[1] SHERWOOD S C, HUBER M. An adaptability limit to climate change due to heat stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21):9552-9555 [2] QU L, DONG G, DE BOECK H J, et al. Joint forcing by heat waves and mowing poses a threat to grassland ecosystems:Evidence from a manipulative experiment[J].Land Degrad Dev, 2020, 31(7):785-800 [3] ZINTA G, ABDELGAWAD H, DOMAGALSKA M A, et al. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels[J]. Global Change Biology, 2014, 20(12):3670-3685 [4] QU L, CHEN J, DONG G, et al. Heat waves reduce ecosystem carbon sink strength in a Eurasian meadow steppe[J]. Environmental Research, 2016(144):39-48 [5] LI Z, HE L, ZHANG H, et al. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes[J]. Global Change Biology, 2017, 23(1):108-116 [6] KUMAR U, SINGH P, BOOTE K J.Effect of climate change factors on processes of crop growth and development and yield of groundnut (Arachis hypogaea L.)[J].Advances in Agronomy, 2012(116):41-69 [7] 余海霞, 曲鲁平, 刘南, 等. 热浪对植物光合作用和水分传输与利用的影响研究进展[J]. 安徽农业科学, 2022, 50(9):4-8 [8] PISCHL P H, BARBER N A. Plant responses to arbuscular mycorrhizae under elevated temperature and drought[J]. Journal of Plant Ecology, 2017, 10(4):692-701 [9] COOK A M, BERRY N, MILNER K V, et al. Water availability influences thermal safety margins for leaves[J]. Functional Ecology, 2021, 35(10):2179-2189 [10] ROWLAND L, OLIVEIRA R S, BITTENCOURT P R L, et al. Plant traits controlling growth change in response to a drier climate[J]. New Phytologist, 2021, 229(3):1363-1374 [11] WANG D, HECKATHORN S A, MAINALI K, et al. Timing effects of heat-stress on plant ecophysiological characteristics and growth[J]. Frontiers in Plant Science, 2016(7):16-29 [12] QU L, CHEN J, DONG G, et al. Heavy mowing enhances the effects of heat waves on grassland carbon and water fluxes[J]. Science of the Total Environment, 2018(627):561-570 [13] 董校兵, 曲鲁平, 董刚, 等.刈割降低热浪对内蒙古草甸草原碳通量的影响[J].生态学报, 2021, 41(17):6836-6845 [14] 祝廷成. 羊草生物生态学[M]. 长春:吉林技术科学出版社, 2004:60-65 [15] ZWICKE M, ALESSIO G A, THIERY L, et al. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies[J]. Global Change Biology, 2013, 19(11):3435-3548 [16] 赵成振, 李强, 钟荣珍. 不同物候期刈割对羊草再生和根形态及产量的影响[J]. 草业学报, 2022, 31(03):92-100 [17] 王国良, 李向林, 万里强, 等. 刈割对羊草草原生长性能的影响[J]. 草地学报, 2007(3):263-268 [18] 李晓彤. 施肥和刈割对羊草草地生产力与物种多样性的影响[D]. 长春:东北师范大学, 2016:23-26 [19] ZHAO T Q, ZHANG F, SUO R Z, et al. Biennial mowing maintains the biomass and functional diversity of semi-arid grassland[J]. Sustainability, 2020, 12(4):7-15 [20] HAMILTON S A, KALLENBACH R L, BISHOP-HURLEY G J, et al. Stubble height management changes the productivity of perennial ryegrass and tall fescue pastures[J]. Agronomy Journal, 2013, 105(3):557-562 [21] 侯路路, 闫瑞瑞, 张宇, 等. 放牧强度对草甸草原羊草功能性状的影响[J]. 中国农业科学, 2020, 53(13):2562-2572 [22] 李艳龙, 石椿珺, 程建伟, 等. 内蒙古典型草原三种家畜采食量和食性选择的研究[J]. 草地学报, 2018, 26(5):1091-1096 [23] 赵丹丹, 马红媛, 李阳, 等. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6):501-511 [24] 董校兵, 程利, 曲鲁平, 等. 热浪发生期提前对草甸草原碳吸收的影响[J]. 草地学报,2022, 30(1):161-168 [25] DONG G, ZHAO F, CHEN J, et al. Divergent forcing of water use efficiency from aridity in two meadows of the Mongolian Plateau[J]. Journal of Hydrology, 2021(593):125799 [26] DE BOECK H J, Bassin S, Verlinden M, et al. Simulated heat waves affected alpine grassland only in combination with drought[J]. New Phytologist, 2016, 209(2):531-541 [27] BIRAMI B, GATTMANN M, HEYER A G, et al. Heat waves alter carbon allocation and increase mortality of Aleppo pine under dry conditions[J]. Frontiers in Forests and Global Change, 2018, 1(8):1-17 [28] 周华坤, 赵新全, 周立, 等. 不同放牧强度对鹅绒委陵菜克隆生长特征的影响[J]. 西北植物学报, 2006(5):1021-1029 [29] 高嵩, 王俊锋, 郭继勋, 等. 模拟增温对松嫩草地羊草有性生殖策略影响的研究[J]. 东北师大学报(自然科学版), 2021, 53(4):98-105 [30] 江黎明, 孙宗玖, 汤丽斯, 等. 收获期对伊犁绢蒿种子含水率、千粒重及萌发行为的影响[J]. 中国草地学报, 2019, 41(5):7-16 [31] DUNNE J A, HARTE J, TAYLOR K J. Subalpine meadow flowering phenology responses to climate change:integrating experimental and gradient methods[J]. Ecological Monographs, 2003, 73(1):69-86 [32] ALMEIDA L M M, COULON M, AVICE J C, et al. Effects of two-generational heat stress exposure at the onset of seed maturation on seed yield and quality in Brassica napus L[J]. Environmental and Experimental Botany, 2022, 195(104778) [33] SIEBERS M H, YENDREK C R, DRAG D, et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress[J]. Global Change Biology, 2015, 21(8):3114-3125 [34] 宝乌日其其格, 张金旺, 银杉, 等. 气候变化对大针茅和羊草物候变化的影响[J].内蒙古气象, 2022(1):12-15 [35] COHEN I, ZANDALINAS S I, HUCK C, et al. Meta-analysis of drought and heat stress combination impact on crop yield and yield components[J]. Physiologia Plantarum, 2021, 171(1):66-76 [36] LIU Y Z, MIAO R H, CHEN A Q, et al. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow[J]. Ecological Engineering, 2017(99):119-125 [37] 闫瑞瑞, 张宇, 辛晓平, 等. 刈割干扰对羊草草甸草原植物功能群及多样性的影响[J].中国农业科学, 2020, 53(13):2573-2583 [38] MCNAUGHTON S J O. Compensatory plant growth as a response to herbivory[J]. Oikos, 1983, 329-336 [39] POLLEY H W, FRANK A B, SANABRIA J, et al. Interannual variability in carbon dioxide fluxes and flux-climate relationships on grazed and ungrazed northern mixed-grass prairie[J]. Global Change Biology, 2008, 14(7):1620-1632 [40] 包国章, 李向林, 白静仁. 放牧及刈割强度对鸭茅密度及能量积累的影响[J]. 应用生态学报, 2001(6):955-957 [41] 黄振艳, 王立柱, 乌仁其其格, 等. 放牧和刈割对呼伦贝尔草甸草原物种多样性的影响[J]. 草业科学, 2013, 30(4):602-605 [42] LIU H, MI Z, LIN L I, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences, 2018, 115(16):4051-4056. [43] KLEIN J A, HARTE J, ZHAO X Q. Dynamic and complex microclimate responses to warming and grazing manipulations[J]. Global Change Biology, 2005, 11(9):1440-1451. [44] 籍烨, 陈仕东, 熊德成, 等. 短期增温对亚热带常绿阔叶林林下植被物种多样性的影响[J]. 热带亚热带植物学报, 2022, 11(14):1-11 [45] KELEMEN A, TÖRÖK P, VALKÓ O, et al. Mechanisms shaping plant biomass and species richness:plant strategies and litter effect in alkali and loess grasslands[J]. J Veg Sci, 2013, 24(6):1195-1203 [46] DREESEN F E, DE BOECK H J, HOREMANS J A, et al. Recovery dynamics and invasibility of herbaceous plant communities after exposure to experimental climate extremes[J]. Basic Appl Ecol, 2015, 16(7):583-591 [47] 张效境, 马望, 王正文. 刈割制度对呼伦贝尔草原群落特征及牧草质量的影响[J].应用生态学报, 2022, 33(6):1555-1562 [48] 王开丽, 杨合龙, 肖红, 等. 施氮与刈割留茬高度对草场生产力及植物群落组成的影响[J]. 中国农业科学, 2020, 53(13):2625-2636 [49] 谭红妍, 闫瑞瑞, 闫玉春, 等. 不同放牧强度下温性草甸草原土壤生物性状及与地上植被的关系[J]. 中国农业科学, 2014, 47(23):4658-4667 [50] 郝广, 闫勇智, 李阳, 等. 不同刈割频次对呼伦贝尔羊草草原土壤碳氮变化的影响[J]. 应用与环境生物学报, 2018, 24(2):195-199 [51] 董世魁, 汤琳, 张相锋, 等.高寒草地植物物种多样性与功能多样性的关系[J]. 生态学报, 2017, 37(5):1472-1483 [52] WAN Z Q, YANG J Y, GU R, et al. Influence of different mowing systems on community characteristics and the compensatory growth of important species of the Stipa grandis steppe in Inner Mongolia[J]. Sustainability, 2016, 8(11):11-21 [53] ISBELL F, CRAVEN D, CONNNOLLY J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes[J]. Nature, 2015, 526(7574):574-577 |