[1] SHU K, QI Y, CHEN F, et al. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis[J]. Frontiers in Plant Science, 2017(8):1-12 [2] BISBIS M B, GRUDA N, BLANKE M. Potential impacts of climate change on vegetable production and product quality-A review[J]. Journal of Cleaner Production, 2018(170):1602-1620 [3] MUNNS R and GILLIHAM M. Salinity tolerance of crops-what is the cost? [J]. New Phytologist, 2015, 208(3):668-673 [4] CHEVILLY S, DOLZ-EDOL, MORCILLO L, et al. Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica) [J]. BMC Plant Biology, 2021(21):488 [5] ÁLVAREZ S and SANCHEZ-BLANCO M J. Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus[J]. Plant Biology, 2014, 16(4):757-764 [6] MA Y, DIAS M C, FREITAS H. Drought and salinity stress responses and microbe-induced tolerance in plants[J]. Frontiers in Plant Science, 2020(11):591911 [7] ZANNINI E, WATERS D M, COFFEY A, et al. Production, properties and industrial food application of lactic acid bacteria-derived exopolysaccharides[J]. Applied Microbiology Biotechnology, 2016, 100(3):1121-1135 [8] LIU J, WANG X, PU H, et al. Recent advances in endophytic exopolysaccharides:Production, structural characterization, physiological role and biological activity[J]. Carbohydrate Polymers, 2017(157):1113-1124 [9] MORCILLO R J L, MANZANERA M. The effects of plant-Associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites, 2021, 11(6):337 [10] UPADHYAY S K, SINGH J S, SINGH D P, et al. Exopolysaccharide-producing plant growth-promoting rhizobacteria Under salinity condition[J]. Pedosphere, 2011, 21(2):214-222 [11] ALAMI Y, ACHOUAK W, MAROL C, et al. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots[J]. Applied and Environmental Microbiology, 2000, 66(8):3393-3398 [12] AISHA W Q, ANJUM N S. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress[J]. Brazilian Journal of Microbiology, 2012, 43(3):1183-1191 [13] NEETA B, MEENU R, SONALI D, et al. Bacterial exopolysaccharides:Insight into their role in plant abiotic stress tolerance[J]. Journal of Microbiology and Biotechnology, 2021, 31(8):1045-1059 [14] ROJAS-TAPIAS D, MORENO A, PARDO S, et al. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays)[J]. Applied Soil Ecology, 2012(61):264-272 [15] TEWARI S, ARORA N K. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions[J]. Current Microbiology, 2014(69):484-494 [16] ARROUSSI H, BENHIMA R, ELBAOUCHI A, et al. Dunaliella salina exopolysaccharides:a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum)[J]. Journal of Applied Phycology, 2018(30):2929-2941 [17] YANG F R, CHEN J L, YE S H, et al. Characterization of antioxidant activity of exopolysaccharides from endophytic Lysinibacillus sphaericus Ya6 under osmotic stress conditions[J]. Process Biochemistry, 2022(113):87-96 [18] ROJAS-DOWNING M, NEJADHASHEMI A P, HARRIGAN T, et al. Climate change and livestock:Impacts, adaptation, and mitigation[J]. Climate Risk Management, 2017(16):145-163 [19] KULKARNI K P, TAYADE R, ASEKOVA S, et al. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security[J]. Frontiers in Plant Science, 2018(9):1314 [20] 陈小芳, 徐化凌, 于德花, 等. 两种紫花苜蓿苗期耐盐特性的初步研究[J]. 农业科技通讯, 2019, 570(6):138-142 [21] 苏立娜, 麻冬梅, 李嘉文, 等. 外源褪黑素对盐胁迫下两种紫花苜蓿生理及光合特性的影响[J]. 草地学报, 2023, 31(3):726-732 [22] 朱琨, 刘骅峻, 李波. 外源赤霉素对缓解紫花苜蓿幼苗盐胁迫的作用研究[J]. 云南农业大学学报(自然科学), 2022, 37(6):926-931 [23] 马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响[J]. 草业科学, 2019, 36(12):3100-3110 [24] 陈佳, 缑晶毅, 赵祺, 等. 梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6):99-110 [25] 韩庆庆, 贾婷婷, 吕昕培, 等. 枯草芽孢杆菌GB03对紫花苜蓿耐盐性的影响[J]. 植物生理学报, 2014, 50(9):1423-1428 [26] YAO B, HUANG R, ZHANG Z F, et al. Seed-borne Erwinia persicina affects the growth and physiology of alfalfa (Medicago sativa L.) [J]. Frontiers in Microbiology, 2022(13):891188 [27] 赵丽娟, 麻冬梅, 王文静, 等. 外源褪黑素对盐胁迫下紫花苜蓿幼苗抗氧化能力以及光合作用效率的影响[J]. 西北植物学报, 2021, 41(8):1355-1363 [28] 邸锐, 杨春燕. 干旱胁迫下极细链格孢激活蛋白对大豆幼苗形态、叶片含水量、细胞质膜相对透性和抗氧化酶的影响[J]. 华北农学报, 2016, 31(S1):213-218 [29] 宋建超, 杨航, 景媛媛, 等. 外源GABA对NaCl胁迫下垂穗披碱草种子萌发及幼苗生理特性的影响[J]. 草地学报, 2022, 30(2):403-411 [30] 王苗苗, 周向睿, 梁国玲, 等. 5份燕麦材料苗期耐盐性综合评价[J]. 草业学报, 2020, 29(8):143-154 [31] 刘铎, 白爽, 杨庆山, 等. 紫花苜蓿(Medicago sativa L.)耐盐碱研究进展[J]. 生物学杂志, 2021, 38(1):98-101+105 [32] 李文阳, 胡秀娟, 王长进, 等. 盐胁迫对不同品种玉米苗期生长与叶片光合特性的影响[J]. 生态科学, 2019, 38(2):51-55 [33] JUNG J K H, MCCOUCH S. Getting to the roots of it:genetic and hormonal control of root architecture[J]. Frontiers in Plant Science, 2013, 4:186 [34] FERDOSI M F H, SHOAIB A, HABIB S, et al. Modulation of salt-induced stress impact in Gladiolus grandiflorus L. by exogenous application of salicylic acid[J]. Nature Publishing Group, 2021, 11(1):15597 [35] ARORA M, KAUSHIK A, RANI N, et al. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination[J]. Journal of Environmental Biology, 2010, 31(5):701-704 [36] ATOUEI M T, POUREABAEE A A, SHORAFA M. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria[J]. Iranian Journal of Science and Technology, Transactions A:Science, 2019, 43(5):2725-2733 [37] AWAD N M, TURKY A S, ABDELHAMID M T, et al. Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria[J]. Journal of Applied Sciences Research, 2012, 8(4):2033-2044 [38] CHEN S M, ZHANG C M, PENG H, et al. Exopolysaccharides from endophytic Glutamicibacter halophytocota KLBMP 5180 functions as bio-stimulants to improve tomato plants growth and salt stress tolerance[J]. International Journal of Biological Macromolecules, 2023(253):126717 [39] LIU X D, LUO Y T, LI Z F, et al. Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12-2T.[J]. Applied Microbiology and Biotechnology, 2017, 101(7):2967-2978 [40] LIU X T, CHAI J L, ZHANG Y C, et al. Halotolerant rhizobacteria mitigate the effects of salinity stress on maize growth by secreting exopolysaccharides[J]. Environmental and Experimental Botany, 2022, 204:105098 [41] 艾力江·麦麦提, 秦倩, 蒋艳, 等. 海藻糖浸种对不同盐胁迫下甜瓜种子萌发的影响[J]. 北方园艺, 2022, 516(21):16-22 [42] WANG Y, GU W, MENG Y, et al. γ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants[J]. Scientific Reports, 2017(7):43609 [43] STENBAEK A, JENSEN P E. Redox regulation of chlorophyll biosynthesis[J]. Phytochemistry, 2010, 71(8-9):853-859 [44] 张成冉, 徐广海, 宋朝玉, 等. 糖浸种对盐胁迫玉米种子萌发和幼苗生长的影响[J]. 种子, 2021, 40(8):51-56 [45] THOLEN D, ZHU X G. The mechanistic basis of internal conductance:a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion[J]. Plant Physiology, 2011, 156(1):90-105 [46] ENGINEER C B, HASHIMOTO-SUGIMOTO M, NEGI J, et al. CO2 Sensing and CO2 regulation of stomatal conductance:advances and open questions[J]. Trends in Plant Science, 2016, 21(1):16-30 [47] 徐舒, 李玲, 张思梦, 等. 基于隶属函数分析的甘薯薯苗耐冷性基因型差异研究[J]. 中国农业科学, 2019, 52(17):2929-2938 [48] TAJ Z, CHALLABATHULA D. Protection of photosynthesis by halotolerant Staphylococcus sciuri ET101 in tomato (Lycoperiscon esculentum) and rice (Oryza sativa) plants during salinity stress:possible interplay between carboxylation and oxygenation in stress mitigation[J]. Frontiers in Microbiology, 2021, 11:547750 [49] 尹雅洁, 张宗杰, 夏险, 等. 壳寡糖对水稻幼苗生长及抗逆性影响[J]. 生物学杂志, 2021, 38(1):77-80 |