[1] BEVER J D,MANGAN S A,ALEXANDER H M. Maintenance of Plant Species Diversity by Pathogens[J]. Annual Review of Ecology,Evolution,and Systematics,2015,46(1):305-325 [2] LEGAY N,BAXENDALE C,GRIGULIS K,et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities[J]. Annals of Botany,2014,114(5):1011-1021 [3] MURUGAN R,LOGES R,TAUBE F,et al. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland[J]. Microbial Ecology,2014,67(4):907-918 [4] 任玉连,陆梅,范方喜,等. 高原湿地沼泽化草甸土壤真菌与理化性质的关系[J]. 生态科学,2019,38(1):42-49 [5] 王明涛,雷变霞,赵玉红,等. 垂穗披碱草人工草地建植和管理措施对土壤真菌群落的影响[J]. 草地学报,2023,31(6):1728-1734 [6] COBAN O,DEYN G B D,PLOEG M V D. Soil microbiota as game-changers in restoration of degraded lands[J]. Science,2022,375(6584):eabe0725 [7] HARRIS J. Soil microbial communities and restoration ecology:facilitators or followers?[J]. Science,2009,325(5940):573-574 [8] DEACON L J,PRYCE-MILLER E J,FRANKLAND J C,et al. Diversity and function of decomposer fungi from a grassland soil[J]. Soil Biology & Biochemistry,2006,38(1):7-20 [9] LOZANO Y M,AGUILAR-TRIGUEROS C A,ROY J,et al. Drought induces shifts in soil fungal communities that can be linked to root traits across twenty-four plant species[J]. The New Phytologist,2021,232(5):1917-1929 [10] 杨虎,王佩瑶,李小伟,等. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构[J]. 生态环境学报,2022,31(2):239-247 [11] 王丽艳,周晨,刘光正,等. 基于高通量测序的闽楠幼林根际土壤丛枝菌根真菌群落变化[J]. 微生物学通报,2021,48(5):1461-1472 [12] AGUILAR-TRIGUEROS C A,POWELL J R,ANDERSON I C,et al. Ecological understanding of root-infecting fungi using trait-based approaches[J]. Trends in Plant Science,2014,19(7):432-438 [13] LUTZONI F,NOWAK M D,ALFARO M,et al. Contemporaneous radiations of fungi and plants linked to symbiosis[J]. Nature Communications,2018(9):5451 [14] HEIJDEN M G A V D,BARDGETT R D,STRAALEN N M V. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310 [15] 高风,文仕知,韦铄星,等. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报,2023,35(10):2425-2435 [16] 王亚妮,胡宜刚,王增如,等. 人工植被重建对沙化高寒草地土壤真菌群落特征的影响[J]. 土壤学报,2023,60(1):280-291 [17] 阚海明,陈超,马晓东,等. 华北退化荒地建植豆类和禾本植物人工草地对土壤真菌群落结构和功能的影响[J]. 生态学报,2023,43(24):10092-10103 [18] 刘欢,董凯,仁增旺堆,等. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报,2023,32(6):45-57 [19] 姜鑫,牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报,2021,45(5):539-551 [20] 丁明军,张镱锂,孙晓敏,等. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报,2012,57(33):3185-3194 [21] 张小芳,张春平,董全民,等. 三江源区高寒混播草地群落结构特征的研究[J]. 草地学报,2020,28(4):1090-1099 [22] 肖颖,吉使阿微,赵文学,等. 青藏高原东缘不同人工草地土壤养分、酶活性及微生物生物量特征[J]. 中国草地学报,2022,44(9):90-99 [23] 尚占环,董世魁,周华坤,等. 退化草地生态恢复研究案例综合分析:年限、效果和方法[J]. 生态学报,2017,37(24):8148-8160 [24] 赵旺林,罗天祥,张林. 气候变化与放牧对西藏典型高寒荒漠草地植被指数变化的相对影响[J]. 生态学报,2019,39(22):8494-8503 [25] 董怡玲,尹亚丽,李世雄,等. 混单播措施下极度退化草地植被和土壤碳氮恢复效果研究[J]. 草业科学,2022,39(8):1579-1586 [26] DONG S K,SHANG Z H,GAO J X,et al. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau[J]. Agriculture,Ecosystems & Environment,2020(287):106684 [27] 李彩弟,张春平,俞旸,等. 种植方式对青海湖流域人工草地植被和土壤养分特征的影响[J]. 草地学报,2023,31(2):471-478 [28] SCHARDL C L,YOUNG C A,FAULKNER J R,et al. Chemotypic diversity of epichloae,fungal symbionts of grasses[J]. Fungal Ecology,2012,5(3):331-344 [29] GAO X X,DONG S K,XU Y D,et al. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time:A case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau[J]. Agriculture,Ecosystems & Environment,2019(279):169-177 [30] 马玉寿,周华坤,邵新庆,等. 三江源区退化高寒生态系统恢复技术与示范[J]. 生态学报,2016,36(22):7078-7082 [31] 王旭,曾昭海,胡跃高,等. 豆科与禾本科牧草混播效应研究进展[J].中国草地学报,2007(4):92-98 [32] YAN H L,GU S S,LI S Z,et al. Grass-legume mixtures enhance forage production via the bacterial community[J]. Agriculture,Ecosystems & Environment,2022,338(6):108087 [33] 赵文,尹亚丽,李世雄,等. 植被重建对黑土滩草地植被及微生物群落特征的影响[J]. 生态环境学报,2020,29(1):71-80 [34] WANG H,CHEN H. The importance of plant functional groups under different fertilization and mowing regimes:Implications for sustainable meadows[J]. Agriculture,Ecosystems & Environment,2016,224:67-74 [35] 李文,魏廷虎,永措巴占,等. 混播比例对三江源人工草地植被和土壤养分特征的影响[J]. 草业学报,2021,30(12):39-48 [36] WANG C T,WANG G X,LIU W,et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow[J]. Israel Journal of Ecology & Evolution,2013,59(3):141-153 [37] 常涛,李珊,李以康,等. 混播人工草地建植初期对黑土滩植被和土壤的恢复效果[J]. 草地学报,2023,31(5):1546-1555 [38] LI A,NIU K,DU G. Resource availability,species composition and sown density effects on productivity of experimental plant communities[J]. Plant & Soil,2011,344(1-2):177-186 [39] 张杰雪,王占青,全小龙,等. 高寒地区人工草地土壤微生物群落对不同种植方式和年限的响应[J]. 草地学报,2021,29(2):270-280 [40] CHAUDHARY D R,GAUTAM R K,YOUSUF B,et al. Nutrients,microbial community structure and functional gene abundance of rhizosphere and bulk soils of halophytes[J]. Applied Soil Ecology,2015(91):16-26 [41] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:25-103 [42] 荣新山,何敏,王从彦,等. 藏北退化高寒草原土壤细菌和真菌多样性分析[J]. 生态环境学报,2018,27(9):1646-1651 [43] 伍文宪,张蕾,黄小琴,等. 川西北高寒牧区不同人工草地对土壤微生物多样性影响[J]. 草业学报,2019,28(3):29-41 [44] 刘金艳,周攀,周小路,等. 子囊菌Sordaria tomento-alba的筛选及其木质素降解特性[J]. 应用与环境生物学报,2022,28(3):693-698 [45] 徐欢,丁明军,张华,等. 高寒草原退化过程中植被和土壤因子对微生物群落的交互影响[J/OL]. 环境科学,1-22[2024-03-06].https://doi.org/10.13227/j.hjkx.202307217 [46] BEIMFORDE C,FELDBERG K,NYLINDER S,et al. Estimating the Phanerozoic history of the Ascomycota lineages:Combining fossil and molecular data[J]. Molecular Phylogenetics & Evolution,2014,78(1):386-398 [47] ZHOU J,FONG J J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem[J]. Applied Soil Ecology,2021,165(16):103970 [48] HU L F,ROBERT C A M,CADOT S,et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications,2018,9(1):2738 [49] XU H D,YU M K,CHENG X R. Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations[J]. Ecological Indicators,2021,129:107932 [50] ANITA B G,JACOB G M,SANU A. Diversity,detection and exploitation:linking soil fungi and plant disease[J]. Current Opinion in Microbiology,2022,70:102199 [51] ZHANG G Y,SHEN Z X,FU G. Function diversity of soil fungal community has little exclusive effects on the response of aboveground plant production to experimental warming in alpine grasslands[J]. Applied Soil Ecology,2021,168:104153 [52] 朱文娟,任月梅,杨忠,等. 谷子土壤微生物群落结构及功能预测分析[J]. 作物杂志,2023(5):170-178 [53] 高磊,黄银,马金彪,等. 两种盐生植物内生真菌多样性及其功能预测[J]. 微生物学通报,2023,50(8):3357-3371 [54] 孙鹏洲,罗珠珠,李玲玲,等. 黄土高原干旱区长期种植紫花苜蓿和一年生作物轮作对土壤真菌群落的影响[J]. 中国生态农业学报(中英文),2022,30(6):965-975 [55] 李茂森,王丽渊,杨波,等. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析[J]. 农业资源与环境学报,2022,39(5):1041-1048 [56] 燕红梅,张欣钰,檀文君,等. 5种植物根际真菌群落结构与多样性[J]. 应用与环境生物学报,2020,26(2):364-369 [57] 方圆,王娓,姚晓东,等. 我国北方温带草地土壤微生物群落组成及其环境影响因素[J]. 北京大学学报(自然科学版),2017,53(1):142-150 [58] 徐林芳,米媛婷,柳兰洲,等. 内蒙古不同类型草原土壤真菌群落结构及其影响因子的研究[J]. 草地学报,2023,31(7):1977-1987 [59] 樊瑾,李诗瑶,王融融,等. 荒漠草原生物结皮演替对结皮层及层下土壤细菌群落结构的影响[J]. 生态学杂志,2021,40(7):2033-2044 [60] 薛凯,张彪,周姝彤,等. 青藏高原高寒草地土壤微生物群落及影响因子[J]. 科学通报,2019,64(27):2915-2927 [61] 杨希智,王长庭,字洪标,等. 三江源区不同建植年限人工草地土壤微生物群落结构特征[J]. 应用与环境生物学报,2015,21(2):341-349 [62] 齐文娟,龙瑞军,冯瑞章,等. 江河源区不同建植年限人工草地土壤微生物及酶活性研究[J]. 水土保持学报,2007(4):145-149 [63] 郑佳华,赵萌莉,王琪,等. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响[J]. 生态学报,2022,42(12):4998-5008 [64] WILLIAMS A,MANOHARAN L,ROSENSTOCK N P,et al. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. New Phytologist,2016,213(2):874-885 [65] 邓慧玉,刘子恺,马星竹,等. 长期施肥处理对东北黑土真菌多样性和群落结构的影响[J]. 福建师范大学学报(自然科学版),2024,40(1):69-75 |