[1] 张世子, 杨丽云, 高静, 等. 柱花草响应炭疽菌侵染的差异磷酸化蛋白质组学分析[J]. 草地学报, 2023, 31(3):699-709 [2] 邹晓燕, 王林杰, 黄杰, 等. 柱花草SgNramp1和SgNramp2基因克隆与表达分析[J]. 草地学报, 2022, 30(6):1388-1395 [3] 王俐媛, 王坚, 丁西朋, 等. 3种圭亚那柱花草根系分泌物对杂草幼苗生长的影响[J]. 草地学报, 2022, 30(6):1500-1508 [4] JIANG L Y, WU P P, YANG L Y, et al. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides[J]. Genomics, 2021, 113(4):2702-2716 [5] 耿晓姗, 朱宇林, 蒙柳密, 等. 牛大力苯丙氨酸解氨酶的克隆和生物信息分析[J]. 分子植物育种, 2022, 20(5):1514-1521 [6] DONG N, LIN H. Contribution of phenylpropanoid metabolism to plant development and plant environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1):180-209 [7] 万敉町. 胶孢炭疽菌侵染柱花草和拟南芥的分子检测技术研究[D]. 海口:海南大学, 2022:38-41 [8] 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报, 2021, 37(33):112-119 [9] 余婧, 杨慧, 余世洲, 等. 烟草NtCBT基因启动子酵母单杂诱饵载体构建及互作蛋白筛选[J]. 生物技术通报, 2022, 38(10):73-79 [10] 李濯雪. 利用酵母单杂交方法对OsHsfB2c启动子结合蛋白的筛选[D]. 长沙:湖南农业大学, 2015:34 [11] GAO M Z, WAN M T, YANG L Y, et al. Molecular and physiological characterization of Arabidopsis-Colletotrichum gloeosporioides pathosystem[J]. Plant Pathology, 2021, 70(5):1168-1179 [12] NING Y, WANG G L. Breeding plant broad-spectrum resistance without yield penalties[J]. Proceedings of The National Academy of Sciences of The United States of America, 2018, 115(12):2859-2861 [13] XIE Z L, NOLAN T M, JIANG H, et al. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis[J]. Frontiers in Plant Science,2019(10):228 [14] 刘宽, 李剑, 段钰晶, 等. 植物非生物逆境诱导型启动子研究进展[J/OL].http://kns.cnki.net/kcms/detail/46.1068.S.20220410.2211.016.html, 2022-04-12/2023-08-14 [15] 张雪, 程荔书, 张军, 等. 高等植物不同类型启动子及其相关顺式元件研究进展[J]. 高师理科学刊, 2023, 43(4):60-67 [16] WANG Y, XU W, CHEN Z X, et al. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis)[J]. Planta, 2018, 247(3):559-572 [17] 刘东晓, 王幼平, 吴健. WRKY转录因子在植物激素介导的抗病途径中的作用[J/OL].http://kns.cnki.net/kcms/detail/46.1068.S.20220512.0937.010.html, 2022-05-12/2023-08-14 [18] 王荟. 柱花草与炭疽菌互作的生理响应及苯丙氨酸解氨酶基因SgPAL1的功能研究[D]. 海口:海南大学, 2018:55-56 [19] BUBNA G A, LIMA R B, ZANARDO D Y, et al. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max)[J]. Plant Physiol, 2011, 168(14):1627-1633 [20] 王震, 马伟. 中药大青叶、板蓝根基原植物菘蓝Trihelix基因家族鉴定及非生物胁迫下表达模式分析[J]. 中华中医药杂志, 2023, 38(5):2109-2115 [21] RUIZ K A, PELLETIER J M, WANG Y C, et al. A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program[J]. Plant Direct. 2021, 5(10):e345 [22] 向小雪. Trihelix转录因子SlASIL2在番茄生长发育及非生物胁迫中的功能研究[D]. 重庆:重庆大学, 2022:97-98 [23] LIU X Y, LI A, WANG S S, et al. Overexpression of Pyrus sinkiangensis HAT5 enhances drought and salt tolerance, and low-temperature sensitivity in transgenic tomato[J]. Frontiers in Plant Science, 2022(13):1036254 [24] 李俐. 吉林人参HD-Zip基因家族的系统分析及PgHB14-2基因转化番茄的研究[D]. 长春:吉林农业大学, 2017:31-32 [25] 付鸿博, 李杰, 杨永超, 等. 石榴ZF-HD基因家族鉴定与分析[J]. 河南农业科学, 2022, 51(6):119-125 [26] WANG H, YIN X J, LI X Q, et al. Genome-wide identification, evolution and expression analysis of the grape (Vitis vinifera L.) zinc finger-homeodomain gene family[J]. International Journal of Molecular Sciences, 2014, 15(4):5730-5748 [27] LAI W, ZHU C X, HU Z Y, et al. Identification and Transcriptional Analysis of Zinc Finger-Homeodomain (ZF-HD) Family Genes in Cucumber[J]. Biochemical Genetics, 2021, 59(4):884-901 |