management for Phragmites australis[J]. Water Resources Research,2015,51(7):5284-5300 [18] WEI D,XU R,TARCHEN T,et al. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau:Evidence from two in situ measurements at 4758 and 4320 m above sea level[J]. Journal of Geophysical Research-Biogeosciences,2015,120(9):1741-1750 [19] 亓伟伟,牛海山,汪诗平,等. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J]. 生态学报,2012,32(6):1713-1722 [20] WANG J F,WANG G X,HU H C,et al. The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences,2010,60(3):537-548 [21] DOCHERTY E M,THOMAS A D. Larger floods reduce soil CO2 efflux during the post-flooding phase in seasonally-flooded forests of Western Amazonia[J]. Pedosphere,2021,31(2):342-552 [22] XU C,WONG V N L,REEF R E. Effect of inundation on greenhouse gas emissions from temperate coastal wetland soils with different vegetation types in southern Australia[J]. Science of the Total Environment,2021(763):142949 [23] XIE Y B,JIA Q Y,ZHOU L. Soil respiration and its controlling factors at Phragmites communis wetland in Panjin[J]. Journal of Meteorology and Environment,2006(22):53-58 [24] KWON M J,JUNG J Y,TRIPATHI B M,et al. Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic[J]. Journal of Microbiology,2019,57(5):325-336 [25] LIU Y,LIU G H,XIONG Z Q,et al. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau[J]. Atmospheric Environment,2017(171):17-24 [26] TURETSKY M R,TREAT C C,WALDROP M P,et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland[J]. Journal of Geophysical Research-Biogeosciences,2008,113(G3):000496 [27] HE G X,LI K H,LIU X J,et al. Fluxes of methane,carbon dioxide and nitrous oxide in an alpine wetland and an alpine grassland of the Tianshan Mountains,China[J]. Journal of Arid Land,2014,6(6):717-724 [28] CHEN X P,WANG G X,ZHANG T,et al. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. Science of the Total Environment,2017(601):1389-1399 [29] GONG Y,WU J H,VOGT J,et al. Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland[J]. Science of the Total Environment,2019(664):72-78 [30] SHI F S,CHEN H,CHEN H F,et al. The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau[J]. Ecological Research,2012,27(4):725-733 [31] XU C,WONG V N L,REEF R E. Effect of inundation on greenhouse gas emissions from temperate coastal wetland soils with different vegetation types in southern Australia[J]. Science of the Total Environment,2021(763):142949 [32] MAUCIERI C,ZHANG Y,MCDANIEL M D,et al. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting[J]. Geoderma,2017(307):267-276 [33] 陈哲,金艳霞,孙建,等. 全球变暖对高寒冻土区温室气体通量影响研究进展[J]. 草地学报,2023,31(4):929-942 [34] ZHANG T,WANG G X,YANG Y,et al. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau[J]. European Journal of Soil Biology,2015(71):45-52 [35] LI N,WANG G X,YANG Y,et al. Plant production,and carbon and nitrogen source pools,are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau[J]. Soil Biology and Biochemistry,2011,43(5):942-953 [36] ZHANG T,WANG G X,YANG Y,et al. Grassland types and season-dependent response of ecosystem respiration to experimental warming in a permafrost region in the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2017(247):271-279 [37] MCDANIEL M D,GRANDY A S,TIEMANN L K,et al. Crop rotation complexity regulates the decomposition of high and low quality residues[J]. Soil Biology and Biochemistry,2014(78):243-254 [38] SUN J N,WANG B C,XU G,et al. Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland[J]. Ecological Engineering,2014(62):43-47 [39] ZHANG L H,SONG L P,WANG B C,et al. Co-effects of salinity and moisture on CO2 and N2O emissions of laboratory-incubated salt-affected soils from different vegetation types[J]. Geoderma,2018(332):109-120 [40] VANCE E D,BROOKES P C,JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry,1987(19):703-707 [41] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:43-47 [42] 关松荫. 土壤酶及其研究方法[M]. 北京:农业出版社,1986:294-297 [43] WANG B,NIU B,YANG X J,et al. Environmental factors and soil CO2 emissions in an alpine swamp meadow ecosystem on the Tibetan Plateau in response to experimental warming[J]. Journal of Chemistry,2016(1):2573185 [44] OECHEL W C,VOURLITIS G L,HASTINGS S J,et al. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems[J]. Global Change Biology,1998,4(1):77-90 [45] MORISHITA T,MATSUURA Y,KAJIMOTO T,et al. CH4 and N2O dynamics of a Larix gmelinii forest in a continuous permafrost region of central Siberia during the growing season[J]. Polar Science,2014,8(2):156-165 [46] YANG G,CHEN H,WU N,et al. Effects of soil warming,rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China[J]. Soil Biology and Biochemistry,2014(78):83-89 [47] ALLAN J,RONHOLM J,MYKYTCZUK N C S,et al. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils[J]. Environmental Microbiology Reports,2014,6(2):136-144 [48] LIU J G,ZHOU Y L,VALACH A,et al. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half[J]. Global Change Biology,2020,26(9):4998-5016 [49] WU H B,WANG X X,GANJURJAV H,et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau[J]. Science of the Total Environment,2020(705):135818 [50] RO H-M,JI Y,LEE B. Interactive effect of soil moisture and temperature regimes on the dynamics of soil organic carbon decomposition in a subarctic tundra soil[J]. Geosciences Journal,2017,22(1):121-130 [51] KOLSTAD E,MICHELSEN A,AMBUS P L. Nitrous oxide surface fluxes in a low Arctic heath:Effects of experimental warming along a natural snowmelt gradient[J]. Soil Biology and Biochemistry,2021(160):108346 [52] LAMB E G,HAN S,LANOIL B D,et al. A High Arctic soil ecosystem resists long-term environmental manipulations[J]. Global Change Biology,2011,17(10):3187-3194 [53] ZHOU Y M,HAGEDORN F,ZHOU C L,et al. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain,China[J]. Scientific Reports,2016,6(1):21108 [54] 王东启. 长江口滨岸潮滩沉积物反硝化作用及N2O的排放和吸收[D].上海:华东师范大学,2006:82-83 [55] GAO J Q,OU-YANG H,LEI G C,et al. Effects of temperature,soil moisture,soil type and their interactions on soil carbon mineralization in Zoigê alpine wetland,Qinghai-Tibet Plateau[J]. Chinese Geographical Science,2011,21(1):27-35 [56] CAO R,XI X Q,YANG Y H S,et al. The effect of water table decline on soil CO2 emission of Zoige peatland on eastern Tibetan Plateau:A four-year in situ experimental drainage[J]. Applied Soil Ecology,2017(120):55-61 [57] ZHOU W C,CUI L J,WANG Y F,et al. Carbon emission flux and storage in the degraded peatlands of the Zoige alpine area in the Qinghai-Tibetan Plateau[J]. Soil Use and Management,2021,37(1):72-82 [58] 欧强,王江涛,周剑虹,等. 滨海湿地不同水位梯度下的土壤CO2通量比较[J]. 应用与环境生物学报,2014,20(6):992-998 [59] MAKIRANTA P,LAIHO R,FRITZE H,et al. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity[J]. Soil Biology and Biochemistry,2009,41(4):695-703 [60] LI H J,YAN J X,YUE X F,et al. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area[J]. Agricultural and Forest Meteorology,2008,148(3):490-503 [61] 侯翠翠,宋长春,李英臣,等. 不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J]. 中国环境科学,2012,32(1):113-119 [62] ZIMMERMAN A R,GAO B,AHN M-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,43(6):1169-1179 [63] THAUER R K,KASTER A K,SEEDORF H,et al. Methanogenic archaea:ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology,2008,6(8):579-591 [64] WANG Y F,CUI H P,SU X,et al. Diversity and distribution of methanogenic community between two typical alpine ecosystems on the Qinghai-Tibetan Plateau[J]. Current Microbiology,2020,77(6):1061-1069 [65] 邓永翠. 青藏高原湿地好氧甲烷氧化菌的群落多样性及活性研究[D]. 北京:中国科学院大学,2013:23-54 [66] 杨文柱,焦燕,杨铭德,等. 内蒙古河套灌区不同盐碱程度土壤CH4吸收规律[J]. 环境科学,2019,40(4):1950-1956 [67] WANG H,YU L F,ZHANG Z H,et al. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland[J]. Global Change Biology,2017,23(2):815-829 [68] REGINA K,SILVOLA J,MARTIKAINEN P J. Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands[J]. Global Change Biology,1999,5(2):183-189 [69] AUDET J,HOFFMANN C C,ANDERSEN P M,et al. Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments:Emission,uptake and controlling factors[J]. Soil Biology and Biochemistry,2014(68):291-299 [70] 蔡延江,丁维新,项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤,2012,44(5):712-718 [71] 胡保安. 天鹅湖高寒湿地CO2、CH4和N2O排放对水分变化的响应[D].乌鲁木齐:新疆农业大学,2017:45-46 [72] DRENOVSKY R E,VO D,GRAHAM K J,et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial ecology,2004,48(3):424-430 [73] WANG B,LI J L,WAN Y F,et al. Responses of yield,CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system [J]. European Journal of Agronomy,2018(96):60-69 [74] ZHANG Z H,WANG G S,WANG H,et al. Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau[J]. Applied Soil Ecology,2021(167):104061 [75] WANG X Y,SICILIANO S,HELGASON B,et al. Responses of a mountain peatland to increasing temperature:A microcosm study of greenhouse gas emissions and microbial community dynamics[J]. Soil Biology and Biochemistry,2017(110):22-33 [76] WANG J S,LUO Y Q,QUAN Q,et al. Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow[J]. Agricultural and Forest Meteorology,2021(297):108278 [77] BUTTERBACH-BAHL K,BAGGS E M,DANNENMANN M,et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1621):20130122 [78] VOIGT C,MARUSHCHAK M E,LAMPRECHT R E,et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw[J]. Proceedings of the National Academy of Sciences,2017,114(24):6238-6243 [79] LIN L,ZHU B,CHEN C R,et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau[J]. Scientific Reports,2016,6(1):31438(责任编辑 刘婷婷)第31卷 第11期 Vol.31 No. 11草 地 学 报 ACTAAGRESTIASINICA 2023年 11月 |
| [1] | TANG Guo-jian, YANG Jin-mei, MENG Yuan-yan, SONG Qiong-mei, SUN Ting, WANG Yi, WU Dan, XU Liu-xing. Responses of Microbes on the Surfaces of Italian Ryegrass to Environmental Stress [J]. Acta Agrestia Sinica, 2025, 33(9): 2873-2879. |
| [2] | DOU Quan-hui, CHEN Cheng-hao, ZENGTAI Yi-hei, LONGZHU Duo-jie, MIAO Qi, SUN Fang-hui, CAIRANG La-mao, CHEN Xi, SUONAN Ji. Evaluation of Habitat Suitability of Important Medicinal Plants Gentianaceae in the Qinghai-Tibet Plateau Based on the Optimized Maximum Entropy Model [J]. Acta Agrestia Sinica, 2025, 33(9): 3024-3033. |
| [3] | XU Shuang-peng, ZHAO Yong-qi, DONG Xiao-hui, LIANG Wen-bing, YIN Guo-li, YU Xiao-jun. Effects of Lactic Acid Bacteria Additives on Silage Quality and Enzyme Activity of Mixed Oats and Vetch in Alpine Pastures [J]. Acta Agrestia Sinica, 2025, 33(8): 2694-2702. |
| [4] | LIU Chang, CHEN Ji-shan, ZHU Rui-fen, SUN Wan-bin, YAO Bo, DONG Shui-kui. Meta-analysis of the Impacts of Nitrogen Addition on Biomass and Soil Organic Carbon Content of China Grasslands [J]. Acta Agrestia Sinica, 2025, 33(7): 2078-2089. |
| [5] | ZHANG Yi, HU Jian, ZHOU Qing-ping, WANG Hong-yu, CHEN Jiang-mei, WANG San-xin, WANG Jia-qi, MA Wen-ting, SUN Huan. Effects of Shrub Removal Management Measures on Soil Water Conservation Function in Alpine Shrub-encroached Grassland [J]. Acta Agrestia Sinica, 2025, 33(6): 1912-1923. |
| [6] | SONG Jia, WEI Lu-heng, HU Yi-fei, WANG Yi-bo, WANG Dong, SUN Juan-juan, XUE Yan-lin, BAI Chun-sheng, YU Zhu. Effect of Storage Temperature and Bacillus Addition on Fermentation Quality and Nitrate Content of Sorghum-sudangrass Silage [J]. Acta Agrestia Sinica, 2025, 33(5): 1669-1676. |
| [7] | ZHANG Zi-pei, GAO Ya-qi, ZHAO Qing-cui, XIANG Yan, CHAI Jia-long, DING Yi-jie, XU Hong-yu. Transcriptomic Analysis of Different Fall Dormancy Levels of Alfalfa in Response to Low Temperature Stress [J]. Acta Agrestia Sinica, 2025, 33(4): 1048-1057. |
| [8] | ZHANG Hui-min, WANG Ming-jiu, TI Zhong-hui, LIU Jia-wei, CAO Ke-fan, MA Yi-ming. Prediction of Inflorescence Growth and Flowering Development in Caucasian Clover Based on Thermal Time Model [J]. Acta Agrestia Sinica, 2025, 33(3): 850-858. |
| [9] | YAN San-bo, CAI Jia-bang, WANG Yang, ZHANG Xin-quan, NIE Gang. Effects of Exogenous Salicylic Acid on Seed Germination of Perennial Ryegrass under High Temperature Stress [J]. Acta Agrestia Sinica, 2025, 33(3): 968-974. |
| [10] | LIU Tong-yu, SONG Lin-qian, CAO Jing, RONG Yu-ping. Morphological Differences in Heterotypic Seeds of Cenchrus spinifex and Their Germination in Response to Temperature [J]. Acta Agrestia Sinica, 2025, 33(2): 451-456. |
| [11] | MA Qun, BAI Wei, MOU Guo-xu, CHEN Meng-jia, MA Ruo-bing, WANG Yi-bo. Effects of Warming on Soil Aggregate Stability and Contents of Carbon and Nitrogen in Alpine Swamp Meadow [J]. Acta Agrestia Sinica, 2025, 33(2): 547-555. |
| [12] | LI Yao, WU Jing-jing, WU Zhong-yu, XIU Yue, WU Cheng-jing, GONG Jin-chao, ZHAO Jia-rui, LI Lin-lin, YU Shui-quan, SUN Fei-da, MA Zhou-wen, LIU Lin, ZHOU Ji-qiong, LI Hong-lin, BAI Yan-fu. Temperature Sensitivity of Soil Organic Carbon Mineralization in Alpine Sandy Grasslands During Natural Regeneration [J]. Acta Agrestia Sinica, 2024, 32(9): 2686-2694. |
| [13] | SONG Xian, CHAI Yu, XU Wen-yin, YIXI Zhuo-ma, YU Jin-feng, MA Yun-qiao, LI Xi-lai. Characteristics of Organic Carbon Mineralization and Their Temperature Sensitivity within Soil Aggregate in Alpine Wetlands in Source Region of Yellow River [J]. Acta Agrestia Sinica, 2024, 32(7): 2205-2213. |
| [14] | YANG Dan, YIN Han-xue, ZHANG Qing. Impacts of Phenyllactic Acid and Temperature on the Fermentation Quality and Antibiotic Resistance Genes of Corn Straw Silage [J]. Acta Agrestia Sinica, 2024, 32(7): 2290-2296. |
| [15] | ZHAO Yong-qi, YIN Guo-li, GONG Hai-qiang, LIANG Wen-bin, LEI Qing. Screening and Identification of Low-temperature Tolerant Lactic Acid Bacteria from Silage Grass in Gannan Region [J]. Acta Agrestia Sinica, 2024, 32(7): 2305-2313. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||