[1] 窦玮豪, 宋桂龙, 韩烈保, 等. 混合草坪加强技术对足球场草坪质量和安全性能的影响研究[J]. 草业学报, 2023, 32(8):104-114 [2] 陈雨峰, 张桐瑞, 周丽甜, 等. 践踏对不同植丝密度混合草坪质量的影响[J]. 草地学报, 2020, 28(6):1597-1604 [3] WANG R Y, MATTOX C M, PHILLIPS C L, et al. Carbon sequestration in turfgrass-soil systems[J]. Plants, 2022, 11(19):2478 [4] TAHAMTAN S, EMAMY M, HALVAEE A, et al. Effects of reinforcing particle size and interface bonding strength on tensile properties and fracture behavior of Al-A206/alumina micro/nanocomposites[J]. Journal of Composite Materials, 2014, 48(27):3331-3346 [5] YERLI C, SENOL N D, YAGANOGLU E. The changes in yield, quality, and soil properties of turfgrass grown by applying varying levels of hazelnut husk compost and irrigating with wastewater in soils with different textures, and their effects on carbon dioxide emissions from the soil[J]. Water, Air, & Soil Pollution, 2023, 234(5):311 [6] 李广胤. 全球变化背景下草地利用对生态系统固碳功能的作用及机制[D]. 长春:东北师范大学, 2022:15-24 [7] 王悦骅. 放牧和气候变化对短花针茅草原植物群落和土壤有机碳的影响[D]. 呼和浩特:内蒙古农业大学, 2023:19-23 [8] 王瑞, 田琳涵, 董乙强, 等. 禁牧对退化山地草甸植物多样性及土壤有机碳储量的影响[J]. 新疆农业大学学报, 2023, 46(2):117-124 [9] 陈坚淇, 贾亚男, 贺秋芳, 等. 不同土地利用方式对岩溶区土壤有机碳组分稳定性的影响[J]. 环境科学, 2024, 45(1):335-342 [10] 李思媛, 崔雨萱, 孙宗玖, 等. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6):58-70 [11] SAPKOTA M, YOUNG J, COLDREN C, et al. Soil physiochemical properties and carbon sequestration of Urban landscapes in Lubbock, TX, USA[J]. Urban Forestry & Urban Greening, 2020, 56:126847 [12] BAKKER D M, JAVED H, ASHFAQ Z, et al. Implementation and modelling of turf grass management options to improve soil carbon sequestration in a semi-arid environment[J]. Environmental Sustainability, 2022, 5(2):185-195 [13] BEKKEN M A H, SOLDAT D J. Estimated energy use and greenhouse gas emissions associated with golf course turfgrass maintenance in the Northern USA[J]. International Turfgrass Society Research Journal, 2022, 14(1):58-75 [14] 吴冠仑. 混合草坪植丝方式对两种草坪草生长及坪床加固影响研究[D]. 北京:北京林业大学, 2018:17-39 [15] THANHEISER S Y, GRASHEY-JANSEN S, ARMBRUSTER G. Hardness measurement of natural and hybrid turf soccer fields[J]. Sports Engineering, 2018, 21(4):367-377 [16] ANDERSON F D, FLEMING P, SHERRATT P, et al. Design and development of a novel natural turf shear stability tester[J]. Procedia Engineering, 2016, 147:842-847 [17] ANDERSON F D, FLEMING P, SHERRATT P, et al. Investigating shear stability of rugby union natural turf pitches[J]. Procedia Engineering, 2015, 112:273-278 [18] 杨国君. 运动场混合草坪植丝深度和密度对草坪生长及坪床加固影响研究[D]. 北京:北京林业大学, 2018:17-53 [19] 苏畅. 践踏对植丝式混合草坪质量的影响研究[D]. 北京:北京林业大学, 2019:20-42 [20] 周丽甜. 践踏对不同植丝密度混合草坪质量的影响[D]. 北京:北京林业大学, 2019:22-43 [21] 于雯霏, 王佩佩, 刘俊娥, 等. 黄土高原典型植被根系对土壤团聚体及其有机碳组分的影响[J]. 水土保持学报, 2023, 37(6):246-254 [22] 王国成, 肖浏骏, 林子祺, 等. 植物根系碳输入对非根际土壤碳库贡献的全球定量研究[J]. 中国科学:地球科学, 2023, 53(5):1067-1082 [23] 张桐瑞, 李富翠, 李辉, 等. 草垫植入对混合草坪坪床稳定性和表观质量的影响[J]. 草业学报,2020, 29(8):27-36 [24] 陈谷, 马其东. NTEP评价体系在草坪草评价中的应用[J]. 草业科学, 2000, 17(1):62-68 [25] 王莲莲, 杨学云, 杨文静. 土壤碳酸盐几种测定方法的比较[J]. 西北农业学报, 2013, 22(5):144-150 [26] 彭洁, 卢英帅, 齐志远, 等. 增温强度对晋北赖草草地CH4通量的影响[J]. 草地学报, 2024, 32(1):113-120 [27] 蔡岸冬, 张文菊, 申小冉, 等. 长期施肥土壤不同粒径颗粒的固碳效率[J]. 植物营养与肥料学报, 2015, 21(6):1431-1438 [28] 张亚楠, 李富翠, 贾辰雁, 等. 运动场地温调控对高温胁迫下草坪养分动态的影响[J]. 草业科学, 2023, 40(6):1656-1666 [29] 唐斌, 李富翠, 张亚楠, 等. 植丝对高羊茅草坪生长及氮、磷养分去向的影响[J]. 草业科学, 2023, 40(10):2619-2628 [30] 张小芳, 张春平, 杨增增, 等. 单播措施下三江源区高寒退化草地恢复效果评估[J]. 草地学报, 2022, 30(10):2834-2844 [31] HAMIDO S A, GUERTAL E A, WESLEY WOOD C W. Carbon sequestration under warm season turfgrasses in home lawns[J]. Journal of Geoscience and Environment Protection, 2016, 4(9):53-63 [32] 武鑫. 天然草与人造草混合运动场草坪系统研究[D]. 广州:华南农业大学, 2017:35-62 [33] HUYLER A, CHAPPELKA A H, PRIOR S A, et al. Influence of aboveground tree biomass, home age, and yard maintenance on soil carbon levels in residential yards[J]. Urban Ecosystems, 2014, 17(3):787-805 [34] RACITI S M, GROFFMAN P M, JENKINS J C, et al. Accumulation of carbon and nitrogen in residential soils with different land-use histories[J]. Ecosystems, 2011, 14(2):287-297 [35] 刘骞, 曾文津, 赵宇, 等. 城市不同功能分区草坪绿地土壤有机碳与碱解氮垂直分布特征[J]. 四川林业科技, 2019, 40(1):25-29 [36] ZAMANIAN K, ZHOU J B, KUZYAKOV Y, et al. Soil carbonates:The unaccounted, irrecoverable carbon source[J]. Geoderma, 2021, 384:114817 [37] GAUR M K, SQUIRES V R. Climate variability impacts on land use and livelihoods in drylands[M].Cham: Spring International Publishing, 2017:3-20 [38] FREY S D. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50:237-259 [39] SMITH P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016, 22(3):1315-1324 [40] LAW Q D, TRAPPE J M, JIANG Y W. Turfgrass selection and grass clippings management influence soil carbon and nitrogen dynamics[J]. Agronomy Journal, 2017, 109(4):1719-1725 [41] QIAN Y L, BANDARANAYAKE W, PARTON W J, et al. Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics[J]. Journal of Environmental Quality, 2003, 32(5):1694-1700 [42] BRAUN R C, BREMER D J. Carbon sequestration in zoysiagrass turf under different irrigation and fertilization management regimes[J]. Agrosystems, Geosciences & Environment, 2019, 2(1):1-8 |