Acta Agrestia Sinica ›› 2026, Vol. 34 ›› Issue (2): 377-391.DOI: 10.11733/j.issn.1007-0435.2026.02.001
LIU Rui-chao, YU Lin-qing, REN Hui-min, WU Xiao-feng, CUI Le-le
Received:2025-03-13
Revised:2025-05-23
Published:2026-01-22
刘睿超, 于林清, 任慧敏, 武啸峰, 崔乐乐
通讯作者:
于林清,E-mail:linqing_yu126@.com
作者简介:刘睿超(1997-),女,汉族,内蒙古巴彦淖尔人,硕士研究生,主要从事牧草育种研究,E-mail:liuruichaonnd@163.com;
基金资助:LIU Rui-chao, YU Lin-qing, REN Hui-min, WU Xiao-feng, CUI Le-le. Research Advances and Breeding Prospects on Alfalfa Flowering Time Regulation[J]. Acta Agrestia Sinica, 2026, 34(2): 377-391.
刘睿超, 于林清, 任慧敏, 武啸峰, 崔乐乐. 苜蓿花期调控研究进展及育种展望[J]. 草地学报, 2026, 34(2): 377-391.
| [1] JUNG C, ANDREAS E.MÜLLER. Flowering time control and applications in plant breeding[J]. Trends in Plant Science,2009,14(10):563-573 [2] AUNG B; GRUBER M; L AMYOTet al. Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. [J]. Plant Biotechnol Report 2015,9(6):379-393 [3] SYKOVÁ E V A,JENDELOVÁ P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord[J]. Annals of the New York Academy of Sciences,2005,1049(1):146-160 [4] CAI Y,WANG L,CHEN L,et al. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean[J]. Plant Biotechnology Journal,2020,18(1):298-309 [5] CHENG X,LI G,KROM N,et al. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula[J]. Plant Physiology,2021,185(1):161-178 [6] LORENZO C D,GARCÍA‐GAGLIARDI P,ANTONIETTI M S,et al. Improvement of alfalfa forage quality and management through the down‐regulation of MsFTa1[J]. Plant Biotechnology Journal,2020,18(4):944-954 [7] PARK S J,JIANG K,TAL L,et al. Optimization of crop productivity in tomato using induced mutations in the florigen pathway[J]. Nature Genetics,2014,46(12):1337-42 [8] RAJENDRAN S,HEO J,KIM Y J,et al. Optimization of tomato productivity using flowering time variants[J]. Agronomy,2021,11(2):285 [9] ZHANG H,ZHU S,LIU T,et al. DELAYED HEADING DATE 1 interacts with Os HAP 5C/D, delays flowering time and enhances yield in rice[J]. Plant Biotechnology Journal,2019,17(2):531-539 [10] PUTTERILL J,LAURIE R,MACKNIGHT R. It's time to flower: the genetic control of flowering time[J]. Bioessays,2004,26(4):363-73 [11] AVRAHAM T,BADANI H,GALILI S,et al. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine gamma-synthase gene. [J]. Plant Biotechnology Journal,2010,3(1):71-79 [12] ZHOU Z,LI J,GAO Y,et al. Research on drought stress in Medicago sativa L. from 1998 to 2023: a bibliometric analysis[J]. Frontiers in Plant Science,2024,15:1406256 [13] SINGER S D,LEHMANN M,ZHANG Z,et al.Elucidation of physiological, transcriptomic and metabolomic salinity response mechanisms in Medicago sativa[J]. Plants,2023,12(10):2059 [14] ABBASI A R,SARVESTANI R,MOHAMMADI B,et al. Drought stress-induced changes at physiological and biochemical levels in some common vetch(Vicia sativa L.) genotypes[J]. Journal of Agricultural Science and Technology,2014,16(3):505-516 [15] YANG J,YI J,MA S,et al. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.)[J]. BMC Genomics,2024,25(1):174 [16] LI F F,LIU Y,XU F. The mystery of seed germination: an integrated physiological,ecological and molecular analysis[J]. Chinese Bulletin of Life Sciences,2024,36(12):1470-1477 李飞飞,刘杨,徐飞. 种子萌发的奥秘:生理、生态与分子的综合解析[J]. 生命科学,2024,36(12):1470-1477 [17] WOLABU T W,MAHMOOD K,JEREZ I T,et al. Multiplex CRISPR/Cas9‐mediated mutagenesis of alfalfa Flowering locus Ta1 (MsFTa1) leads to delayed flowering time with improved forage biomass yield and quality[J]. Plant Biotechnology Journal,2023,21(7):1383-1392 [18] JOHANSSON M,STAIGER D. Time to flower: interplay between photoperiod and the circadian clock[J]. Journal of experimental botany,2015,66(3):719-730 [19] PROSSER C L. Physiological variation in animals[J]. Biological Reviews,1995,30(3),229-261 [20] BERNIER G,PÉRILLEUX C. A physiological overview of the genetics of flowering time control[J]. Plant Biotechnology Journal,2005,3(1):3-16 [21] PATRA S,CHATTERJEE D,DUTTA R,et al. Abiotic and biotic factors regulate the timing of floral induction: a review[J]. Physiologia Plantarum,2024,176(1):e14199 [22] LIU L,XUAN L,JIANG Y,et al. Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in flowering time and plant architecture[J]. Small Structures,2021,2(4):2000125 [23] GALINDO-SOTOMONTE L,JOZEFKOWICZ C,GÓMEZ C,et al. CRISPR/Cas9-mediated knockout of a polyester synthase-like gene delays flowering time in alfalfa[J]. Plant Cell Reports,2023,42(5):953-956 [24] WANG Z,YANG R,DEVISETTY U K,et al. The divergence of flowering time modulated by FT/TFL1 is independent to their interaction and binding activities[J]. Frontiers in Plant Science,2017,8:697 [25] LORENZO C D,GARCÍA-GAGLIARDI P,GOBBINI M L,et al. MsTFL1A delays flowering and regulates shoot architecture and root development in Medicago sativa[J]. Plant Reproduction,2024,37(2):229-242 [26] ZHANG P,LIU H,MYSORE K S,et al. MtFDa is essential for flowering control and inflorescence development in Medicago truncatula[J]. Journal of Plant Physiology,2021,260:153412 [27] WANG W,WANG C,WANG Y,et al. The P-body component DECAPPING5 and the floral repressor SISTER OF FCA regulate FLOWERING LOCUS C transcription in Arabidopsis[J]. The Plant Cell,2023,35(9):3303-3324 [28] MA L,LIU X,LIU W,et al. Characterization of squamosa-promoter binding protein-box family genes reveals the critical role of MsSPL20 in alfalfa flowering time regulation[J]. Frontiers in Plant Science,2022,12:775690 [29] WU Z N,WEI Z W. Floral morphology and development of alfalfa[J]. Acta Agrestia Sinica,2013,21(1):159-166 武自念,魏臻武. 苜蓿花的形态特征及发育过程[J]. 草地学报,2013,21(1):159-166 [30] CHEN F,NIU K,MA H. Analysis on morphological characteristics and identification of candidate genes during the flowering development of alfalfa[J]. Frontiers in Plant Science,2024,15:1426838 [31] NAN M,LI J,WANG C,et al. Comparative study on yield and quality of spring sowing oat at different mowing stages in northwest arid region[J]. Acta Agrestia Sinica,2023,31(6):1878-1885 南铭,李晶,王昶,等. 甘肃中部春播燕麦不同刈割期产量和品质比较研究[J]. 草地学报,2023,31(6):1878-1885 [32] LI F F,ZHANG F F,WANG X Z,et al. Effects of cutting date and crop growth stage on alfalfa silage quality[J]. Acta Prataculturae Sinica,2019,28(12):137-148 李菲菲,张凡凡,王旭哲,等. 刈割茬次和生育期对苜蓿青贮品质的影响[J]. 草业学报,2019,28(12):137-148 [33] ZHANG X N,SONG S H,LIN Y Y,et al. Effects of growth stage and variety on yield and quality of alfalfa[J]. Acta Agrestia Sinica,2016,24(3):676-681 张晓娜,宋书红,林艳艳,等. 生育期和品种对紫花苜蓿产量及品质的影响[J]. 草地学报,2016,24(3):676-681 [34] BALL D M,COLLINS M,LACEFIELD G D,et al. Understanding forage quality[J]. American Farm Bureau Federation Publication,2001,1(1):1-15 [35] KALU B A , FICK G W .Quantifying morphological development of alfalfa for studies of herbage quality[J].Crop Science, 1981, 21(2):267-271 [36] GAO R M,FEYISSA B A,CROFT M,et al. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa[J]. Planta,2018,247(4):1043-1050 [37] LACEFIELD D G. Alfalfa quality: What is it What can we do about it and, Will it pay[C]//Proceedings, National Alfalfa Symposium,2004:13-15 [38] TADEGE M,CHEN F,MURRAY J,et al. Control of vegetative to reproductive phase transition improves biomass yield and simultaneously reduces lignin content in Medicago truncatula[J]. BioEnergy Research,2015,8:857-867 [39] RUAN Y L,PATRICK J W,BOUZAYEN M,et al. Molecular regulation of seed and fruit set[J]. Trends in Plant Science,2012,17(11):656-665 [40] WANG Y,CHANTREAU M,SIBOUT R,et al. Plant cell wall lignification and monolignol metabolism[J]. Frontiers in Plant Science,2013,4:220 [41] CHEN X,WEI Z W,REN H L,et al. Effect of photoperiod and germplasm characters on early-flowering time of burr medic (Medicago polymorpha L.)[J]. Chinese Journal of Grassland,2016,38(2):34-40 陈祥,魏臻武,任海龙,等. 光周期与种质特性对南苜蓿初花期的影响[J]. 中国草地学报,2016,38(2):34-40 [42] JAUDAL M,WEN J,MYSORE K S,et al. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days[J]. BMC Plant Biology,2020,20:1-16 [43] LU D Y,WANG X,JIANG X,et al. Cloning and functional analysis of flowering regulation gene MsCOL2 in alfalfa[J]. Acta Agrestia Sinica,2023,31(10):2905-2915 卢栋宇,王雪,蒋旭,等. 紫花苜蓿花期调控基因MsCOL2的克隆及功能研究[J]. 草地学报,2023,31(10):2905-2915 [44] LI Z F, ZHANG J., WEI F, et al. Identification of circadian clock-related genes regulated by photoperiod in legume plants. Molecular Plant Breeding, 2017,15(1):1-11 李宗飞,张洁,魏芳,等.光周期调控豆科植物生物钟的相关基因的鉴定[J].分子植物育种, 2017, 14(1):1-11 [45] ZHANG L L,JIANG X,CUI J,LI Y J,KANG J M. Cloning and functional validation of the alfalfa flowering regulation gene MsCIB2[J]. Acta Agrestia Sinica, 2025, 33(2): 335-350 张丽丽,蒋旭,崔婧,栗亚静,康俊梅. 紫花苜蓿开花调控基因MsCIB2的克隆及功能验证[J]. 草地学报,2025,33(2):335-350 [46] LIU Y,LI X,LI K,et al. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis[J]. PLoS Genetics,2013,9(10):e1003861 [47] WANG N, XIE W G. Advances in the molecular mechanisms of flowering in forage grasses[J]. Grassland Science, 2019, 36(3): 835-848 王娜,谢文刚. 牧草开花的分子机理研究进展[J]. 草业科学,2019,36(3):835-848 [48] YANG H X,CHANG F,YOU C J,et al. Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis[J]. The Plant Journal,2015,81(2):268-281 [49] XU B,WANG Y Z,XU A K,et al. Study of simulation model of alfalfa plants development based on growing degree days[J]. Pratacultural Science,2016,33(1):93-100 徐博,王英哲,徐安凯,等. 基于生长度日的紫花苜蓿生育期预测模型[J]. 草业科学,2016,33(1):93-100 [50] ZHANG W Q,WANG Y L,ZHU D F,et al. Effect of increasing night temperature on floret opening and grain setting of rice[J]. Chinese Journal of Agrometeorology,2019,40(3):180-185 张文倩,王亚梁,朱德峰,等. 花期夜温升高对水稻颖花开放及籽粒结实的影响[J]. 中国农业气象,2019,40(3):180-185 [51] PUTTERILL J,ZHANG L,YEOH C C,et al. FT genes and regulation of flowering in the legume Medicago truncatula[J]. Functional Plant Biology,2013,40(12):1199-1207 [52] YANG H,CHANG F,YOU C,et al. Whole‐genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis[J]. The Plant Journal,2015,81(2):268-281 [53] CHEN L,LI X,LIU H,et al. Comprehensive analysis of epigenetic modifications in alfalfa under cadmium stress[J]. Journal of Hazardous Materials,2025,482:136545 [54] LIU Y,WANG J,LIU B,et al. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants[J]. Journal of Integrative Plant Biology,2022,64(12):2252-2274 [55] YANG Z,YAN H,WANG J,et al. DNA hypermethylation promotes the flowering of orchardgrass during vernalization[J]. Plant Physiology,2022,190(2):1490-1505 [56] HUANG L,FENG G,YAN H,et al. Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass[J]. Plant Biotechnology Journal,2020,18(2):373-388 [57] CHENG J Z,ZHOU Y P,LV T X,et al. Research progress on the autonomous flowering time pathway in Arabidopsis[J]. Physiology and Molecular Biology of Plants,2017,23:477-485 [58] HUANG T P,LI M J,WANG R,et al. Progress in study of gibberellins biosynthesis and signaling transduction pathway[J]. Plant Physiology Journal,2015,51(8):1241-1247 黄桃鹏,李媚娟,王睿,等. 赤霉素生物合成及信号转导途径研究进展[J]. 植物生理学报,2015,51(8):1241-1247 [59] LIU C W, XU R C, BIAN X C, et al. Regulation of flowering, endogenous hormones, and gene expression in broad bean by low temperature and gibberellin[J]. Jiangsu Agricultural Sciences, 2024, 52(24): 105-112 刘陈玮,徐仁超,卞晓春,等. 低温和赤霉素对蚕豆开花、内源激素、基因表达的调控[J]. 江苏农业科学,2024,52(24)105-112 [60] FUKAZAWA J,OHASHI Y,TAKAHASHI R,et al. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis[J]. The Plant Cell,2021,33(7):2258-2272 [61] BAO S,HUA C,SHEN L,et al. New insights into gibberellin signaling in regulating flowering in Arabidopsis[J]. Journal of Integrative Plant Biology,2020,62(1):118-131 [62] BLÁZQUEZ M A,GREEN R,NILSSON O,et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter[J]. The Plant Cell,1998,10(5):791-800 [63] LAURIE R E,DIWADKAR P,JAUDAL M,et al. The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time[J]. Plant Physiology,2011,156(4):2207-2224 [64] YEOH C C,BALCEROWICZ M,ZHANG L,et al. Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago[J]. PLoS One,2013,8(1):e53467 [65] WELLER J L,MACKNIGHT R C. Functional genomics and flowering time in Medicago truncatula: an overview[J]. Functional Genomics in Medicago truncatula: Methods and Protocols,2018:261-271 [66] SONG Y H,SMITH R W,TO B J,et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science,2012,336(6084):1045-1049 [67] ZHAO H,XU D,TIAN T,et al. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis[J]. Plant Science,2021,303:110786 [68] LIN K,ZHAO H,GAN S,et al. Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time[J]. Gene,2019,700:131-138 [69] FARRÉ E M,HARMER S L,HARMON F G,et al. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock[J]. Current Biology,2005,15(1):47-54 [70] YANG M,HAN X,YANG J,et al. The Arabidopsis circadian clock protein PRR5 interacts with and stimulates ABI5 to modulate abscisic acid signaling during seed germination[J]. The Plant Cell,2021,33(9):3022-3041 [71] MAEDA A E,MATSUO H,MURANAKA T,et al. Cold-induced degradation of core clock proteins implements temperature compensation in the Arabidopsis circadian clock[J]. Science Advances,2024,10(39):eadq0187 [72] POKHILKO A,FERNÁNDEZ A P,EDWARDS K D,et al. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops[J]. Molecular Systems Biology,2012,8(1):574 [73] PAIK I,CHEN F,NGOC PHAM V,et al. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis[J]. Nature Communications,2019,10(1):4216 [74] LAUBINGER S,HOECKER U.The SPA1‐like proteins SPA3 and SPA4 repress photomorphogenesis in the light[J]. The Plant Journal,2003,35(3):373-385 [75] WONG A C S,HECHT V F G,PICARD K,et al. Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula[J]. Frontiers in Plant Science,2014,5:486 [76] LUO W,LI Y,MA P,et al. Transcriptomic analysis of Medicago truncatula under long-day conditions[J]. Diversity,2023,15(9):1020 [77] SONMEZ C,BÄURLE I,MAGUSIN A,et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription[J]. Proceedings of the National Academy of Sciences,2011,108(20):8508-8513 [78] AUSÍN I,ALONSO-BLANCO C,JARILLO J A,et al. Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nature genetics,2004,36(2):162-166 [79] LIM M H,KIM J,KIM Y S,et al. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C[J]. The Plant Cell,2004,16(3):731-740 [80] MARTIGNAGO D,BERNARDINI B,POLTICELLI F,al LIKEet. The four FAD-dependent histone demethylases of Arabidopsis are differently involved in the control of flowering time[J]. Frontiers in Plant Science,2019,10:669 [81] ASLAM M,FAKHER B,JAKADA B H,et al. SWR1 chromatin remodeling complex: a key transcriptional regulator in plants[J]. Cells,2019,8(12):1621 [82] MICHAELS S D,BEZERRA I C,AMASINO R M. FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis[J]. Proceedings of the National Academy of Sciences,2004,101(9):3281-3285 [83] OBERMEYER S,STÖCKL R,SCHNEKENBURGER T,et al. Distinct role of subunits of the Arabidopsis RNA polymerase II elongation factor PAF1C in transcriptional reprogramming[J]. Frontiers in Plant Science,2022,13:974625 [84] GÓMEZ-ZAMBRANO Á,CREVILLÉN P,FRANCO-ZORRILLA J M,et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A. Z deposition at key regulatory genes[J]. Molecular Plant,2018,11(6):815-832 [85] YUAN L,SONG X,ZHANG L,et al. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis[J]. Nucleic Acids Research,2021,49(1):98-113 [86] MOLITOR A M,LATRASSE D,ZYTNICKI M,et al. The Arabidopsis hnRNP-Q protein LIF2 and the PRC1 subunit LHP1 function in concert to regulate the transcription of stress-responsive genes[J]. The Plant Cell,2016,28(9):2197-2211 [87] BAILE F,GÓMEZ-ZAMBRANO Á,CALONJE M. Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants[J]. Plant Communications,2022,3(1):003 [88] HARTMANN U,HÖHMANN S,NETTESHEIM K,et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis[J]. The Plant Journal,2000,21(4):351-360 [89] LIU S, HOU D,VASUPALLI N,et al. Overexpression of PvSVP1, an SVP-like gene of bamboo, causes early flowering and abnormal floral organs in Arabidopsis and rice: PvSVP1 regulates flowering time and floral organ development[J]. Acta Biochimica et Biophysica Sinica,2023,55(2):237 [90] LIU S,VASUPALLI N,HOU D,et al. Ectopic expression of a bamboo SVP-like gene alters flowering time and floral organs in Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2022,150(3):721-732 [91] LEE J H,YOO S J,PARK S H,et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes & Development,2007,21(4):397-402 [92] GALLEGO‐GIRALDO C,HU J,URBEZ C,et al. Role of the gibberellin receptors GID 1 during fruit‐set in Arabidopsis[J]. The Plant Journal,2014,79(6):1020-1032 [93] TYLER L,THOMAS S G,HU J,et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant physiology,2004,135(2):1008-1019 [94] HOU X,HU W W,SHEN L,et al. Global identification of DELLA target genes during Arabidopsis flower development[J]. Plant Physiology,2008,147(3):1126-1142 [95] YU H,ITO T,ZHAO Y,et al. Floral homeotic genes are targets of gibberellin signaling in flower development[J]. Proceedings of the National Academy of Sciences,2004,101(20):7827-7832 [96] HECHT V,FOUCHER F,FERRÁNDIZ C,et al. Conservation of Arabidopsis flowering genes in model legumes[J]. Plant Physiology,2005,137(4):1420-1434 [97] YE Q,ZHOU C,LIN H,et al. Medicago2035: Genomes, Functional Genomics and Molecular Breeding[J]. Molecular Plant,2018,69(20):4867-4880 [98] FUDGE J B,LEE R H,LAURIE R E,et al. Medicago truncatula SOC1 genes are up-regulated by environmental cues that promote flowering[J]. Frontiers in Plant Science,2018,9:496 [99] JAUDAL M,ZHANG L,CHE C,et al. A SOC1-like gene MtSOC1 a promotes flowering and primary stem elongation in Medicago[J]. Journal of Experimental Botany,2018,69(20):4867-4880 [100] POULET A,ZHAO M,PENG Y,et al. Gene-edited MtSOC1 triple mutant Medicago plants do not flower[J]. Frontiers in Plant Science,2024,15:1357924 [101] JAUDAL M,ZHANG L,CHE C,et al. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S: MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis[J]. Frontiers in Genetics,2015,6:50 [102] ZHANG P,WANG R,WANG X,et al. MtFULc controls inflorescence development by directly repressing MtTFL1 in Medicago truncatula[J]. Journal of Plant Physiology,2021,256:153329 [103] JAUDAL M,ZHANG L,CHE C,et al. MtVRN2 is a Polycomb VRN 2‐like gene which represses the transition to flowering in the model legume Medicago truncatula[J]. The Plant Journal,2016,86(2):145-160 [104] JAUDAL M,MAYO‐SMITH M,POULET A,et al. MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression[J]. The Plant Journal,2022,112(4):1029-1050 [105] ZHANG Y X,JIANG X, YU C X,et al. The functional analysis of high mobility group ms HMG-Y involved in flowering regulation in Medicago sativa L[J]. Scientia Agricultura Sinica,2022,55(16):3082-3092 张云秀,蒋旭,尉春雪,等. 紫花苜蓿高迁移率族蛋白基因Ms HMG-Y调控花期的功能分析[J]. 中国农业科学,2022,55(16):3082-3092 [106] ZECHMANN B,MÜLLER M. Subcellular compartmentation of glutathione in dicotyledonous plants[J]. Protoplasma,2010,246:15-24 [107] CHAO Y H,ZHANG T J,YANG Q C,et al. Expression of the alfalfa CCCH-type zinc finger protein gene MsZFN delays flowering time in transgenic Arabidopsis thaliana[J]. Plant Science,2014,215/216:92-99 [108] KANG J M, JIANG X, ZHANG L L, et al. A novel MsCAL gene from alfalfa and its application: CN118620918A[P]. 2024-09-10 康俊梅,蒋旭,张丽丽,等. 一种紫花苜蓿MsCAL基因、及其应用:CN118620918A[P]. 2024-09-10 [109] MA X Q, GE L Q, WENG Y Y, et al. Alfalfa gene MsCYP20-3B and its application. CN201911207060.X[P]. 2025-02-26 马西青,葛玲巧,翁银银,等. 紫花苜蓿基因MsCYP20-3B及应用.CN201911207060.X[P].2025-02-26 [110] ZECHMANN B,KOFFLER B E,RUSSELL S D. Glutathione synthesis is essential for pollen germination in vitro[J]. BMC Plant Biology,2011,11:54 [111] ZECHMANN B,LIOU L C,KOFFLER B E,et al. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae[J]. FEMS Yeast Research,2011,11(8):631-642 [112] TRAVERSO J A,PULIDO A,RODRÍGUEZ-GARCÍA M I,et al. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives[J]. Frontiers in Plant Science,2013,4:465 [113] SCHIPPERS J H,FOYER C H,VAN DONGEN J T. Redox regulation in shoot growth,SAM maintenance and flowering[J]. Current Opinion in Plant Biology,2016,29:121-128 [114] TRAP-GENTIL M V,HÉBRARD C,LAFON-PLACETTE C,et al. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes[J]. Journal of Experimental Botany,2011,62(8):2585-2597 [115] ADHIKARI L,MAKAJU S O,MISSAOUI A M. QTL mapping of flowering time and biomass yield in tetraploid alfalfa (Medicago sativa L.)[J]. BMC Plant Biology,2019,19(1):359 [116] JIANG X Q,YANG T H,ZHANG F,et al. RAD-seq-based high-density linkage maps construction and quantitative trait loci mapping of flowering time trait in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science,2022,13:899681 [117] HE F,ZHANG F,JIANG X Q,et al. A genome-wide association study coupled with a transcriptomic analysis reveals the genetic loci and candidate genes governing the flowering time in alfalfa (Medicago sativa L.)[J]. Frontiers in Plant Science,2022,13:913947 [118] CUI J,LI Y,LIU H,et al. Genome-wide identification and expression analysis of CBF/DREB1 gene family in Medicago sativa L. and functional verification of MsCBF9 affecting flowering time[J]. BMC Plant Biology,2025,25(1):87 [119] LIU Z P,LIU W X,YANG Q C,et al. Progress and existing problems of forage breeding in China[J]. Bulletin of National Natural Science Foundation of China,2023,37(4):528-536 刘志鹏,刘文献,杨青川,等. 我国牧草育种进展及存在问题[J]. 中国科学基金,2023,37(4):528-536 [120] WANG Q Q,XIE J H,YU L Q,et al. Research progress and prospect of alfalfa breeding in China[J]. Journal of Grassland and Forage Science,2023(4):1-7 王旗旗,解继红,于林清,等. 我国苜蓿育种研究进展及展望[J]. 草学,2023(4):1-7 [121] SUN Q Z,YU Z,XU C C. The pratacultural achievements in last decade and pratacultural perspectives in next decade in China[J]. Pratacultural Science,2011,28(12):2215-2220 孙启忠,玉柱,徐春城. 我国草业新世纪10年取得的成就和未来10年发展的重点[J]. 草业科学,2011,28(12):2215-2220 [122] TAO Y,SUN Q Z,XU L J,et al. Trends and challenges of alfalfa industry in China[J]. Grassland and Prataculture,2022,34(1):1-10 陶雅,孙启忠,徐丽君,等. 我国苜蓿产业发展态势与面临的挑战[J]. 草原与草业,2022,34(1):1-10 [123] XIE H L,YANG Y P,DONG Y,et al. Analysis on international development trends of alfalfa[J]. Chinese Bulletin of Botany,2021,56(6):740-750 谢华玲,杨艳萍,董瑜,等. 苜蓿国际发展态势分析[J]. 植物学报,2021,56(6):740-750 [124] WANG R G,XU W P. Development characteristics and trend of alfalfa industry in China[J]. Journal of Agricultural Science and Technology,2021,23(12):7-12 王瑞港,徐伟平. 我国苜蓿产业发展特征与趋势分析[J]. 中国农业科技导报,2021,23(12):7-12 [125] WANG Q Q,XIE J H,YU L Q,et al. Research progress and prospect of alfalfa breeding in China[J]. Journal of Grassland and Forage Science,2023(4):1-7 王旗旗,解继红,于林清,等. 我国苜蓿育种研究进展及展望[J]. 草学,2023(4):1-7 [126] CHEN C J,BAO M F,WANG W H,et al. Current situation and prospects for drought-resistance breeding in Medicago sativa[J]. Acta Prataculturae Sinica,2025,34(3):204-223 陈彩锦,包明芳,王文虎,等. 紫花苜蓿抗旱育种研究现状及展望[J]. 草业学报,2025,34(3):204-223 [127] ZHANG H,WANG M L,LI X J,et al. The changes in the contribution of scientific and technological progress of China’s alfalfa industry during the 13TH five year plan period and the prospect of the 14TH Five-Year Plan period[J]. Chinese Journal of Agricultural Resources and Regional Planning,2023,44(7):194-205 张浩,王明利,李旭君,等. “十三五”时期我国苜蓿产业科技进步贡献变动及“十四五”展望[J]. 中国农业资源与区划,2023,44(7):194-205 [128] PAN X,GAO Y,LIU B,et al. Current situation and prospect of alfalfa industry[J]. Journal of Green Science and Technology,2017,19(13):104-107 潘霞,高永,刘博,等. 苜蓿产业发展现状及前景展望[J]. 绿色科技,2017,19(13):104-107 [129] GUO T,XUE B,BAI J,et al. Discussion of the present situation of China’s forage grass industry development: an example using alfalfa and oats[J]. Pratacultural Science,2019,36(5):1466-1473 郭婷,薛彪,白娟,等. 刍议中国牧草产业发展现状——以苜蓿、燕麦为例[J]. 草业科学,2019,36(5):1466-1473 [130] GAO C X. Genome engineering for crop improvement and future agriculture[J]. Cell,2021,184(6):1621-1635 |
| [1] | LI Qin, LIN Bing, MAO Pei-chun, TIAN Xiao-xia, MA Shuai, MENG Lin, ZHENG Ming-li, GUO Yu-xia. Effects of Sucrose and Lactic Acid Bacteria Inoculantion on Dominant Clostridia and Lactic Acid Bacteria Communities in High-moisture Alfalfa Silage [J]. Acta Agrestia Sinica, 2026, 34(1): 356-365. |
| [2] | FU Jun-shi, NAN Li-li, ZHANG Ze-long, WU Shi-wen, REN Meng-yu, CHEN Na, JIAO Long-guang. Comprehensive Evaluation of Morphology, Photosynthetic and Fluorescence Characteristics of 21 Germplasm Resources of Timothy [J]. Acta Agrestia Sinica, 2025, 33(9): 2796-2807. |
| [3] | WANG Xue-li, WANG Yun-ling, QI Kai-yuan, YAN Hai-jun, WANG Xian-guo, MENG Gen-qi-ge-mu, ZHOU Li-ye. Effects of Water Regulation on the Production Performance of Different Alfalfa (Medicago sativa L.) Varieties and Soil Enzymes [J]. Acta Agrestia Sinica, 2025, 33(9): 2808-2819. |
| [4] | SHI Jing, LIU Xiao-jing, LI Jia-qi, HAN Yan-long, WANG Xue, WANG Jing. Study on the Adaptability of 15 Alfalfa Varieties in Minqin Area [J]. Acta Agrestia Sinica, 2025, 33(9): 2843-2853. |
| [5] | CHAI Zhi-hui, MA Li, YAO Feng-tong. The Impact of Grassland Property Right System Reform and Climate Change on the Scale of Large Livestock Breeding ——Taking 33 Pure Animal Husbandry Banners in Inner Mongolia as an Example [J]. Acta Agrestia Sinica, 2025, 33(9): 3044-3056. |
| [6] | YUAN Yu-tao, WU Li, WEI Xiao-xing, LIU Wen-hui, CHEN You-jun, HE Ke-yan, ZHOU Qing-ping. Production Performance and Quality Evaluation of 12 Alfalfa Varieties in the Semiarid Region of Hexi Corridor [J]. Acta Agrestia Sinica, 2025, 33(9): 3088-3098. |
| [7] | AN Wen, ZHANG Xin-yu, MA Dong-mei, MA Qiao-li, LANG Si-rui, LIU Xiao-xia. Cloning and Salt Tolerance Analysis of MsNF-YB8 Gene in Alfalfa [J]. Acta Agrestia Sinica, 2025, 33(8): 2456-2466. |
| [8] | ZOU Yu-qi, WANG Zhi-jun, LIU Li-ying, YUAN Ye, PAN Ze-yu, MENG He-gaole, BAO Le-er, GE Gen-tu. Effects of Spirulina Peptides on Fermentation Quality and Microbial Community of Alfalfa [J]. Acta Agrestia Sinica, 2025, 33(8): 2685-2693. |
| [9] | JI Ling-he, HE Ao-lei, HE Feng, LI Chang-ning, YAO Tuo. Screening of Alfalfa Seed Coating Materials and Theirs Effect on Seed Germination [J]. Acta Agrestia Sinica, 2025, 33(8): 2728-2736. |
| [10] | LIU Li-ying, WANG Yu-zhi, LIU Zhi-gang, LIU Hong-mei, YANG Yi-wen, DING Xia, SUN Lin. Effects of Rainfall on Nutritional Quality and Fungal Community Structure in Alfalfa During Drying Process [J]. Acta Agrestia Sinica, 2025, 33(7): 2132-2139. |
| [11] | HE Sheng-ran, LIU Xiao-jing, HAN Tian-hu, ZHAO Ya-jiao, HAN Yan-long. Effects of Alfalfa Nitrogen Efficiency Differences on Nutrient Characteristics and Microbial Community Characteristics of Rhizosphere Soil [J]. Acta Agrestia Sinica, 2025, 33(7): 2150-2161. |
| [12] | SHI Ya-qi, FAN Wen-na, SHI Peng-fei, ZHANG Meng-yao, YANG Yi-xin. Effect of Forsythia Suspensa Addition on the Quality of Alfalfa Silage [J]. Acta Agrestia Sinica, 2025, 33(7): 2400-2406. |
| [13] | LYU Yan-zhen, YAO Xing-jie, ZHANG Zhao, SUN Qing-ying, YANG Yu-ze, YAN Hui-fang. Evaluation of Alkali Tolerance and Key Indicators Screening during Seed Germination of Different Alfalfa Cultivars [J]. Acta Agrestia Sinica, 2025, 33(6): 1852-1861. |
| [14] | WANG Xin-yao, LIU Yi-xin, SUI Xiao-qing, LANG Meng-qing, JIN Lian-wu. Effects of Spray Mepiquat-Chloride on Leaf Cells, Agronomic Traits and Seed Yield Formation in Alfalfa [J]. Acta Agrestia Sinica, 2025, 33(6): 1972-1981. |
| [15] | CHEN Yan-long, QI Shuai, XU Rui-xuan, ZHANG Bei, WANG Shu-ping, DONG Jia-li, CAO Wen-xia. Effects of Planting Row Number And Density of Corn-Alfalfa Intercropping System on Maize Performance in Hexi Corridor [J]. Acta Agrestia Sinica, 2025, 33(6): 2013-2022. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||