Acta Agrestia Sinica ›› 2023, Vol. 31 ›› Issue (11): 3423-3435.DOI: 10.11733/j.issn.1007-0435.2023.11.021
Previous Articles Next Articles
YANG Wen-dan1, ZHAO Qiu-mei1, ZHAI Tai-ya2, HE Yan2, MAO Tian-xu3, ZHANG Tao4
Received:
2023-04-10
Revised:
2023-05-20
Online:
2023-11-15
Published:
2023-12-01
杨文丹1, 赵秋梅1, 翟泰雅2, 何燕2, 毛天旭3, 张涛4
通讯作者:
张涛,E-mail:zhangtaoeco@outlook.com
作者简介:
杨文丹(1998-),女,汉族,贵州遵义人,硕士研究生,主要从事资源利用与植物保护研究,E-mail:wdyang1778457341@163.com
基金资助:
CLC Number:
YANG Wen-dan, ZHAO Qiu-mei, ZHAI Tai-ya, HE Yan, MAO Tian-xu, ZHANG Tao. Effects of Hydrothermal Changes on Soil Greenhouse Gas Emissions from Alpine Swamp Meadow in the Permafrost Region[J]. Acta Agrestia Sinica, 2023, 31(11): 3423-3435.
杨文丹, 赵秋梅, 翟泰雅, 何燕, 毛天旭, 张涛. 水热互作对多年冻土区高寒沼泽草甸土壤温室气体排放的影响[J]. 草地学报, 2023, 31(11): 3423-3435.
[1] IPCC. Climate change 2021:The physical science basis. Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge:Cambridge University Press,2021:1 [2] BRACHO R,NATALI S,PEGORARO E,et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations[J]. Soil Biology and Biochemistry,2016(97):1-14 [3] CUI Q,SONG C C,WANG X W,et al. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region,Northeast China[J]. Science of the Total Environment,2018(616):427-434 [4] SCHUUR E A G,MCGUIRE A D,SCH?DEL C,et al. Climate change and the permafrost carbon feedback[J]. Nature,2015,520(7546):171-179 [5] THOMAS C D,CAMERON A,GREEN R E,et al. Extinction risk from climate change[J]. Nature,2004,427(6970):145-148 [6] SCHUUR E A G,ABBOTT B W,BOWDEN W B,et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013,119(2):359-374 [7] JOHNSTON C E,EWING S A,HARDEN J W,et al. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence[J]. Environmental Research Letters,2014,9(8):085004 [8] SCHUUR E,ABBOTT B. High risk of permafrost thaw[J]. Nature,2011,480(7375):32-33 [9] 陈晓鹏,王根绪,孙菊英,等. 增温和氮添加对长江源区高寒沼泽草甸生态系统呼吸的影响[J]. 草地学报,2020,28(1):193-199 [10] KUANG X,JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research-Atmospheres,2016,121(8):3979-4007 [11] WEI D,ZHAO H,HUANG L,et al. Feedbacks of alpine wetlands on the Tibetan Plateau to the atmosphere[J]. Wetlands,2020,40(4):787-797 [12] 赵林,胡国杰,邹德富,等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊,2019,34(11):1233-1246 [13] COOPER M D A,ESTOP-ARAGONES C,FISHER J P,et al. Limited contribution of permafrost carbon to methane release from thawing peatlands[J]. Nature Climate Change,2017,7(7):507-511 [14] 赵雪雁,张钦,王亚茹,等. 近55a来青藏高原东部气候演变特征[J]. 干旱区研究,2015,32(6):1088-1096 [15] YANG J S,LIU J H,HU X J,et al. Effect of water table level on CO2,CH4 and N2O emissions in a freshwater marsh of Northeast China[J]. Soil Biology and Biochemistry,2013(61):52-60 [16] 党学亚,常亮,卢娜. 青藏高原暖湿化对柴达木水资源与环境的影响[J]. 中国地质,2019,46(2):359-368 [17] WHITAKER K,ROGERS K,SAINTILAN N,et al. Vegetation persistence and carbon storage:Implications for environmental water management for Phragmites australis[J]. Water Resources Research,2015,51(7):5284-5300 [18] WEI D,XU R,TARCHEN T,et al. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau:Evidence from two in situ measurements at 4758 and 4320 m above sea level[J]. Journal of Geophysical Research-Biogeosciences,2015,120(9):1741-1750 [19] 亓伟伟,牛海山,汪诗平,等. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J]. 生态学报,2012,32(6):1713-1722 [20] WANG J F,WANG G X,HU H C,et al. The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences,2010,60(3):537-548 [21] DOCHERTY E M,THOMAS A D. Larger floods reduce soil CO2 efflux during the post-flooding phase in seasonally-flooded forests of Western Amazonia[J]. Pedosphere,2021,31(2):342-552 [22] XU C,WONG V N L,REEF R E. Effect of inundation on greenhouse gas emissions from temperate coastal wetland soils with different vegetation types in southern Australia[J]. Science of the Total Environment,2021(763):142949 [23] XIE Y B,JIA Q Y,ZHOU L. Soil respiration and its controlling factors at Phragmites communis wetland in Panjin[J]. Journal of Meteorology and Environment,2006(22):53-58 [24] KWON M J,JUNG J Y,TRIPATHI B M,et al. Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic[J]. Journal of Microbiology,2019,57(5):325-336 [25] LIU Y,LIU G H,XIONG Z Q,et al. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau[J]. Atmospheric Environment,2017(171):17-24 [26] TURETSKY M R,TREAT C C,WALDROP M P,et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland[J]. Journal of Geophysical Research-Biogeosciences,2008,113(G3):000496 [27] HE G X,LI K H,LIU X J,et al. Fluxes of methane,carbon dioxide and nitrous oxide in an alpine wetland and an alpine grassland of the Tianshan Mountains,China[J]. Journal of Arid Land,2014,6(6):717-724 [28] CHEN X P,WANG G X,ZHANG T,et al. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. Science of the Total Environment,2017(601):1389-1399 [29] GONG Y,WU J H,VOGT J,et al. Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland[J]. Science of the Total Environment,2019(664):72-78 [30] SHI F S,CHEN H,CHEN H F,et al. The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau[J]. Ecological Research,2012,27(4):725-733 [31] XU C,WONG V N L,REEF R E. Effect of inundation on greenhouse gas emissions from temperate coastal wetland soils with different vegetation types in southern Australia[J]. Science of the Total Environment,2021(763):142949 [32] MAUCIERI C,ZHANG Y,MCDANIEL M D,et al. Short-term effects of biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil after re-wetting[J]. Geoderma,2017(307):267-276 [33] 陈哲,金艳霞,孙建,等. 全球变暖对高寒冻土区温室气体通量影响研究进展[J]. 草地学报,2023,31(4):929-942 [34] ZHANG T,WANG G X,YANG Y,et al. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau[J]. European Journal of Soil Biology,2015(71):45-52 [35] LI N,WANG G X,YANG Y,et al. Plant production,and carbon and nitrogen source pools,are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau[J]. Soil Biology and Biochemistry,2011,43(5):942-953 [36] ZHANG T,WANG G X,YANG Y,et al. Grassland types and season-dependent response of ecosystem respiration to experimental warming in a permafrost region in the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2017(247):271-279 [37] MCDANIEL M D,GRANDY A S,TIEMANN L K,et al. Crop rotation complexity regulates the decomposition of high and low quality residues[J]. Soil Biology and Biochemistry,2014(78):243-254 [38] SUN J N,WANG B C,XU G,et al. Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland[J]. Ecological Engineering,2014(62):43-47 [39] ZHANG L H,SONG L P,WANG B C,et al. Co-effects of salinity and moisture on CO2 and N2O emissions of laboratory-incubated salt-affected soils from different vegetation types[J]. Geoderma,2018(332):109-120 [40] VANCE E D,BROOKES P C,JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry,1987(19):703-707 [41] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:43-47 [42] 关松荫. 土壤酶及其研究方法[M]. 北京:农业出版社,1986:294-297 [43] WANG B,NIU B,YANG X J,et al. Environmental factors and soil CO2 emissions in an alpine swamp meadow ecosystem on the Tibetan Plateau in response to experimental warming[J]. Journal of Chemistry,2016(1):2573185 [44] OECHEL W C,VOURLITIS G L,HASTINGS S J,et al. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems[J]. Global Change Biology,1998,4(1):77-90 [45] MORISHITA T,MATSUURA Y,KAJIMOTO T,et al. CH4 and N2O dynamics of a Larix gmelinii forest in a continuous permafrost region of central Siberia during the growing season[J]. Polar Science,2014,8(2):156-165 [46] YANG G,CHEN H,WU N,et al. Effects of soil warming,rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China[J]. Soil Biology and Biochemistry,2014(78):83-89 [47] ALLAN J,RONHOLM J,MYKYTCZUK N C S,et al. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils[J]. Environmental Microbiology Reports,2014,6(2):136-144 [48] LIU J G,ZHOU Y L,VALACH A,et al. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half[J]. Global Change Biology,2020,26(9):4998-5016 [49] WU H B,WANG X X,GANJURJAV H,et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau[J]. Science of the Total Environment,2020(705):135818 [50] RO H-M,JI Y,LEE B. Interactive effect of soil moisture and temperature regimes on the dynamics of soil organic carbon decomposition in a subarctic tundra soil[J]. Geosciences Journal,2017,22(1):121-130 [51] KOLSTAD E,MICHELSEN A,AMBUS P L. Nitrous oxide surface fluxes in a low Arctic heath:Effects of experimental warming along a natural snowmelt gradient[J]. Soil Biology and Biochemistry,2021(160):108346 [52] LAMB E G,HAN S,LANOIL B D,et al. A High Arctic soil ecosystem resists long-term environmental manipulations[J]. Global Change Biology,2011,17(10):3187-3194 [53] ZHOU Y M,HAGEDORN F,ZHOU C L,et al. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain,China[J]. Scientific Reports,2016,6(1):21108 [54] 王东启. 长江口滨岸潮滩沉积物反硝化作用及N2O的排放和吸收[D].上海:华东师范大学,2006:82-83 [55] GAO J Q,OU-YANG H,LEI G C,et al. Effects of temperature,soil moisture,soil type and their interactions on soil carbon mineralization in Zoigê alpine wetland,Qinghai-Tibet Plateau[J]. Chinese Geographical Science,2011,21(1):27-35 [56] CAO R,XI X Q,YANG Y H S,et al. The effect of water table decline on soil CO2 emission of Zoige peatland on eastern Tibetan Plateau:A four-year in situ experimental drainage[J]. Applied Soil Ecology,2017(120):55-61 [57] ZHOU W C,CUI L J,WANG Y F,et al. Carbon emission flux and storage in the degraded peatlands of the Zoige alpine area in the Qinghai-Tibetan Plateau[J]. Soil Use and Management,2021,37(1):72-82 [58] 欧强,王江涛,周剑虹,等. 滨海湿地不同水位梯度下的土壤CO2通量比较[J]. 应用与环境生物学报,2014,20(6):992-998 [59] MAKIRANTA P,LAIHO R,FRITZE H,et al. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity[J]. Soil Biology and Biochemistry,2009,41(4):695-703 [60] LI H J,YAN J X,YUE X F,et al. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area[J]. Agricultural and Forest Meteorology,2008,148(3):490-503 [61] 侯翠翠,宋长春,李英臣,等. 不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J]. 中国环境科学,2012,32(1):113-119 [62] ZIMMERMAN A R,GAO B,AHN M-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,43(6):1169-1179 [63] THAUER R K,KASTER A K,SEEDORF H,et al. Methanogenic archaea:ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology,2008,6(8):579-591 [64] WANG Y F,CUI H P,SU X,et al. Diversity and distribution of methanogenic community between two typical alpine ecosystems on the Qinghai-Tibetan Plateau[J]. Current Microbiology,2020,77(6):1061-1069 [65] 邓永翠. 青藏高原湿地好氧甲烷氧化菌的群落多样性及活性研究[D]. 北京:中国科学院大学,2013:23-54 [66] 杨文柱,焦燕,杨铭德,等. 内蒙古河套灌区不同盐碱程度土壤CH4吸收规律[J]. 环境科学,2019,40(4):1950-1956 [67] WANG H,YU L F,ZHANG Z H,et al. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland[J]. Global Change Biology,2017,23(2):815-829 [68] REGINA K,SILVOLA J,MARTIKAINEN P J. Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands[J]. Global Change Biology,1999,5(2):183-189 [69] AUDET J,HOFFMANN C C,ANDERSEN P M,et al. Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments:Emission,uptake and controlling factors[J]. Soil Biology and Biochemistry,2014(68):291-299 [70] 蔡延江,丁维新,项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤,2012,44(5):712-718 [71] 胡保安. 天鹅湖高寒湿地CO2、CH4和N2O排放对水分变化的响应[D].乌鲁木齐:新疆农业大学,2017:45-46 [72] DRENOVSKY R E,VO D,GRAHAM K J,et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial ecology,2004,48(3):424-430 [73] WANG B,LI J L,WAN Y F,et al. Responses of yield,CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system [J]. European Journal of Agronomy,2018(96):60-69 [74] ZHANG Z H,WANG G S,WANG H,et al. Warming and drought increase but wetness reduces the net sink of CH4 in alpine meadow on the Tibetan Plateau[J]. Applied Soil Ecology,2021(167):104061 [75] WANG X Y,SICILIANO S,HELGASON B,et al. Responses of a mountain peatland to increasing temperature:A microcosm study of greenhouse gas emissions and microbial community dynamics[J]. Soil Biology and Biochemistry,2017(110):22-33 [76] WANG J S,LUO Y Q,QUAN Q,et al. Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow[J]. Agricultural and Forest Meteorology,2021(297):108278 [77] BUTTERBACH-BAHL K,BAGGS E M,DANNENMANN M,et al. Nitrous oxide emissions from soils:How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368(1621):20130122 [78] VOIGT C,MARUSHCHAK M E,LAMPRECHT R E,et al. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw[J]. Proceedings of the National Academy of Sciences,2017,114(24):6238-6243 [79] LIN L,ZHU B,CHEN C R,et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau[J]. Scientific Reports,2016,6(1):31438(责任编辑 刘婷婷)第31卷 第11期 Vol.31 No. 11草 地 学 报 ACTAAGRESTIASINICA 2023年 11月 |
[1] | TUO Hang-hang, HUANG Jian-di, BAI Yue, TIAN Hui-hui, LI Mei-hui, WANG Zi-lin, YANG Meng-ru, WANG Yi-bo, YE Fa-ming, LI Wei. Characteristics of Soil Nitrogen Mineralization and its Influencing Factors before and after Growing Season in Subshrub Expansion Grassland [J]. Acta Agrestia Sinica, 2023, 31(9): 2730-2739. |
[2] | YAN Xu, WU Zi-zhou, ZUO Yan-chun, WANG Hong-lin, WANG Qiang-feng, LI Yang, KOU Jing, DU Zhou-he. Silage Characteristics of Different Corn Plant Parts and Strategies for Improving Their Silage Quality [J]. Acta Agrestia Sinica, 2023, 31(8): 2275-2286. |
[3] | LUO Yu-ting, XU Gang, REN Ji-zhou, CHANG Sheng-hua, YU Chun-xiao. Comparison of Greenhouse Gas Emissions of Four Type of Crops on the Loess Plateau [J]. Acta Agrestia Sinica, 2023, 31(8): 2425-2435. |
[4] | XIAO Qiang-zhi, XU Wei-xin, DAI Na, WANG Qi-yu, LI Quan-ping, DUAN Xu-hui, LIANG Hao. The Temporal Pattern of Leaf Area Index in Withered Procedure and its Estimation in Winter in Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2023, 31(8): 2436-2445. |
[5] | DANG Jia-hao, LONG Shi-he, LI Xue-feng, PAN Jun-xin, WANG Jian. Isolation and Identification of Lactic Acid Bacteria Strain from Pennisetum purpureum × P. americanum ‘Reyan No.4’ Silage [J]. Acta Agrestia Sinica, 2023, 31(8): 2537-2544. |
[6] | SUN Ya-fei, CHAI Yong-qing. Species Diversity of Gymnocarpos przewalskii Community in Different Habitats and its Relationship with the Soil Moisture and Salinity in the Western End of Qilian Mountain [J]. Acta Agrestia Sinica, 2023, 31(7): 2059-2067. |
[7] | LU Ying-shuai, PENG Jie, LI Yan-jie, YAN Xue-dong, HAO Jie, DIAO Hua-jie, SU Yuan, XU Pei-dong, DONG Kuan-hu, WANG Chang-hui, CHEN Xiao-peng. Effect of Different Nitrogen Compounds Addition on CH4 Flux of Leymus secalinus Grassland in Northern Shanxi Province [J]. Acta Agrestia Sinica, 2023, 31(7): 2146-2154. |
[8] | YAN Xing-quan, JIA Yu-shan, GE Gen-tu, WANG Zhi-jun, ZHAO Mu-qi-er, LIU Jing-yi, ZHU Na, SUN Peng-bo. Effect of Raw Material Moisture Content and Additive Type on Silage Quality of Alfalfa [J]. Acta Agrestia Sinica, 2023, 31(6): 1861-1866. |
[9] | ZHANG Wen-lu, DING Zhong-yang, WANG Hui, ZHANG Wei, ZHOU Qing-ping, CHEN You-jun. Analysis of the Relationship between Rhizosheath and Root Growth of Kengyilia hirsuta Seedlings under Soil Sterilization and Moisture Treatments [J]. Acta Agrestia Sinica, 2023, 31(5): 1338-1348. |
[10] | CHEN Zhe, JIN Yan-xia, SUN Jian, SHAO Xin-qing, WANG Ying-dian, ZHAO Xin-quan, WANG Wen-ying, XIE Hui-chun, ZHANG Zhen-hua, ZHANG Li, DU Yan-gong, ZHOU Hua-kun. A Review on the Impact of Global Warming to Greenhouse Gas Flux in Frozen Ground Region [J]. Acta Agrestia Sinica, 2023, 31(4): 929-942. |
[11] | REN Chun-yan, LIU Wen-hui, LIANG Guo-ling, ZHANG Yong-chao, LI Wen, YU Hui, HU Wei, WANG Feng-yu. Differences of Seed Shattering and Agronomic Traits in Six Elymus Species on the Qinghai-Tibet Plateau [J]. Acta Agrestia Sinica, 2023, 31(4): 1008-1015. |
[12] | ZHOU Min, ZHOU Tao, XU Qian, LU Rui, LIU Ming-xi, HU Long-xing. Bioinformatics Analysis of the TALE Transcription Factor Family in Amaranthus hypochondriacus [J]. Acta Agrestia Sinica, 2023, 31(3): 676-687. |
[13] | MENG Si-yu, LI Xiao-qing, WEI Xiao-xing, LIU Wen-hui, ZHANG Yong-chao, BAO Gen-sheng. Effects of Temperature on Seed Germination and Seedling Growth of Deschampsia caespitosa in Alpine Regions [J]. Acta Agrestia Sinica, 2023, 31(3): 760-768. |
[14] | LI Zhen, DAI Ling-ling, DENG Hai-ling, GUO Hai-bin, QIANG Sheng, SONG Xiao-ling. Effects of VitaCat® on Alleviating Low Temperature Stress to Turfgrass Species at Germination and Seedling Growth Stage [J]. Acta Agrestia Sinica, 2023, 31(3): 804-812. |
[15] | CHAI Ji-kuan, ZHAO Gui-qin, JU Ze-liang. Effects of Adding Different Lactic Acid Bacteria on Oat Silage Fermentation at Low Temperatures [J]. Acta Agrestia Sinica, 2023, 31(3): 923-928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||