Acta Agrestia Sinica ›› 2026, Vol. 34 ›› Issue (2): 424-436.DOI: 10.11733/j.issn.1007-0435.2026.02.005
HE Shi-jia1,2,3, CHENG Hua-qiang1,2,3, LIU Peng1,2,3, YANG Xuan1,2,3
Received:2025-04-14
Revised:2025-06-14
Published:2026-01-22
何世佳1,2,3, 成华强1,2,3, 刘鹏1,2,3, 杨轩1,2,3
通讯作者:
杨轩,E-mail:yangxuan2019@sxau.edu.cn
作者简介:何世佳(1999-),男,汉族,硕士研究生,主要从事田间粮草耦合与模型应用方向研究,E-mail:15048712840@163.com;
基金资助:HE Shi-jia, CHENG Hua-qiang, LIU Peng, YANG Xuan. Effects of Compound Drought and Hot Events on the Forage Oats Production of Northern Shanxi[J]. Acta Agrestia Sinica, 2026, 34(2): 424-436.
何世佳, 成华强, 刘鹏, 杨轩. 高温干旱复合事件对晋北饲用燕麦生产的影响[J]. 草地学报, 2026, 34(2): 424-436.
| [1] ZHOU B T, QIAN J. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17(6): 713-718 周波涛, 钱进. IPCC AR6报告解读: 极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17(6): 713-718 [2] CHAO Q C, LI R K, CUI T, et al. Scientific progress and future prospects in climate change: an interpretation of Part 1of China’s Fourth National Assessment Report on Climate Change[J]. China Population,Resources and Environment, 2023, 33(1): 74-79 巢清尘, 李柔珂, 崔童,等. 中国气候变化科学认识进展及未来展望——中国《第四次气候变化国家评估报告 第一部分》解读[J]. 中国人口 资源与环境, 2023, 33(1): 74-79 [3] ABDO A I, ABDELGHANY A E, WEI H, et al. Perspective of agricultural water safety under combined future changes in crop water requirements and climate conditions in China[J]. Theoretical and Applied Climatology, 2022, 148(3): 1629-1645 [4] MYHRE G, ALTERSKJÆR K, STJERN C W, et al. Frequency of extreme precipitation increases extensively with event rareness under global warming[J]. Scientific Reports, 2019, 9: 16063 [5] ZENG J N, LI H X, SUN B, et al. Summertime compound heat wave and drought events in China: interregional and subseasonal characteristics,and the associated driving factors[J]. Environmental Research Letters, 2024, 19(7): 074046 [6] WEI R J, PAN N, ZHONG X, et al. Study on the variation characteristics of extreme high temperature and drought compound events of Sichuan Province[J]. Journal of China Hydrology, 2024, 44(6):60-67,75 卫仁娟, 潘妮, 钟馨, 等. 四川省极端高温干旱复合事件变化特征研究[J]. 水文, 2024, 44(6): 60-67, 75 [7] LI R Y, LV G H, HAO X L, et al. Characteristics and dangerous analysis on regional compound high temperature and drought events in southwest of Shandong Province[J]. Chinese Journal of Agrometeorology, 2024, 45(6):657-668 李瑞英, 吕桂恒, 郝晓雷, 等. 鲁西南区域性高温干旱复合事件特征及危险性分析[J]. 中国农业气象, 2024, 45(6): 657-668 [8] QIAN T R, LU J T, SU X L, et al. Risk assessment of compound dry-hot events in northwest China based on compound event indexes[J]. Journal of Water Resources and Water Engineering, 2024, 35(1):82-89 钱潭锐, 逯家彤, 粟晓玲, 等. 基于复合事件指数的西北地区高温干旱复合事件风险评估[J]. 水资源与水工程学报, 2024, 35(1): 82-89 [9] XIE J Q,NING S R, DU P D, et al. Analysis of drought characteristics and effect on crop yield in Shuozhou City[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 117-123 解建强, 宁松瑞, 杜佩德, 等. 朔州市干旱特征及其对农作物产量的影响[J]. 中国农学通报, 2021, 37(26): 117-123 [10] ZHU C F,HU T H. Temperature change characteristics in Shuozhou from 1957 to 2017[J]. Chinese Agricultural Science Bulletin, 2019, 35(23): 103-109 朱彩芬, 胡桃花. 1957—2017年朔州气温变化特征分析[J]. 中国农学通报, 2019, 35(23): 103-109 [11] ZSCHEISCHLER J, WESTRA S, VAN DEN HURK B J J M, et al. Future climate risk from compound events[J]. Nature Climate Change, 2018, 8(6): 469-477 [12] JIANG S,WU L Y, ZHAO B S, et al. Molecular mechanism of heat stress tolerance in plants: a review[J]. Chinese Agricultural Science Bulletin, 2024, 40(9): 132-138 江珊, 吴龙英, 赵宝生, 等. 植物耐受高温胁迫的分子机制研究进展[J]. 中国农学通报, 2024, 40(9): 132-138 [13] REN H L, ZHU X,ZHANG F Y, et al. Effect of drought stress and research progress of drought resistance[EB/OL]https://link.cnki.net/urlid/46.1068.S.20240119.1548.002,2024-01-22/2025-04-14 任洪雷, 朱筱, 张丰屹, 等. 干旱胁迫的影响及抗旱性研究进展[EB/OL] https://link.cnki.net/urlid/46.1068.S.20240119.1548.002,2024-01-22/2025-04-14 [14] ZHAO H, WANG R Y, SHANG Y, et al. Progress and perspectives in studies on responses and thresholds of major food crops to high temperature and drought stress[J]. Journal of Arid Meteorology, 2016, 34(1): 1-12 赵鸿, 王润元, 尚艳, 等. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望[J]. 干旱气象, 2016, 34(1): 1-12 [15] HOU Y H, SHENG X Y, HAN B, et al. Analysis of enzyme activity changes of alfalfa PEPC under drought and high temperature stresses and gene sequences[J]. Acta Agrestia Sinica, 2023, 31(2): 330-336 侯燕红, 生小燕, 韩博, 等. 干旱和高温胁迫下紫花苜蓿PEPC酶活性变化及其基因序列分析[J]. 草地学报, 2023, 31(2): 330-336 [16] SONG Y L, WANG K Q, WANG S, et al. Physiological responses of three kinds of cool season turfgrasses under continuous drought stress, heat stress and their interaction[J]. Acta Agrestia Sinica, 2018, 26(3): 705-717 宋娅丽, 王克勤, 王莎, 等. 3种冷季型草坪草对持续干旱、高温及其互作的生理生态响应[J]. 草地学报, 2018, 26(3): 705-717 [17] YAN Q Z. Feeding value and processing mode of oat grass[J]. Special Economic Animals and Plants, 2022, 25(12): 138-140 闫庆忠. 燕麦草的饲用价值及加工方式[J]. 特种经济动植物, 2022, 25(12): 138-140 [18] ZHOU Q P, HU X W, WANG H, et al. The important role of oat in reinforcing the foundation of food security[J]. Acta Prataculturae Sinica, 2024, 33(10): 171-182 周青平, 胡晓炜, 汪辉, 等. 燕麦在维护国家粮食安全中的重要作用[J]. 草业学报, 2024, 33(10): 171-182 [19] LIU Y J, ZHANG Y Q, FANG Y R, et al. Effects of combined high temperature and drought stress on the growth and yield formation of summer maize[J]. Meteorology and Disaster Reduction Research, 2024, 47(1): 42-49 刘雨佳, 张艺琼, 方一如, 等. 高温干旱复合胁迫对夏玉米生长发育及产量形成的影响[J]. 气象与减灾研究, 2024, 47(1): 42-49 [20] HU Y Y, LU H F, LIU W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44(4): 591-600 胡阳阳, 卢红芳, 刘卫星, 等. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2018, 44(4): 591-600 [21] WANG B, FENG P Y, CHEN C, et al. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia[J]. Agricultural Systems, 2019, 170: 9-18 [22] YAN H L, HARRISON M T, LIU K, et al. Crop traits enabling yield gains under more frequent extreme climatic events[J]. Science of the Total Environment, 2022, 808: 152170 [23] YANG X, JIA P F,HOU Q Q, et al. The evaluation of effects of future climate on forage oats yield and sensitivity to water stress based on agricultural production systems simulator[J]. Chinese Journal of Grassland, 2022, 44(10): 20-29 杨轩, 贾鹏飞, 侯青青, 等. 基于APSIM模型的未来气候中燕麦产量变化及对水分胁迫的敏感性[J]. 中国草地学报, 2022, 44(10): 20-29 [24] XU Y. The Impact of Meteorological Drought and Extreme High Temperatures on Cotton Production in Central Asia: A Case Study of Uzbekistan[D]. Shenyang: Shenyang Agricultural University, 2022:5-20 徐杨. 气象干旱与极端高温对中亚棉花产量的影响——以乌兹别克斯坦为例[D]. 沈阳:沈阳农业大学,2022:5-20 [25] LI S Y, WANG B, LIU D L, et al. Can agronomic options alleviate the risk of compound drought-heat events during the wheat flowering period in southeastern Australia[J]. European Journal of Agronomy, 2024, 153: 127030 [26] TEFERA A T, O’LEARY G J, RAO S, et al. Identification of agro-phenological traits of lentil that optimise temperature and water limited flowering time and seed yield[J]. European Journal of Agronomy, 2024, 155: 127138 [27] YANG X, JIA P F, HOU Q Q, et al. Investigating the impacts of climate change on the productionof crop and forage rotational fields in the agro-pastoral interlaced zone in Northern-China[J]. Journalof Shanxi Agricultural University (Natural Science Edition), 2022, 42(1): 77-89 杨轩, 贾鹏飞, 侯青青, 等. 北方农牧交错带气候变化对粮草轮作生产的影响[J]. 山西农业大学学报(自然科学版), 2022, 42(1): 77-89 [28] HOU Q Q, CHENG H Q, ZHU M, et al. Parameter sensitivity analysis on submodules of APSIM to two forages in northern Shanxi Province[J]. Acta Agrestia Sinica, 2023, 31(10): 3114-3122 侯青青, 成华强, 朱敏, 等. 晋北两种饲草作物的APSIM模型参数敏感性分析[J]. 草地学报, 2023, 31(10): 3114-3122 [29] CHENG H Q, HOU Q Q, ZHU M, et al. Effects of climate change and crop rotation system on forage oats yield in northern Shanxi Province[J]. Acta Agronomica Sinica, 2024, 50(10): 2599-2613 成华强, 侯青青, 朱敏, 等. 气候变化与轮作制度对晋北饲用燕麦产草量的影响[J]. 作物学报, 2024, 50(10): 2599-2613 [30] YANG X, JIA P F, HOU Q Q, et al. Quantitative sensitivity of crop productivity and water productivity to precipitation during growth periods in the Agro-Pastoral Ecotone of Shanxi Province,China,based on APSIM[J]. Agricultural Water Management, 2023, 283: 108309 [31] WANG J, WANG E L, YIN H, et al. Differences between observed and calculated solar radiations and their impact on simulated crop yields[J]. Field Crops Research, 2015, 176: 1-10 [32] TAYLOR K E, STOUFFER R J, MEEHL G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498 [33] SHEN Y Y, NAN Z B, BELLOTTI B, et al. Development of APSIM (agricultural production systems simulator) and its application[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 1027-1032 沈禹颖, 南志标, BILL BELLOTTI, 等. APSIM 模型的发展与应用[J]. 应用生态学报, 2002, 13(8): 1027-1032 [34] RUAN H Y. Simulation Study on the Impact of Climate Change on Sugarcane Production Potential in Guangxi [D]. Nanning: Guangxi University, 2018:15-25 阮红燕. 气候变化对广西甘蔗生产潜力影响的模拟研究[D]. 南宁: 广西大学, 2018:15-25 [35] CICHOTA R, VOGELER I, SHARP J, et al. A protocol to build soil descriptions for APSIM simulations[J]. MethodsX, 2021, 8: 101566 [36] GAYDON D S, WANG E, POULTON P L, et al. Evaluation of the APSIM model in cropping systems of Asia[J]. Field Crops Research, 2017, 204:52-75 [37] ZHANG Y X,WALKER J P,PAUWELS V R N. Assimilation of wheat and soil states for improved yield prediction: the APSIM-EnKF framework[J]. Agricultural Systems,2022,201:103456 [38] CIAIS P, REICHSTEIN M, VIOVY N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437(7058):529-533 [39] WANG B, LIU D L, ASSENG S, et al. Modelling wheat yield change under CO2 increase, heat and water stress in relation to plant available water capacity in eastern Australia[J]. European Journal of Agronomy, 2017, 90: 152-161 [40] JING F, LIU Y M, NAN M, et al. Production performance and adaptability of 12 oat varieties in the Gully Region of Loess Plateau[J]. Pratacultural Science, 2024, 41(5): 1175-1188 景芳, 刘彦明, 南铭, 等. 12个燕麦品种在黄土高原沟壑区生产性能及适应性[J]. 草业科学, 2024, 41(5): 1175-1188 [41] LIU Q, GAO X H, WANG J. Response simulation of CO2 concentration and temperature onspring wheat yield in dryland under different precipitation types[J]. Agricultural Research in the Arid Areas, 2023,41(2): 230-237, 265 刘强, 高雪慧, 王钧. 不同降水年型下大气CO2浓度和温度对旱地春小麦产量的响应模拟[J]. 干旱地区农业研究, 2023, 41(2): 230-237, 265 [42] KIVI M S, BLAKELY B, MASTERS M, et al. Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model[J]. Science of the Total Environment, 2022, 820: 153192 [43] LIU X X, LI Y, WANG J, et al. Adaptability evaluation of staple crops under different precipitation year types in four ecological regions of Inner Mongolia based on APSIM[J]. Scientia Agricultura Sinica,2022, 55(10): 1917-1937 刘霞霞, 李扬, 王靖, 等. 基于APSIM模型的内蒙古四大生态区不同降水年型下主要作物适应性评价[J]. 中国农业科学,2022,55(10):1917-1937 [44] ZHANG Y, HAO Z C, FENG S F, et al. Changes and driving factors of compound agricultural droughts and hot events in Eastern China[J]. Agricultural Water Management, 2022, 263: 107485 [45] ZHANG B, ZHENG X J, WANG Y G, et al. Changes in the salt content of the plow layer soil during cultivation from 1990 to 2022 on the northern slope of the Tianshan Mountains[J]. Arid Zone Research, 2024, 41(9): 1435-1445 张彬, 郑新军, 王玉刚, 等. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445 [46] MASSMAN J W. A non-equilibrium model for soil heating and moisture transport during extreme surface heating[J]. Geoscientific Model Development Discussions, 2015, 8(3): 2555-2603 [47] RODRIGUEZ D, SADRAS V O. The limit to wheat water-use efficiency in eastern Australia. I. Gradients in the radiation environment and atmospheric demand[J]. Australian Journal of Agricultural Research, 2007, 58(4): 287 [48] ZHANG G X, WANG H M, SU X L, et al. Assessing the vegetation vulnerability of Loess Plateau under compound dry and hot climates[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(6): 339-346 张更喜, 王慧敏, 粟晓玲, 等. 复合干热胁迫下黄土高原夏季植被脆弱性评估[J]. 农业工程学报, 2024,40(6): 339-346 [49] HOU Q, WEI X Z, SONG X F. Influence of different moisture factors on forage yield of Inner Mongolian typical steppe[J]. Pratacultural Science, 2009, 26(2): 5-10 侯琼, 魏学占, 宋学峰. 不同水分因子对内蒙古典型草原牧草产量的影响[J]. 草业科学, 2009, 26(2): 5-10 [50] LIU Y Y, SHI X J, DU H J, et al. Optimal selection of the phenological models for wine grapevine and the impact of climate change on phenology in northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(12): 138-147 刘琰琰, 史学家, 杜宏娟,等. 西北酿酒葡萄物候模型优选及气候变化对物候期的影响[J]. 农业工程学报, 2024, 40(12): 138-147 [51] YE R H, XI J, CHANG H, et al. Research progress on the response of soil and vegetation to extreme drought in grassland ecosystems[J]. Animal Husbandry and Feed Science, 2024, 45(2): 58-72 晔薷罕, 希吉日塔娜, 常虹,等. 草地生态系统土壤与植被对极端干旱的响应研究进展[J]. 畜牧与饲料科学, 2024, 45(2): 58-72 [52] DING S X, DING Y N, ZHANG Q H. Evaluation on the development level of highland barley industrialization in Qinghai Province[J]. Qinghai Science and Technology, 2023, 30(3): 6-12 丁生喜, 丁亚男, 张千卉. 青海省青稞产业化发展水平评价[J]. 青海科技, 2023, 30(3): 6-12 [53] LIU Y J. Adaptability Evaluation and Multi-cropping Research of Forage Oat in Northern Shanxi Region [D]. Jinzhong: Shanxi Agricultural University, 2022:10-20 刘逸均. 晋北地区饲草型燕麦适应性评价及复种研究[D]. 晋中: 山西农业大学, 2022:10-20 [54] QI A Y, ZENG Q C, LI Y M, et al. Research progress on cultivation of forage oats(Avena sativa)[J]. Journal of Chengdu University (Natural Science Edition), 2022, 41(3): 250-256, 294 齐安银, 曾庆晨, 李颜秘, 等. 饲用燕麦栽培技术研究进展[J]. 成都大学学报(自然科学版), 2022, 41(3):250-256, 294 [55] MÄKINEN H, KASEVA J, TRNKA M, et al. Sensitivity of European wheat to extreme weather[J]. Field Crops Research, 2018, 222: 209-217 [56] BAI H Z, XIAO D P, TANG J Z, et al. Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning[J]. Computers and Electronics in Agriculture, 2024, 217: 108651 [57] ZHANG Y, YE Z, CHEN F F, et al. Challenges in improving Arctic freshwater simulations: An evaluation of CMIP6 models in the Beaufort Gyre region[J]. Ocean Modelling, 2025, 197: 102565 |
| [1] | HE Wei, FANG Qiang-en, SHAN Lin-qian, WANG Tong, WANG Zhen. Predicted Distribution Patterns and Spatial Shifts of the Endemic Species Artemisia dalai-lamae under Climate Change [J]. Acta Agrestia Sinica, 2026, 34(1): 217-230. |
| [2] | JIN Lian-wu, ZHAO Jin, SHAO Qian-ying, JI Bao-ming, LI Xue-feng, LI kai-hui, SUI Xiao-qing, GONG Yan-ming. Simulation of Potential Distribution Patterns of Common Plant Species in Xinjiang Grassland under Climate Change Scenarios [J]. Acta Agrestia Sinica, 2025, 33(9): 2973-2991. |
| [3] | ZHAO Jia-rui, WANG Peng-sen, GOU Yang, ZENG Yuan, JIN Xue-mei, LIU Gang, QIMEI Lamu, ZHOU Ji-qiong. Prediction of the Near-Modern and Future Potential Distribution of Poa pratensis L. in Response to Climate Change Based on the MaxEnt Model [J]. Acta Agrestia Sinica, 2025, 33(9): 2992-3002. |
| [4] | DOU Quan-hui, CHEN Cheng-hao, ZENGTAI Yi-hei, LONGZHU Duo-jie, MIAO Qi, SUN Fang-hui, CAIRANG La-mao, CHEN Xi, SUONAN Ji. Evaluation of Habitat Suitability of Important Medicinal Plants Gentianaceae in the Qinghai-Tibet Plateau Based on the Optimized Maximum Entropy Model [J]. Acta Agrestia Sinica, 2025, 33(9): 3024-3033. |
| [5] | CHAI Zhi-hui, MA Li, YAO Feng-tong. The Impact of Grassland Property Right System Reform and Climate Change on the Scale of Large Livestock Breeding ——Taking 33 Pure Animal Husbandry Banners in Inner Mongolia as an Example [J]. Acta Agrestia Sinica, 2025, 33(9): 3044-3056. |
| [6] | DONG Jia-li, HE Jian-long, DU Jian-min, MA Xue-peng, CHEN Yan-long, ZHANG Bei, CAO Wen-xia. Adaptability Evaluation of Different Forage Oat Varieties in Yinbei Area of Ningxia [J]. Acta Agrestia Sinica, 2025, 33(7): 2299-2308. |
| [7] | WU Qian, ZHU Ai-min, JU Xin, LI Shao-yu, REN Hai-yan, HAN Guo-dong. Effects of Warming and Nitrogen Addition on Soil Bacterial Communities in the Non-rhizosphere, Rhizosphere and Rhizosheath of Cleistogenes songorica [J]. Acta Agrestia Sinica, 2025, 33(5): 1345-1354. |
| [8] | ZHANG Ni, CHEN Ke-long, YANG Zi-wei, YANG Yan-li, LI Ying, WANG Ming-yu. Response of cbbL Carbon Sequestration Microorganisms to Simulated Warming in the Marsh Wetland of Qinghai Lake [J]. Acta Agrestia Sinica, 2025, 33(3): 728-738. |
| [9] | SUN Cheng-lin, LIU Yu-ping, SU Xu, LI Xiao-li, ZHANG Peng-hui, QU Rong-ju, JIN Jia-rui, YANG Qian, YU Ming-jun, SONG Chang-chun. Prediction of the Potential Distribution Area of Saussurea medusa (Asteraceae), an Endemic Medicinal Plant from the Qinghai-Xizang Plateau under the Background of Climate Changes [J]. Acta Agrestia Sinica, 2025, 33(3): 910-918. |
| [10] | LIU Xing-cai, HANG Jia-hui, SONG Ting, SHI Xiao-tong, LIU Xiao-xia, MA Dong-mei. Salt Tolerance Evaluation and Screening of 40 Forage Oat Germplasm Resources During seeds Germination [J]. Acta Agrestia Sinica, 2025, 33(12): 4033-4043. |
| [11] | DAI Cai-qin, ZHANG Duo-lin, YANG Jie, ZHANG Bo, ZHANG Wen-liu. Analysis and Comparison of Suitable Areas of Cypripedium tibeticum and Cypripedium flavum in China under Climate Change Scenario [J]. Acta Agrestia Sinica, 2025, 33(10): 3372-3380. |
| [12] | GAN Lu, ZHOU Wei, YAN Xue-bing, YAO Na, YIN Fei-hu. Sea-Mainland Ecological Hub:Ecological Services and Sustainable Utilization of China’s Coastal Tidal Flat Wetlands [J]. Acta Agrestia Sinica, 2025, 33(1): 1-9. |
| [13] | WANG Zhi-peng, SHI Chang-chun, MA Ya-li, ZHANG Yan, Yusupukadier·ZZIMINI, ZHANG Ge-yu, WEN Zhong-ming, LIU Yang-yang. Spatial and Temporal Changes of Vegetation Net Primary Productivity and Its Driving factors in Mu Us Sandy Land [J]. Acta Agrestia Sinica, 2024, 32(9): 2962-2972. |
| [14] | XU Heng-kang, LU Hui, LIU Hao, CHEN Chao, PANG Zhuo, ZHANG Guo-fang, LIU Ya-li, KAN Hai-ming. Research Trends and focus Areas on the Global Grassland Carbon Sink—A Bibliometric Analysis for 1992—2022 [J]. Acta Agrestia Sinica, 2024, 32(7): 2169-2178. |
| [15] | LYU Wei-tao, HU Xia-song, LIU Chang-yi, FU Jiang-tao, XING Guang-yan, ZHAO Ji-mei, LU Hai-jing. Response of Vegetation to Climate Change Along the Longyang Gorge and Jishi Gorge in the Upper Yellow River [J]. Acta Agrestia Sinica, 2024, 32(6): 1923-1935. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||