树舌灵芝三萜和杂萜化合物及其药理作用研究进展

邹录惠, 邱平, 张寒翠, 熊桂玉, 谢集照

菌物学报 ›› 2025, Vol. 44 ›› Issue (3) : 240222.

PDF(1744 KB)
中文  |  English
PDF(1744 KB)
菌物学报 ›› 2025, Vol. 44 ›› Issue (3) : 240222. DOI: 10.13346/j.mycosystema.240222 CSTR: 32115.14.j.mycosystema
综述

树舌灵芝三萜和杂萜化合物及其药理作用研究进展

作者信息 +

Research progress of the pharmacological effects of triterpenoids and meroterpenoids from Ganoderma applanatum

Author information +
文章历史 +

摘要

树舌灵芝Ganoderma applanatum是我国重要的药用真菌之一,在我国及东亚地区均有广泛的药用历史和临床应用。长期以来以羊毛甾烷型三萜为基本骨架的四环三萜类化合物被认为是树舌灵芝真菌主要的次级代谢产物和功能成分。树舌灵芝三萜化合物种类繁多,其中7,8-环氧-9(11)-烯-12-酮-灵芝三萜是树舌灵芝区别于灵芝属其他真菌的特征性次生代谢产物之一。近年来,随着各种类型杂萜不断被发现,表明杂萜是树舌灵芝中另一大类重要的次级代谢产物。它们的结构新颖多样,主要类型为含10个碳原子长链的杂萜、含内酯基团的杂萜、含5/6/7元碳环的杂萜、含桥环的杂萜、含氮原子杂萜及二聚体杂萜。不同的结构特征决定了树舌灵芝化合物的药理活性也多种多样。这些化合物具有护肝、促进血管生成、保护神经系统、抑制脂肪细胞分化、抗炎、抑菌等药理活性。本文整理了文献报道的树舌灵芝中天然来源的98个灵芝三萜化合物和67个杂萜化合物的结构及药理活性,旨在为树舌灵芝的深入研究和开发利用提供参考。

Abstract

Ganoderma applanatum is one of the important medicinal fungi found in China, with a long history of medicinal and clinical application in China and East Asia. Ganoderma triterpenes are tetracyclic derivatives of lanostane, and they have been considered to be the main secondary metabolites and functional components of G. applanatum. Ganoderma triterpenoids have various chemical structures, and 7,8-epoxy-9(11)-ene-12-oxo-ganoderma triterpenoid is one of the characteristic secondary metabolites that distinguish G. applanatum from other species in this genus. With the recent continued discovery of various types of meroterpenoids, it has been shown that these compounds are another important kind of secondary metabolites in G. applanatum. They possess novel and diverse structures, including 10-carbon-chain, lactone-containing, pentacyclic/hexacyclic/heptacyclic, bridged, nitrogen-containing and dimeric meroterpenoids. Their different structural features determine the diverse pharmacological activities of G. applanatum. In addition, these compounds have been reported to have liver-protecting, angiogenesis- promoting, neuroprotective, anti-adipogenic, anti-inflammatory as well as antibacterial pharmacological activities. This article summarizes the structures and pharmacological activities of 98 naturally occurring triterpenoids and 67 meroterpenoids reported in the literature, aiming at providing a reference for further studies and development of G. applanatum.

关键词

树舌灵芝 / 三萜 / 杂萜 / 药理活性

Key words

Ganoderma applanatum / triterpenoids / meroterpenoids / pharmacological effects

引用本文

导出引用
邹录惠, 邱平, 张寒翠, 熊桂玉, 谢集照. 树舌灵芝三萜和杂萜化合物及其药理作用研究进展[J]. 菌物学报, 2025, 44(3): 240222 https://doi.org/10.13346/j.mycosystema.240222
ZOU Luhui, QIU Ping, ZHANG Hancui, XIONG Guiyu, XIE Jizhao. Research progress of the pharmacological effects of triterpenoids and meroterpenoids from Ganoderma applanatum[J]. Mycosystema, 2025, 44(3): 240222 https://doi.org/10.13346/j.mycosystema.240222
树舌灵芝Ganoderma applanatum (Pers.) Pat.隶属于灵芝科Ganodermataceae灵芝属Ganoderma (戴玉成和杨祝良 2008;崔宝凯等 2023)。树舌灵芝广泛分布于我国温带和暖温带地区,是一种兼性寄生菌(图力古尔和戴玉成 2004;吴兴亮等 2004;Cui et al. 2006;林志彬 2015;Wu et al. 2022;武英达等 2022;徐维启等 2023;Yuan et al. 2023;Cui et al. 2024;Zhao et al. 2024)。树舌灵芝味微苦,性平,归脾、胃经,具有祛风除湿、清热、止痛、化积、止血和化痰的功效,民间主要用其治疗急性和慢性肝炎、消化性溃疡、早期肝硬化和风湿性肺结核等疾病(应建浙等 1987;Wu et al. 2019)。
长期以来多糖和三萜被认为是树舌灵芝真菌主要的次级代谢产物和功能成分(滕李铭等 2021;Teng et al. 2023;邵泓杰等 2024)。尽管树舌灵芝多糖具有抗肿瘤、提高免疫力的功效,但是其复杂的构型和连接位置的多样性严重阻碍了多糖的结构解析和人工合成,限制了其在药物研发市场上的应用,因此目前三萜化合物仍是树舌灵芝药效物质基础研究的重点和热点。近年来从树舌灵芝子实体中陆续分离得到一系列的杂萜化合物,其结构新颖多样、生物活性良好且广泛(Peng & Qiu 2018),这引起药物化学家和药理学家的注意。因此本文对已报道的树舌灵芝三萜与杂萜的化学结构及其药理活性进行综述,为今后树舌灵芝化学成分研究及药用价值开发提供参考。

1 树舌灵芝中化合物研究

1.1 树舌灵芝中三萜化合物

目前从树舌灵芝子实体中分离得到的三萜化合物的结构特征包括:(1)化合物类型是高度氧化的羊毛甾烷型四环三萜(图1),碳骨架结构多变,可能发生降碳、开环或重排,按所含碳原子数目可将骨架分为C30和C24两种;(2)母核C-3位多为羟基或羰基,C7-C8位多脱氢氧化形成环氧、C8-C9位脱氢形成双键或和C9-C11形成共轭双键;(3)侧链被一定程度氧化,大部分有羧基(邵泓杰等 2024)。具有羧基的灵芝三萜也被称为灵芝酸性三萜或灵芝酸,而无羧基的灵芝三萜则被称为灵芝中性三萜。目前从树舌灵芝子实体中分离得到98个灵芝三萜,包括85个酸性三萜,13个中性三萜。
图1 典型灵芝三萜的碳架结构

Fig. 1 The typical carbon skeleton of ganoderic triterpenoid.

Full size|PPT slide

1.1.1 7,8-环氧-9(11)-烯-12-酮-灵芝三萜

此类化合物的母核C7-C8之间脱氢氧化形成环氧、C9-C11间脱氢形成双键、C-12位被羰基取代的一类灵芝三萜。这类化合物的C-3和C-23位常被羰基或羟基取代,侧链C-26被氧化为羧基。氧原子与C-7、C-8形成的三元环氧环存在两种立体构型,即7α,8α-环氧和7β,8β-环氧。结合报道总结这两种构型的核磁数据,发现有明显的差别,其中7α,8α-环氧构型的1H NMR谱中,H-7裂分为双峰(d),偶合常数(J)为3.9-4.2 Hz,13C NMR谱中高场区存在C-7 (δC 62-64)和C-8 (δC 64-67) 2个特征信号;7β,8β-环氧构型的1H NMR谱中,H-7裂分为双峰(d),偶合常数(J)为6.0-6.2 Hz;13C NMR谱中高场区存在C-7 (δC 57-59)和C-8 (δC 60-64) 2个特征信号。目前从树舌灵芝中分离得到了39个该类化合物,其中12个7α,8α-环氧-9(11)-烯-12-酮-灵芝三萜化合物,27个7β,8β-环氧-9(11)-烯-12-酮-灵芝三萜化合物,具体信息见表1,化学结构见图2。查阅近10年相关文献发现,除了从G. ellipsoideumG. casuarinicola分离得到少量该构型三萜外,大都从树舌灵芝中分离得到(Baby et al. 2015;邵泓杰等 2024),可认为是树舌灵芝区别于灵芝属其他真菌的特征性次生代谢产物之一。
表1 树舌灵芝中7,8-环氧-9(11)-烯-12-酮-灵芝三萜化合物

Table 1 7,8-epoxy-9(11)-ene-12-oxo-ganoderic triterpenoids in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
1 Applanoxidic acid A C30H40O7 512.64 Chairul & Hayash 1994
2 Applanoxidic acid B C30H40O7 512.64 Chairul & Hayash 1994
3 Applanoxidic acid E C30H40O7 512.64 Chairul & Hayash 1994
4 Applanoxidic acid F C30H38O7 510.63 Chairul & Hayash 1994
5 Applanoxidic acid C C30H38O8 526.63 Chairul & Hayash 1994
6 Applanoxidic acid D C30H40O8 528.64 Chairul & Hayash 1994
7 Applanoxidic acid G C30H40O8 528.64 Chairul & Hayash 1994
8 Applanoxidic acid H C30H42O8 530.66 Chairul & Hayash 1994
9 Ganoapplin B C30H34O7 506.59 Peng et al. 2023a
10 Ganoapplanoid Q C31H42O7 526.67 Su et al. 2020
11 Applanlactone B C30H40O7 512.64 Peng et al. 2019
12 Applanlactone C C30H40O7 512.64 Peng et al. 2019
13 Ganoapplanoid G C30H40O9 544.64 Su et al. 2020
14 Ganoapplanoid H C30H38O9 542.63 Su et al. 2020
15 Ganoapplanoid I C30H40O9 544.64 Su et al. 2020
16 Elfvingic acid C C30H42O8 530.66 Su et al. 2020
17 Ganoapplanoid C C30H40O9 544.64 Su et al. 2020
18 Methyl ganoapplanoid C C31H42O9 558.67 Su et al. 2020
19 Ganoapplanoid B C30H40O9 544.64 Su et al. 2020
20 Applanoid I C30H42O9 546.66 Su et al. 2022
21 Methyl ganoapplaniate D C31H44O8 544.68 Li et al. 2018
22 Methyl ganoapplaniate E C31H42O8 542.67 Li et al. 2018
23 Ganoapplanic acid F C30H38O8 526.63 Li et al. 2018
24 Applanoxidic acid G methyl ester C31H42O8 542.67 Li et al. 2018
25 Elfvingic acid B C30H40O8 528.64 Li et al. 2018
26 Methyl applaniate B C31H42O8 542.67 Luo et al. 2020
27 Gibbosic acid A C30H38O8 526.63 Luo et al. 2020
28 Ganoapplanoid J C31H38O9 554.64 Su et al. 2020
29 Gibbosic acid E C30H36O9 540.61 Su et al. 2020
30 Ganoapplanoid F C29H38O9 530.61 Su et al. 2020
31 Ganoapplanoid E C30H38O8 526.63 Su et al. 2020
32 Applanoic acid C C30H38O7 510.63 Peng et al. 2019
33 Applanoic acid E C30H38O8 526.63 Luo et al. 2020
34 Ganoapplanilactone C C30H38O7 510.63 Li et al. 2018
35 Ganoapplanoid K C24H30O5 398.49 Su et al. 2020
36 Ganoapplanoid L C24H28O5 396.48 Su et al. 2020
37 Applanone D C24H34O5 402.52 Su et al. 2020
38 16,17-dehydroapplanone E C24H28O5 396.45 Luo et al. 2020
39 Applanone E C24H32O5 400.51 Peng et al. 2019
图2 7,8-环氧-9(11)-烯-12-酮-灵芝三萜化合物的结构

Fig. 2 Chemical structures of 7,8-epoxy-9(11)-ene-12-oxo-ganoderic triterpenoids.

Full size|PPT slide

1.1.2 7-酮(羟)-8(9)-烯-11-酮-灵芝三萜

该类型的特征是灵芝三萜母核C-7位被酮(羟基)取代、C8-C9形成双键及C-11位被酮取代的灵芝三萜称为7-酮(羟)-8(9)-烯-11-酮-灵芝三萜。这类化合物的C-3和C-23位常被羰基或羟基取代,侧链C-26被氧化为羧基。目前从树舌灵芝中分离得到了29个该类化合物,具体信息见 表2,化学结构见图3
表2 树舌灵芝中的7-酮(羟)-8(9)-烯-11-酮-灵芝三萜化合物

Table 2 7-oxo (hydroxy)-8(9)-ene-11-oxo-ganoderic triterpenoids in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
40 Ganodericacid AP3 C30H42O8 530.65 Wang & Liu 2008
41 Applandiketone A C30H40O9 544.63 Gao et al. 2021
42 Applanaic acid C C30H40O8 528.63 Chen et al. 2021
43 Applandiketone B C30H42O7 514.65 Gao et al. 2021
44 Ganoapplanoid A C30H40O8 528.63 Su et al. 2020
45 Ganoapplanoid B C30H40O8 528.63 Su et al. 2020
46 Ganoapplanilactone A C30H38O8 526.62 Su et al. 2020
47 Austrolactone C30H40O8 528.63 Su et al. 2020
48 Ganoderenicfy A C31H44O8 544.68 Jiang et al. 2022
49 Ganoderenicfy B C30H42O8 530.65 Jiang et al. 2022
50 Ganoderenic acid G C30H40O7 512.63 Wang & Liu 2008
51 Applanaic acid A C30H40O8 528.63 Chen et al. 2021
52 Applanoid H C30H40O8 528.64 Su et al. 2022
53 Applanaic acid B C30H38O8 526.62 Chen et al. 2021
54 Applanoid F C30H42O9 546.65 Su et al. 2022
55 Applanoid G C30H36O8 524.61 Su et al. 2022
56 Applanhydride A C30H38O10 558.62 Gao et al. 2021
57 Applanhydride B C24H28O7 428.47 Gao et al. 2021
58 3β-acetyloxy-lucidone H C26H36O6 444.56 Shi et al. 2022
59 25-methoxy-11-oxo-ganoderiol D C31H48O6 516.71 Shi et al. 2022
60 Ganoderic acid A C30H44O7 516.67 Jiang et al. 2022
61 3β,7β,20,23-tetrahydroxy-11,15-dioxolanosta-8-en-26-oic acid C30H46O8 534.68 Shim et al. 2004
62 7β,20,23-trihydroxy-3,11,15-trioxolanosta-8-en-26-oic acid C30H46O7 518.68 Shim et al. 2004
63 Ganoderenic acid A C30H42O7 514.65 Wang & Liu 2008
64 Ganoderenic acid B C30H42O7 514.65 Wang & Liu 2008
65 Ganoderenic acid D C30H40O7 512.63 Wang & Liu 2008
66 7β,23-dihydroxy-3,11,15-trioxolanosta-8,20E(22)-dien-26-oic acid C30H42O7 514.65 Shim et al. 2004
67 7β-hydroxy-3,11,15,23-tetraoxolanosta-8,20E(22)-dien-26-oic acid C31H42O7 526.66 Shim et al. 2004
68 Ganoapplanilactone B C30H38O8 526.62 Li et al. 2018
图3 7-酮(羟)-8(9)-烯-11-酮-灵芝三萜类化合物的结构

Fig. 3 Chemical structures of 7-oxo(hydroxyl)-8(9)-ene-11-oxo-ganoderic triterpenoids.

Full size|PPT slide

1.1.3 其他结构灵芝三萜

目前还从树舌灵芝中分离得到10个7-酮-8-羟基-9(11)-烯-12-酮-灵芝三萜化合物(69-78)、3个7-羟基-7,9(11)-二烯-12-酮-灵芝三萜化合物(798082)、9个7-羟基-8-烯-灵芝三萜化合物(8183-90)以及8个其他取代的灵芝三萜化合物(91-98),具体信息见表3,化学结构见图4
表3 树舌灵芝中的其他结构灵芝三萜

Table 3 Chemical structures of other ganoderic triterpenoids in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
69 Ganoapplanoid M C30H44O9 548.67 Su et al. 2020
70 Ganoapplanoid N C30H42O10 562.65 Su et al. 2020
71 Methyl applaniate A C31H44O10 576.67 Peng et al. 2019
72 Ganoapplanoid P C30H38O10 558.62 Su et al. 2020
73 Applanlactone A C30H42O8 530.65 Peng et al. 2019
74 Ganoapplanoid O C30H42O8 530.65 Su et al. 2020
75 Applanoic acid B C30H40O8 528.63 Peng et al. 2019
76 Applanone A C24H34O6 418.52 Peng et al. 2019
77 Applanone B C24H32O6 416.51 Peng et al. 2019
78 Applanone C C24H30O6 414.49 Peng et al. 2019
79 Applanoic acid D C30H38O8 526.62 Peng et al. 2019
80 Applanoic acid F C30H38O8 526.62 Luo et al. 2020
81 Applanoic acid G C30H40O8 528.63 Luo et al. 2020
82 Ganoapplin A C32H38O7 534.64 Peng et al. 2023a
83 Applanoid A C30H40O6 498.65 Su et al. 2022
84 Applanoid B C30H40O6 498.65 Su et al. 2022
85 Applanoid C C30H40O7 512.63 Su et al. 2022
86 Applanoid D C30H40O7 512.63 Su et al. 2022
87 Applanoid E C30H42O7 514.65 Su et al. 2022
88 Ganoapplanic acid A C30H40O6 496.64 Li et al. 2018
89 Ganoapplanic acid B C31H42O5 494.66 Li et al. 2018
90 Ganoapplanic acid C C30H40O7 512.63 Li et al. 2018
91 Ganoderic acid AP2 C34H50O8 586.76 Wang & Liu 2008
92 3α-carboxyacetoxy-24-methylen-23-oxolanost-8-en-26-oic acid C34H50O7 570.76 Silva et al. 2006
93 3α-carboxyacetoxy-24-methyl-23-oxolanost-8-en-26-oic acid C34H52O7 572.77 Silva et al. 2006
94 3α,16α-dihydroxylanosta-7,9(11),24-trien-21-oic acid C30H46O4 470.68 Silva et al. 2006
95 3α,16α,26-trihydroxylanosta-7,9(11),24-trien-21-oic acid C30H46O5 486.68 Silva et al. 2006
96 16α-hydroxy-3-oxolanosta-7,9(11),24-trien-21-oic acid C30H44O4 468.67 Silva et al. 2006
97 3-oxo-25-methoxy-24,26-dihydroxy-lanosta-7,9(11)-diene C31H50O4 486.73 Shi et al. 2022
98 24-methyl-5α-lanosta-25-one C30H52O 428.73 Gan et al. 1998
图4 其他灵芝三萜化合物的结构

Fig. 4 Chemical structures of other ganoderic triterpenoids.

Full size|PPT slide

灵芝酸侧链C-26的羧基较为活泼,可以发生酯化反应产生天然的灵芝酸酯。从树舌灵芝分离得到了10个灵芝酸甲酯(18212224262848677173),灵芝酸侧链C-26羧基容易与分子内其他碳上取代的羟基发生酯化得到11个灵芝酸内酯(10-1234424344-4768),而且化合物3444-4768的C-23与C-12通过氧原子连接,形成了特殊的螺环缩酮结构。
从树舌灵芝中分离得到的三萜化合物,其羊毛甾烷三萜母核有时会发生开环或重排,产生不同的骨架。例如化合物5657的C-11和C-12间插入了1个氧原子,形成七元酸酐;化合物10-12的C-3和C-4间断裂开环,C-3氧化为羧基,且它们的侧链均由内酯环形成;化合物25的A环2位上的碳被氧原子取代,形成只有29个碳原子骨架的降碳三萜。化合物83-89具有1个14 (13→12)迁移的6/6/5/6稠合四环骨架。化合物8988经历了相同的迁移重排,且又在C-11、C-13间形成了新的碳碳单键,从而形成更为复杂的稠环系统。化合物93380发生比较少见的侧链碳架重排,其中化合物9经过加成、氧化等复杂反应,C-21与C17环合形成较为少见的苯环;化合物3380侧链的C-22向C-17迁移。

1.2 树舌灵芝中杂萜类化合物

灵芝杂萜(Ganoderma meroterpenoids, GMs)是灵芝真菌中一类具有混合生源的天然次生代谢产物,其结构是由来源于莽草酸途径的1,2,4-三取代苯基和来源于甲戊二羟酸途径的萜类部分构成(Peng & Qiu 2018)。萜类部分进一步氧化、环化、重排、偶合和二聚等形成了结构丰富新颖的杂萜,具有数目庞大、结构复杂多样和生物活性显著等特点,受到众多药物化学家和药理学家的持续关注,目前已经成为了国际研究前沿和热点。
2000年研究者从普氏灵芝G. pfeifferi中首次分离得到杂萜化合物Ganomycin A、B,2013年发表的第一个结构新颖的“旋转门”形状的杂萜分子lingzhiol,成为灵芝杂萜成分研究的拐点,从而推动了灵芝杂萜的研究进程(王永祥 2022)。2013-2022年研究者从背柄灵芝G. cochlear、灵芝G. lucidum、茶病灵芝G. theaecolum、紫芝G. sinense、树舌灵芝G. applanatum等灵芝中分离得到约350多个杂萜化合物,表明杂萜是灵芝属真菌中不可忽略的成分(Peng & Qiu 2018;Peng et al. 2023b)。目前从树舌灵芝中约分离得到67个杂萜类化合物,根据萜类部分的特征可以分成以下类型:
(1)含10个碳原子的长链杂萜:化合物99100的萜类部分由2个香叶基焦磷酸(GPP)聚合而成,形成含有10个碳原子的长链状杂萜,具体信息见表4,化学结构见图5
表4 树舌灵芝中含10个碳原子的长链杂萜化合物

Table 4 Ganoderma meroterpenoids (GMs) with 10-carbon side chain in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
99 Applanatumol S C16H20O6 308.33 Luo et al. 2016c
100 Applanatumol T C16H18O7 322.31 Luo et al. 2016c
图5 树舌灵芝中含长链杂萜化合物的结构

Fig. 5 Chemical structures of GMs with side chain in Ganoderma applanatum.

Full size|PPT slide

(2)单环烷杂萜:由于萜类部分长链存在双键,可以发生氧化还原反应,进一步环化形成γ-不饱和内脂环(101102)、醚环(103-106)、5元环/6元环(107-117),具体信息分别见表5,化学结构分别见图6
表5 树舌灵芝中单环烷杂萜化合物

Table 5 GMs with single ring in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
101 Applanatumol U C16H18O5 290.31 Luo et al. 2016c
102 Lucidulactone B C17H18O6 318.32 Luo et al. 2017a
103 Applanatumol P C16H18O7 322.31 Luo et al. 2016c
104 Applanatumol Q C17H22O7 338.35 Luo et al. 2016c
105 Applanatumol R C16H20O7 324.33 Luo et al. 2016c
106 Applanatumol Z1 C13H12O5 248.23 Luo et al. 2016c
107 Applanatumol Z C14H16O6 280.27 Luo et al. 2016c
108 Applanatumol V C16H16O6 304.29 Luo et al. 2016c
109 Applanatumol W C17H18O6 318.32 Luo et al. 2016c
110 Applanatumol X C13H12O5 248.23 Luo et al. 2016c
111 Applanatumol Y C14H14O5 262.26 Luo et al. 2016c
112 Applanatumol Z2 C14H12O5 260.24 Luo et al. 2016c
113 Applanatumol K C16H18O7 322.31 Luo et al. 2016c
114 Applanatumol L C17H20O7 336.34 Luo et al. 2016c
115 Applanatumol M C16H16O6 304.29 Luo et al. 2016c
116 Applanatumol N C16H18O7 322.31 Luo et al. 2016c
117 Applanatumol O C16H16O6 304.29 Luo et al. 2016c
图6 树舌灵芝中单环杂萜化合物的结构

Fig. 6 Chemical structures of GMs with single ring chain in Ganoderma applanatum.

Full size|PPT slide

(3)螺环杂萜:此类化合物以含有7元碳环或5元碳环的杂萜化合物为前体,在C-1和C-2′之间形成醚键,其中化合物118-127具有6/5/5螺环结构;化合物128-138具有6/5/7螺环结构,具体信息见表6,化学结构见图7
表6 树舌灵芝中螺环杂萜化合物

Table 6 GMs with spiro ring in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
118 Spiroapplanatumine K C17H18O6 318.30 Luo et al. 2016b
119 Spiroapplanatumine L C16H16O6 304.29 Luo et al. 2016b
120 Spiroapplanatumine M C16H16O6 304.29 Luo et al. 2016b
121 Spiroapplanatumine N C16H16O6 304.29 Luo et al. 2016b
122 Spiroapplanatumine O C16H16O6 304.29 Luo et al. 2016b
123 Spiroapplanatumine P C17H18O6 318.32 Luo et al. 2016b
124 Spiroapplanatumine Q C16H18O6 306.31 Luo et al. 2016b
125 Spirolingzhine D C17H20O6 320.34 Luo et al. 2016b
126 Spirolingzhine A C16H18O6 306.31 Luo et al. 2016b
127 Spirolingzhine B C14H14O6 278.26 Luo et al. 2016b
128 Spiroapplanatumine A C16H14O7 318.28 Luo et al. 2016b
129 Spiroapplanatumine C C16H14O7 318.28 Luo et al. 2016b
130 Spiroapplanatumine E C17H16O7 332.30 Luo et al. 2016b
131 Spiroapplanatumine G C17H16O7 332.30 Luo et al. 2016b
132 Spiroapplanatumine I C17H16O7 332.30 Luo et al. 2016b
133 Spiroapplanatumine B C17H16O7 332.30 Luo et al. 2016b
134 Spiroapplanatumine D C16H14O6 302.28 Luo et al. 2016b
135 Spiroapplanatumine F C16H14O6 302.28 Luo et al. 2016b
136 Spiroapplanatumine H C17H16O6 316.30 Luo et al. 2016b
137 Spiroapplanatumine J C17H18O7 334.32 Luo et al. 2016b
138 Applanatumol A C16H16O6 304.29 Luo et al. 2016a
图7 树舌灵芝中螺环杂萜化合物的结构

Fig. 7 Chemical structures of GMs with spiro ring in Ganoderma applanatum.

Full size|PPT slide

(4)桥环杂萜:萜类部分长链可通过氧化、自由基反应等形成一系列的桥环杂萜化合物,化合物139-148含有环戊烷骈[C]呋喃-1-酮母核结构,化合物149150具有旋转门式碳架,具体信息见表7,化学结构见图8
表7 树舌灵芝中桥环杂萜化合物

Table 7 GMs with bridged ring in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
139 Applanatumol D C17H16O8 348.30 Luo et al. 2016c
140 Applanatumol E C18H22O8 366.36 Luo et al. 2016c
141 Applanatumol F C20H26O8 394.42 Luo et al. 2016c
142 Applanatumol G C18H22O8 366.36 Luo et al. 2016c
143 Applanatumol H C16H18O7 322.31 Luo et al. 2016c
144 Applanatumol I C16H16O8 336.29 Luo et al. 2016c
145 Applanatumol J C15H15ClO6 326.73 Luo et al. 2016c
146 Lingzhilactone B C16H16O7 320.29 Luo et al. 2017a
147 Applanatumol Z3/Z4 C19H22O9 394.37 Luo et al. 2017a
148 Applanatumol B C16H18O6 306.31 Luo et al. 2016a
149 Lingzhiol C15H14O6 290.27 Luo et al. 2020
150 Applanatumol C C15H14O6 290.27 Luo et al. 2016c
图8 树舌灵芝中桥环杂萜化合物的结构

Fig. 8 Chemical structures of GMs with bridged ring in Ganoderma applanatum.

Full size|PPT slide

(5)二聚杂萜:萜类部分除分子内环化外,还存在分子间环化,形成二聚体。目前从树舌灵芝中分离得到7个二聚杂萜类化合物151-157,具体信息见表8,化学结构见图9
表8 树舌灵芝中二聚杂萜化合物

Table 8 Dimeric GMs in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
151 Applanatumin A C32H30O12 606.57 Luo et al. 2015
152 Ganoapplanin C24H20O10 468.41 Li et al. 2016
153 (±)-spiroganoapplanin A C35H30O12 642.60 Peng et al. 2022
154 Applanmerotic acid A C32H28O12 604.56 Peng et al. 2021
155 Applanmerotic acid B C31H24O11 572.52 Peng et al. 2021
156 Applanatumine B C32H30O13 622.57 Luo et al. 2017b
157 Applanatumines C/D C32H30O12 606.57 Luo et al. 2017b
图9 树舌灵芝中二聚杂萜化合物的结构

Fig. 9 Chemical structures of dimeric GMs in Ganoderma applanatum

Full size|PPT slide

(6)含氮杂萜:目前还从树舌灵芝中分离得到8个含氮杂萜,其中158-160为含有吡啶结构的杂萜化合物,161-165为具有2,3,4,5-四氢吡啶结构的杂萜,具体信息见表9,化学结构见图10
表9 树舌灵芝中含氮的杂萜化合物

Table 9 Nitrogen-containing GMs in Ganoderma applanatum

编号
No.
化合物名称
Compound names
分子式
Formulas
分子量
Molecular weight
参考文献
References
158 Ganoapplanatumine A C15H15NO3 257.28 Luo et al. 2016c
159 Ganoapplanatumine B C16H15NO4 286.89 Luo et al. 2016c
160 Epi-ganoapplanatumine B C16H15NO4 286.29 Luo et al. 2016c
161 Meroapplanin A C17H19NO6 333.33 Peng et al. 2020
162 Meroapplanin B C17H19NO6 333.33 Peng et al. 2020
163 Meroapplanin C C18H21NO6 347.36 Peng et al. 2020
164 Meroapplanin D C17H19NO6 333.33 Peng et al. 2020
165 Meroapplanin E C18H21NO6 347.36 Peng et al. 2020
图10 树舌灵芝中含氮杂萜化合物的结构

Fig. 10 Chemical structures of nitrogen-containing GMs in Ganoderma applanatum.

Full size|PPT slide

综上所述,从树舌灵芝中分离得到的杂萜化合物结构类型多样,从简单的线型碳氢链结构到复杂的环化聚合结构都存在一定数量,这种结构多样性在一定程度上决定了它们生物活性的多样。此外,在已报道的灵芝杂萜成分中,研究者发现绝大部分化合物也都是以各自的对映异构体形式存在,但也并不是完全等量,这与真菌体内酶的非特异性催化关系是否有关以及催化生成特定构型化合物的酶是否具有共同的活性中心需要深入探讨(王永祥2022)。

2 树舌灵芝中化合物的药理作用

2.1 肝细胞保护活性

从树舌灵芝中分离得到的灵芝酸ganoapplanic acid F (23)、applanoic acid B (75)和ganoapplanic acid C (90)、重排灵芝酸ganoapplanic acid A (88)、灵芝酸甲酯methyl applaniate A (71)和methyl ganoapplaniate D (21)及灵芝酸内酯applanlactone A (42)对TGF-β1诱导的肝星状细胞增殖有抑制作用,其中化合物9071的效果最好。在浓度为10 μmol/L时,化合物9071的抑制率分别为27.1%和20.1%,表明这2个化合物具有抗肝纤维化的潜力(Li et al. 2018;Peng et al. 2019)。

2.2 促血管生成活性

以人参皂苷Rg1作为阳性对照,使用PTK787诱导荧光斑马鱼血管损伤模型评估从树舌灵芝中分离得到的7-酮-8(9)-烯-11-酮-灵芝酯类化合物ganoderenicfy A (48)和灵芝酸类化合物ganoderenicfy B (49)对血管的影响,结果显示化合物4849在浓度20、50、100 μg/mL时表现出显著的剂量依赖促血管生成活性(Jiang et al. 2022)。这是首次报道灵芝三萜类化合物具有促血管生成的作用,表明灵芝三萜类化合物作为心血管疾病候选药物先导物的潜力(邵泓杰等 2024)。

2.3 抗炎抑菌活性

小胶质细胞主导的神经炎症在阿尔茨海默病发病机制中扮演着重要的角色。过度活化的小胶质细胞释放大量的炎症因子,如肿瘤坏死因子(TNF-α)、白介素-6 (IL-6)、一氧化氮(NO)等。小胶质细胞中NO水平的增加与炎症的发生相关,因此可通过化合物对NO生成的抑制率来评估化合物的抗炎作用。7,8-环氧-9(11)-烯-12-酮-灵芝三萜类化合物applanoic acid E (33)、16,17-dehydroapplanone E (38)及灵芝酸甲酯methyl applaniate B (26)对脂多糖(LPS)诱导的BV-2小胶质细胞NO的生成有抑制作用,其中16,17-dehydroapplanone E (38)的作用最强,IC50为8.95 µmol/L,优于阳性对照槲皮素(15.13 µmol/L) (Luo et al. 2020);灵芝酸内酯applandiketone B (43)可以抑制RAW264.7小鼠单核巨噬细胞LPS诱导的NO生成,IC50为20.65 µmol/L,与阳性对照地塞米松(IC50为20.35 µmol/L)相当(Gao et al. 2021)。
从树舌灵芝中提取分离的2个中性三萜25-methoxy-11-oxo-ganoderiol D (59)和 3-oxo- 25-methoxy-24,26-dihydroxy-lanosta-7,9(11)-diene (97)对3种革兰氏阳性菌(棒状杆菌T25-17、粪肠球菌ATCC11827、耐低温肠球菌MB2-1)有一定的抑菌活性(Shi et al. 2022)。

2.4 神经元保护作用

利用H2O2损伤PC-12神经元细胞模型,筛选meroapplanin A (161)对神经元细胞的保护作用,结果表明在20 µmol/L时161的细胞生存率[(82.58±1.31)%]比模型组的细胞生存率[(65.27± 1.48)%]高,表明161具有神经元保护作用(Peng et al. 2020)。
阿尔茨海默病是一种进行性的神经性退行疾病,其特征是大脑中的β-淀粉性蛋白积累和tau蛋白原纤维缠结。二聚杂萜化合物spiroganoapplanin A (153)不管是外消旋体(±)、右旋体(+)还是左旋体(−)均可减少U251-APP细胞产生Aβ42,并通过BACE1、CDK5和GSK3β介导的通路抑制tau蛋白磷酸化,这表明153具有抗阿尔茨海默病的潜力(Peng et al. 2022)。
T型钙离子通道广泛表达于神经、内分泌和心血管系统,在神经元发育、神经元兴奋性及激素和神经递质的释放等生理功能中发挥作用。在神经元中,减少钙离子流入可降低细胞兴奋性,对某些表现为过度兴奋的神经系统疾病有益。采用全细胞膜片钳检测二聚杂萜化合物ganoapplanin (152)外消旋体(±)、左旋体(-)、右旋体(+)对HEK293T人胚胎肾细胞对T-型电压门控钙离子通道(TTCCs)电流的影响,结果显示(±)-152对TTCCs电流有显著抑制作用,IC50为36.6 µmol/L,(+)-152和(−)-152对TTCCs电流也具有抑制作用,IC50分别为51.5 µmol/L和56.4 µmol/L (Li et al. 2016)。

2.5 抑制脂肪细胞分化和脂质累积活性

从树舌灵芝中分离得到的7,8-环氧-9(11)-烯- 12-酮-灵芝三萜ganoapplanoid K (35)、Q (10)在浓度20 µmol/L时均可以显著抑制3T3-L1脂肪细胞分化,降低细胞内甘油三酯(TG)和胆固醇(TC)水平,效果强于阳性对照氯化锂(20 mmol/L),且对该细胞系无毒性,结果表明灵芝三萜化合物可以作为抑制脂肪细胞分化和脂质积累的候选药物(Su et al. 2020)。

2.6 靶点筛选

COX又称为前列腺素合成酶,有两种同工酶COX-1和COX-2。COX-1为固有型,COX-2为诱生型,可通过代谢促进组织前列腺素的合成,在包括卵巢癌在内的多种肿瘤组织中高表达。COX-2的过表达会引起肿瘤细胞对化疗药物敏感度的降低,可介导卵巢癌、胃癌、结肠癌、肝癌等多种肿瘤的耐药,导致患者预后不良(张筱等 2019)。利用COX-1和COX-2试剂盒对杂萜化合物applanatumol C-Z (150139-145113-117103-10599-101108-111107)、Z1 (106)、Z2 (112)、ganoapplanatumine A (158)、B (159)、epi-ganoapplanatumine B (160)进行活性筛选,结果显示仅applanatumol C (150)抑制COX-2活性(IC50为25.5 µmol/L);阳性对照塞来昔布抑制COX-2的IC50为1.83 nmol/L,抑制COX-1的IC50为27.2 µmol/L (Luo et al. 2016a)。
自身免疫疾病是由于机体对自身抗原发生免疫反应而导致组织损伤引起的一大类疾病。非受体酪氨酸激酶(JAK)是自免病药物研发的理想和热门靶点。DDR1是以胶原蛋白为配体的RTK (受体酪氨酸激酶)家族成员,系列研究表明DDR1在调节细胞形态发生、分化、增殖、黏附、迁移、侵袭和基质重塑等过程中起关键作用(李彩虹 2023),而DDR1的异常激活通常与实体瘤发生发展密切联系。利用JAK3和 DDR1试剂盒对杂萜化合物applanatumol Z3/Z4 (147)、spiroapplanatumine A−Q (128133129134130135131136132137118-124)、spirolingzhine A (126)、B (127)、D (125)、applanatumine B (156)、C/D (157)进行活性筛选,结果显示131136、156157对JAK3有抑制作用,其中131136的IC50值分别为(7.0±3.2)、(34.8±21.1) µmol/L (Luo et al. 2016b),156157的IC50值均小于10 µmol/L;156及其对映异构体对DDR1均有显著的抑制作用,IC50值分别为(8.2±0.8)、(6.9±0.8) µmol/L (Luo et al. 2017b)。
综上所述,可以表明树舌灵芝三萜和杂萜化合物具有丰富药理作用,相关的药理作用及相关药理作用模型见图11
图11 树舌灵芝三萜和杂萜化合物药理作用

Fig. 11 Selected pharmacological effects of triterpenoids and meroterpenoids isolated from Ganoderma applanatum.

Full size|PPT slide

3 讨论与展望

到目前为止,《中国真菌志》中共收录了78种灵芝,《中国药典》中收录了灵芝G. lucidum和紫芝G. sinense干燥子实体作为法定中药材,其余的多种灵芝属真菌如树舌灵芝、松杉灵芝G. tsugae等在民间也有广泛药用历史和临床应用。总结相关文献发现,树舌灵芝作为灵芝属真菌同样含有丰富的三萜和杂萜化合物等次生代谢产物,其三萜化合物和杂萜化合物的官能团类型新颖独特,体现出与紫芝、灵芝不一样的特点,如树舌灵芝中含有丰富的7,8-环氧-9(11)-烯-12-酮-灵芝三萜;杂萜化合物也以多环、二聚体结构为主,甚至还分离鉴定了8个含氮杂萜化合物,表现出树舌灵芝在灵芝属真菌中化合物结构类型多样性的不可替代性。
虽然灵芝属各种真菌中新的化合物被不断发现,同时研究者对这些化合物进行了多样的药理活性筛选,但是对其药理作用的研究普遍不够深入,大多为体外细胞实验,这可能与这些活性天然产物的提取量仅在毫克或亚毫克级别,其可获得性成为限制后续药理作用深入研究的瓶颈问题之一。因此,近几年来研究人员开始合成或半合成部分结构新颖的灵芝杂萜,如从原料2-氧代环戊羧酸乙酯出发,经8步反应,以7.8%的总产率高效合成得到了(±)-lingzhiol (149),该全合成能以克级进行,为今后继续开展药理学研究提供了高效合成路线。
灵芝作为中药具有补气安神、止咳平喘的功效,临床上用于治疗心神不宁、失眠心悸等。通过对树舌灵芝化合物相关药理活性总结,表明树舌灵芝三萜和杂萜化合物对神经系统具有显著作用,如杂萜化合物spiroganoapplanin A (153)和meroapplanin A (161)具有显著的神经元保护作用;二聚杂萜化合物ganoapplanin (152)通过减少钙离子流入可降低神经元细胞兴奋性,对某些表现为过度兴奋的神经系统疾病有益,16,17-dehydroapplanone E (38)可以显著减少过度活化的小胶质细胞释放炎症物质,这些化合物可作为其“安神”等功效的物质基础。同时,灵芝三萜化合物7190具有显著的肝细胞保护活性,化合物43可以抑制RAW264.7小鼠单核巨噬细胞LPS诱导的NO生成,可作为树舌灵芝用于急性和慢性肝炎、早期肝硬化等疾病的物质基础。
许多神经退行性疾病如阿尔茨海默病的病因复杂,涉及多靶点、多环节。研发针对多靶点、多环节的单一结构的化合物新药,几乎是难以完成的任务(袁守军2016)。从解决问题的可行性和实际效果来看,联合用药或者研发新复方药物,能为疾病治疗和新药研发开辟更宽的路径。因此药物联用是对疾病最有效的治疗手段之一。在阿尔茨海默病病情进程中,神经炎症会导致神经元损伤,而损伤的神经元又释放出更多的炎症介质,进一步加剧了神经炎症,相互作用形成了一个恶性循环。因此在开发阿尔茨海默病类药物时,可以考虑联合使用两种或以上先导化合物,如利用杂萜类化合物显著保护神经元细胞,减少神经元细胞的死亡以免引起小胶质细胞的过度活化;同时联合使用三萜类化合物减少过度活化的小胶质细胞释放炎症物质。在今后的研究中,有必要采用现代科学方法研究灵芝三萜和杂萜等主要活性成分与其相关功效的关联,为开发以灵芝为基础的天然药物提供理论依据。

作者贡献

邹录惠:论文构思、撰写论文初稿、审阅及修改论文;邱平:论文图表制作、审阅及修改论文;张寒翠:下载及管理文献、审阅及修改论文;熊桂玉:论文图表制作、审阅及修改论文;谢集照:指导、审核与修改论文。

利益冲突

作者声明,该研究不存在任何潜在利益冲突的商业或财务关系。

参考文献

[1]
Baby S, Johnson AJ, Govindan B, 2015. Secondary metabolites from Ganoderma. Phytochemistry, 114: 66-101
[2]
Bau T, Dai YC, 2004. Diversity and conservation of main wood-rotting fungi in Changbai Mountains. Journal of Fungal Research, 2(2): 26-30 (in Chinese)
[3]
Chairul SM, Hayash YJ, 1994. Lanostane triterpens from Ganoderma applanatum. Phytochemistry, 35(5): 1305-1308
[4]
Chen Y, Gao J, Chen QB, Liu W, Qi YR, Aisa HA, Yuan T, 2021. Applanaic acids A-C, three new highly oxygenated lanostane triterpenoids from the fruiting bodies of Ganoderma applanatum. Natural Product Research, 35(21): 3918-3924
[5]
Cui BK, Pan XH, Pan F, Sun YF, Xing JH, Dai YC, 2023. Species diversity and resources of Ganoderma in China. Mycosystema, 42: 170-178 (in Chinese)
[6]
Cui BK, Wei YL, Dai YC, 2006. Polypores from Zijin Mountain, Jiangsu Province. Mycosystema, 25: 9-14
[7]
Cui YJ, Wu YD, Jiang YH, Zhu AH, Wu F, Liu HG, Dai YC, Yuan Y, 2024. Diversity of macrofungi in southeast Xizang 1. The wood-decay fungi. Mycology, https://doi.org/10.1080/21501203.2024.2379476
[8]
Dai YC, Yang ZL, 2008. A revised checklist of medicinal fungi in China. Mycosystema, 27(6): 801-824 (in Chinese)
摘要
More and more people have recently payed their attention to studies or investigations on medicinal fungi in China. However, many nomenclatural inconsistencies were found in the Chinese reports. The publications on Chinese medicinal fungi were critically reviewed. As a result, 473 medicinal fungi from China were enumerated in the present checklist. All of the names were checked or revised in accordance with the contemporary taxonomy and the latest version of the International Code of Botanical Nomenclature (Vienna Code). The ‘out-of-date’ names, ill-names, and un-existed names and misapplied names in the previous reports were revised. The common synonyms were listed after their valid names. The main medicinal functions of each species, together with the original or important references, were provided.
[9]
Gan KH, Kuo SH, Lin CN, 1998. Steroidal constituents of Ganoderma applanatum and Ganoderma neo-japonicum. Journal of Natural Products, 61(11): 1421-1422
From the fruiting bodies of Ganoderma applanatum a new lanostanoid (1) and six known ergosteroids were isolated. Two known lanostanoids and five known steroids were isolated from the fruiting bodies of Ganoderma neo-japonicum. The new lanostanoid was characterized as 24zeta-methyl-5alpha-lanosta-25-one (1).
[10]
Gao J, Chen Y, Liu W, Liu YS, Li MM, Chen GY, Yuan T, 2021. Applanhydrides A and B, lanostane triterpenoids with unprecedented seven-membered cyclo-anhydride in ring C from Ganoderma applanatum. Tetrahedron, 79: 131839
[11]
Jiang CJ, Ji JC, Li PH, Liu WF, YH, Yang XQ, Xu LL, Guo LZ, Fan YQ, 2022. New lanostane-type triterpenoids with proangiogenic activity from the fruiting body of Ganoderma applanatum. Natural Product Research, 36(6): 1529-1535
[12]
Li CH, 2023. Identification of anoikis-related genes in skin cutaneous melanoma based on bioinformatics methods and construction of a prognostic model. MS Thesis, Jilin University, Changchun. 1-41 (in Chinese)
[13]
Li L, Li H, Peng XR, Hou B, Yu MY, Dong JR, Li XN, Zhou L, Yang J, Qiu MH, 2016. (±)-Ganoapplanin, a pair of polycyclic meroterpene enantiomers from Ganoderma applanatum. Organic Letters, 18(23): 6078-6081
[14]
Li L, Peng XR, Dong JR, Lu SY, Li XN, Zhou L, Qiu MH, 2018. Rearranged lanostane-type triterpenoids with anti-hepatic fibrosis activities from Ganoderma applanatum. Royal Society of Chemistry Advances, 8: 31287-31295
[15]
Lin ZB, 2015. Modern research of Ganoderma (4th ed.). Peking University Medical Press, Beijing. 10-15 (in Chinese)
[16]
Luo D, Xie JZ, Zou LH, Qiu L, Huang DP, Xie YF, Xu HJ, Wu XD, 2020. Lanostane-type triterpenoids from Ganoderma applanatum and their inhibitory activities on NO production in LPS-induced BV-2 cells. Phytochemistry, 177: 112453
Five previously undescribed lanostane-type triterpenoids, including two triterpenoids with a rearranged side chain (applanoic acids E and F), one C21 nortriterpenoid (16,17-dehydroapplanone E), as well as two highly oxygenated lanostane triterpenoids (methyl applaniate B and applanoic acid G), were isolated from the fruiting bodies of Ganoderma applanatum (Pers.) Pat. Their structures were elucidated on the basis of spectroscopic analysis, X-ray crystallography and ECD data. Applanoic acid E, 16,17-dehydroapplanone E, and methyl applaniate B showed inhibitory effects on the release of NO by LPS-induced BV-2 cells.Copyright © 2020 Elsevier Ltd. All rights reserved.
[17]
Luo Q, Di L, Dai WF, Lu Q, Yan YM, Yang ZL, Li RT, Cheng YX, 2015. Applanatumin A, a new dimeric meroterpenoid from Ganoderma applanatum that displays potent antifibrotic activity. Organic Letters, 17(5): 1110-1115
Applanatumin A (1), a novel meroterpenoid dimer, was isolated from the fungus Ganoderma applanatum. Its structure and absolute configuration were assigned on the basis of spectroscopic and computational data. Notably, 1 possesses a new hexacyclic skeleton containing a spiro[benzofuran-2,1'-cyclopentane] motif. A plausible pathway, involving a key Diels-Alder reaction, is proposed for the biosynthesis of 1. Applanatumin A exhibits potent antifibrotic activity in TGF-β1-induced human renal proximal tubular cells.
[18]
Luo Q, Di L, Yang XH, Cheng YX, 2016a. Applanatumols A and B, meroterpenoids with unprecedented skeletons from Ganoderma applanatum. Royal Society of Chemistry Advances, 6: 45963-45967
[19]
Luo Q, Tu ZC, Cheng YX, 2017a. Two rare meroterpenoidal rotamers from Ganoderma applanatum. Royal Society of Chemistry Advances, 7: 3413-3418
[20]
Luo Q, Wang Z, Luo JF, Tu ZC, Cheng YX, 2017b. (±)-Applanatumines B-D: novel dimeric meroterpenoids from Ganoderma applanatum as inhibitors of JAK3. Royal Society of Chemistry Advances, 7: 38037-38043
[21]
Luo Q, Wei XY, Yang J, Luo JF, Liang R, Tu ZC, Cheng YX, 2016b. Spiro meroterpenoids from Ganoderma applanatum. Journal of Natural Products, 80(1): 61-70
[22]
Luo Q, Yang XH, Yang ZL, Tu ZC, Cheng YX, 2016c. Miscellaneous meroterpenoids from Ganoderma applanatum. Tetrahedron, 72(30): 4564-4574
[23]
Peng XR, Li L, Dong JR, Lu SY, Lu J, Li XN, Zhou L, Qiu MH, 2019. Lanostane-type triterpenoids from the fruiting bodies of Ganoderma applanatum. Phytochemistry, 157: 103-110
[24]
Peng XR, Luo RC, Ran XQ, Guo YR, Yao YG, Qiu MH, 2023a. Ganoapplins A and B with an unprecedented 6/6/6/5/6-fused pentacyclic skeleton from Ganoderma inhibit Tau pathology through activating autophagy. Bioorganic Chemistry, 132: 106375
[25]
Peng XR, Luo RC, Su HG, Zhou L, Ran XQ, Guo YR, Yao YG, Qiu MH, 2022. (±)-Spiroganoapplanin A, a complex polycyclic meroterpenoid dimer from Ganoderma applanatum displaying potential against Alzheimer’s disease. Organic Chemistry Frontiers, 9: 3093-3101
[26]
Peng XR, Qiu MH, 2018. Meroterpenoids from Ganoderma species: a review of last five years. Natural Products and Bioprospecting, 8: 137-149
[27]
Peng XR, Shi QQ, Yang J, Su HG, Zhou L, Qiu MH, 2020. Meroapplanins A-E, five meroterpenoids with a 2,3,4,5-tetrahydropyridine motif from Ganoderma applanatum. The Journal of Organic Chemistry, 85(11): 7446-7451
[28]
Peng XR, Su HG, Wang HR, Hu GL, Hu K, Zhou L, Qiu MH, 2021. Applanmerotic acids A and B, two meroterpenoid dimers with an unprecedented polycyclic skeleton from Ganoderma applanatum that inhibit formyl peptide receptor 2. Organic Chemistry Frontiers, 8: 3381-3389
[29]
Peng XR, Unsicker SB, Gershenzon J, Qiu MH, 2023b. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Natural Product Reports, 40: 1354-1392
[30]
Shao HJ, Sun JH, Liu JB, Chen RY, Kang J, 2024. Research progress on structures and bioactivities of Ganoderma triterpenes. Journal of Fungal Research, 22(1): 39-59 (in Chinese)
[31]
Shi JX, Chen GY, Sun Q, Meng SY, Chi WQ, 2022. Antimicrobial lanostane triterpenoids from the fruiting bodies of Ganoderma applanatum. Journal of Asian Natural Products Research, 24(11): 1001-1007
[32]
Shim SH, RY JY, Kim JS, Kang SS, Xu YN, Jung SH, Lee YS, Lee SH, Shin KH, 2004. New lanostane-type triterpenoids from Ganoderma applanatum. Journal of Natural Products, 67(7): 1110-1113
[33]
Silva EDD, Sar SAVD, Santha RGL, Wijesundera RLC, Cole ALJ, Blunt JW, Munro MHG, 2006. Lanostane triterpenoids from the Sri Lankan Basidiomycete Ganoderma applanatum. Journal of Natural Products, 69(8): 1245-1248
[34]
Su HG, Liang HF, Hu GL, Zhou L, Peng XR, Bi HC, Qiu MH, 2022. Applanoids A-E as the first examples of C-15/C-20 michael adducts in Ganoderma triterpenoids and their PXR agonistic activity. Chinese Journal of Chemistry, 40: 2633-2641
[35]
Su HG, Wang Q, Zhou L, Peng XR, Xiong WY, Qiu MH, 2020. Highly oxygenated lanostane triterpenoids from Ganoderma applanatum as a class of agents for inhibiting lipid accumulation in adipocytes. Bioorganic Chemistry, 104: 104263
[36]
Teng LM, Tian XM, Wu F, Dai YC, 2021. A comparison of triterpenoids and polysaccharides in 13 species of wild Ganoderma. Mycosystema, 40: 1811-1819 (in Chinese)
[37]
Teng LM, Wang C, Cui BK, Zhang JS, Zhou S, Pan XH, Pan F, Dai YC, Feng N, 2023. Lanostane triterpenoids from mycelia-associated Ganoderma sinense and their anti-inflammatory activity. Phytochemistry, 215: 113870
[38]
Wang F, Liu JK, 2008. Highly oxygenated lanostane triterpenoids from the fungus Ganoderma applanatum. Chemical & Pharmaceutical Bulletin, 56(7): 1035-1037
[39]
Wang YX, 2022. Oriented isolation of meroterpenoids from Baoshan Ganoderma lucidum and their anti-renal fibrosis in vitro. MS Thesis, Yunnan Minzu University, Kunming. 1-112 (in Chinese)
[40]
Wu F, Man XW, Tohtirjap A, Dai YC, 2022. A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. Forest Ecosystems, 9: 100051
[41]
Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC, 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98: 1-76
[42]
Wu XL, Dai YC, Lin YH, 2004. Study on the Ganodermataceae of China Ⅲ. Guizhou Science, 22(4): 36-40 (in Chinese)
[43]
Wu YD, Man XW, Yuan Y, Dai YC, 2022. Species diversity, distribution and composition of polypores occurring in botanical gardens in China. Biodiversity Science, 30: 22213 (in Chinese)
摘要

Aims: Polypores are an important group of wood-decaying fungi with important ecological functions. Previous studies on the diversity and floristic composition of polypores were mostly in natural forests. Studies on the species, distribution and floristic composition of polypores in botanical gardens were largely unknown. This study systematically investigated the species, distribution and floristic composition of polypores in 31 botanical gardens in China, aiming to clarify whether the botanical gardens can effectively protect polypores while protecting plants.
Methods: In this study, investigations on polypores in 31 botanical gardens from 31 Chinese provinces were carried out during 2010-2021. On the basis of species identification, we analyzed the species diversity, composition and distribution of polypores in botanical gardens and forest ecosystems.
Results: A total of 164 polypore species was found based on the specimens collected from these gardens, and identified to 79 genera, 23 families and 6 orders. Among the 31 gardens, the species-richest gardens are Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences (XTGB) in Yunnan, Danzhou Tropical Botanical Garden in Hainan and Guangxi Botanical Garden of Medicinal Plant in Guangxi, and 90, 46 and 37 polypores were found, respectively; While the most species-poorest gardens are Lanzhou Botanical Garden in Gansu Province, Xining Botanical Garden in Qinghai Province and Urumqi Botanical Garden in Xinjiang Autonomous Region, where only 4, 3 and 2 polypores were found, respectively. Among the 164 polypores, the three most common species Trametes versicolor, Irpex lacteus and Bjerkandera adusta were found in 24, 18 and 18 botanical gardens, respectively. Other 32 species, like Abundisporus mollissimus, were found in a single botanical garden only. Among the 164 polypores, the common species, occasional species and rare species are respectively 114, 40 and 10. The polypore and rare species in the investigated gardens account for 16% and 3.1% of the total Chinese polypores and the rare ones, respectively. Among the ten rare species, six were found in natural forests in XTBG, four were only found in plantations, and they account for 2.4% of total polypores found in the gardens and 1.3% of total rare Chinese polypores, respectively. Tropical, subtropical, temperate, widely distributed in North Hemisphere and boreal elements were discovered in the garden polypores, and corresponding species are 50, 45, 38, 20 and 11, and they account for 30.5%, 27.4%, 23.2%, 12.2% and 6.7% of the total garden polypores, respectively.
Conclusion: Botanical gardens have less function for conservation of polypores, particularly for rare species. The majority polypores growing in botanical garden in our investigations are the common species. Nature reserves, national park or forest parks are the most important areas for conservation of polypores, especially the rare species.

[44]
Xu WQ, Li Y, Li HJ, Liu DM, Yang N, Zhang Q, He SH, 2023. Species diversity and resource evaluation of macrofungi in Beijing. Biodiversity Science, 31: 23196 (in Chinese)
摘要
<p id="p00005"><strong>Aims:</strong> As the main component of ecosystem, macrofungi have important ecological functions and economic values. In this study, we aim to understand the species diversity, compositions, and resources of macrofungi in Beijing by performing comprehensive investigations, identifications, and analyses.</p><p id="p00010"><strong>Methods:</strong> The macrofungal investigations were carried out in 2020-2022 by using line transect and random sampling methods. Specimens were identified by using morphological and molecular methods, and the complete list of macrofungi in Beijing was obtained based on both identification results and literature surveys. Species composition analyses, floristic geographical component analyses and resource evaluations were carried out based on the list by using statistical methods and literature surveying.</p><p id="p00015"><strong>Results:</strong> A total of 5,448 specimens were collected, and 608 species were identified. The complete list of macrofungi in Beijing containing 619 species belong to 277 genera, 93 families, 22 orders, 6 classes, 2 phyla. Among all the species, 24 belong to Ascomycota, 595 belong to Basidiomycota, five were records new to China, 120 were new to Beijing. There were 19 dominant families with more than 10 species, accounting for 59.61% of the total species, including Agaricaceae, Polyporaceae, Psathyrellaceae, Russulaceae, Tricholomataceae, and so on. There were 33 dominant genera with more than 5 species, accounting for 38.13% of the total species, including <i>Cortinarius</i>, <i>Gymnopus</i>, <i>Inocybe</i>, <i>Leucoagaricus</i>, <i>Russula</i>, and so on. Cosmopolitan, north temperate, and pantropical genera accounted for 61.37%, 31.05%, and 5.42%, respectively. There were 71 edible, 43 medicinal, 22 poisonous, 45 both edible and medicinal fungi.</p> <p id="p00020"><strong>Conclusion:</strong> The species diversity of macrofungi in Beijing is high, and the economic resources are rich. The geographical composition of the flora reflects typical north temperate distribution characteristics. The species number of macrofungi in Beijing could be increased in the future since some large genera of mushrooms, such as, <i>Cortinarius</i>, <i>Entoloma</i>, <i>Inocybe</i>, <i>Russula</i> have not been sufficiently studied.</p>
[45]
Ying JZ, Mao XL, Ma QM, Zong YC, Wen HA, 1987. Icons of medical fungi from China. Science Press, Beijing. 1-579 (in Chinese)
[46]
Yuan SJ, 2016. Establishment of new method for quantitatively calculating synergistic, additive and antagonistic effect in multiple drug combination. Chinese Journal of Pharmacology Toxicology, 30(12): 1316-1332 (in Chinese)
[47]
Yuan Y, Bian LS, Wu YD, Chen JJ, Wu F, Liu HG, Zeng GY, Dai YC, 2023. Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycology, 14: 204-226
Wood-rotting basidiomycetes have been investigated in the Chinese forest ecosystem for the past 30 years. Two hundred and five pathogenic wood-decayers belonging to 9 orders, 30 families, and 74 genera have been found in Chinese native forests, plantations, and gardens. Seventy-two species (accounting for 35% of the total pathogenic species) are reported as pathogenic fungi in China for the first time. Among these pathogens, 184 species are polypores, nine are corticioid fungi, eight are agarics and five are hydnoid basidiomycetes. One hundred and seventy-seven species (accounting for 86%) cause white rot, while 28 species (accounting for 14%) result in brown rot; 157 species grow on angiosperm trees (accounting for 76.5%) and 44 species occur on gymnosperm trees (accounting for 21.5%), only four species inhabit both angiosperms and gymnosperms (accounting for 2%); 95 species are distributed in boreal to temperate forests and 110 in subtropical to tropical forests. In addition, 17 species, including,, and etc. which were previously treated as pathogenic species in China, do not occur in China according to recent studies. In this paper, the host(s), type of forest, rot type, and distribution of each pathogenic species in China are given.© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
[48]
Zhang X, Yan KQ, Feng DQ, Ling B, 2019. Advances in role of cyclooxygenase 2 in development and progression of cancer. Cancer Research on Prevention and Treatment, 46(11): 1036-1039 (in Chinese)
[49]
Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y, 2024. Polypore and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystem, 11: 100200
[50]
崔宝凯, 潘新华, 潘峰, 孙一翡, 邢佳慧, 戴玉成, 2023. 中国灵芝属真菌的多样性与资源. 菌物学报, 42: 170-178
灵芝属是大型真菌的一个重要类群,具有重要的经济价值、生态价值和文化价值。尽管国内外对灵芝属真菌的研究较多,但灵芝属真菌的分类一直存在诸多问题,我国过去报道的灵芝属真菌有114个分类单元,但其中很多的分类地位存在争议。本文基于凭证标本,确认我国目前发现的灵芝种类有40种,其中具有ITS分子序列的种类有39种,其他74个分类单元或为同物异名或为待定种。本文提供的中国39种灵芝的ITS序列可为今后准确鉴定灵芝的野生和栽培种类提供依据。
[51]
戴玉成, 杨祝良, 2008. 中国药用真菌名录及部分名称的修订. 菌物学报, 27(6): 801-824
[52]
李彩虹, 2023. 基于生物信息学方法鉴定皮肤黑色素瘤失巢凋亡相关基因并构建预后模型. 吉林大学硕士论文, 长春. 1-41
[53]
林志彬, 2015. 灵芝的现代研究(第4版). 北京: 北京大学医学出版社. 10-15
[54]
邵泓杰, 孙军花, 刘建波, 陈若芸, 康洁, 2024. 灵芝三萜的化学成分及药理活性研究进展. 菌物研究, 22(1): 39-59
[55]
滕李铭, 田雪梅, 吴芳, 戴玉成, 2021. 13种野生灵芝菌丝体中胞内三萜与多糖含量的比较. 菌物学报, 40: 1811-1819
为探究不同野生灵芝的主要活性成分以及对野生灵芝的开发利用价值,对13种野生灵芝菌株在同一条件下进行液体发酵,采用化学分析的方法,比较菌丝体胞内三萜和多糖的含量差异。结果显示,13种灵芝菌株的三萜和多糖含量有很大差异,其中无柄紫灵芝Ganoderma mastoporum、亮盖灵芝G. lucidum和树舌灵芝G. applanatum的三萜含量较高;树舌灵芝G. applanatum、紫芝G. sinense和褐灵芝G. brownii的多糖含量较高。目前国内广泛栽培灵芝G. lingzhi的野生菌株发酵产物中的三萜和多糖含量并不是最高的,研究结果表明不同种类的野生灵芝还有进一步挖掘的潜在价值。
[56]
图力古尔, 戴玉成, 2004. 长白山主要食药用木腐真菌多样性及其保育. 菌物研究, 2(2): 26-30
[57]
王永祥, 2022. 保山赤芝中杂萜的定向获取及体外抗肾纤维化探究. 云南民族大学硕士论文, 昆明. 1-112
[58]
吴兴亮, 戴玉成, 林尤河, 2004. 中国灵芝科资源及其地理分布Ⅲ. 贵州科学, 22(4): 36-40
[59]
武英达, 满孝武, 员瑗, 戴玉成, 2022. 中国各省植物园中多孔菌种类、分布和组成. 生物多样性, 30: 22213
多孔菌是木材腐朽菌中最关键的真菌类群, 是森林生态系统的重要组成部分。为了明确植物园对植物上真菌资源的保护状况, 在2010-2021年间, 作者对全国31个省(自治区、直辖市)的31个代表性植物园中木本植物上的多孔菌进行了系统调查、标本采集和种类鉴定, 记录多孔菌164种, 隶属于担子菌门伞菌纲6目23科79属。其中, 中国科学院西双版纳热带植物园、儋州热带植物园和广西药用植物园多孔菌种类最多, 分别有90种、46种和37种; 兰州植物园、西宁植物园和乌鲁木齐植物园物种数量最少, 分别有4种、3种和2种。在植物园中, 分布最多的物种是云芝栓孔菌(Trametes versicolor)、白囊耙齿菌(Irpex lacteus)和黑管孔菌(Bjerkandera adusta), 分别生长在24、18和18个植物园中, 而软多孢孔菌(Abundisporus mollissimus)等32种多孔菌只发现于中国科学院西双版纳热带植物园中。在164种多孔菌中, 常见种、偶见种和稀有种分别有114、40和10种。生长在植物园中的多孔菌仅占全国所有森林生态系统多孔菌总数的16%, 而植物园中发现的稀有种仅占全国稀有种总数的3.1%。在10种稀有多孔菌中, 有6种发现于中国科学院西双版纳热带植物园的天然林中, 其中4种稀有多孔菌发现于植物园内的人工林中, 占植物园所有多孔菌的2.4%, 占全国稀有多孔菌的1.3%。所调查植物园多孔菌包括了热带、亚热带、温带、北半球广布和寒温带成分, 分别包括50、45、38、20和11种, 占本研究多孔菌总数的30.5%、27.4%、23.2%、12.2%和6.7%。目前中国植物园保存了我国60%的植物种类, 包括85%的珍稀濒危植物, 但对生长在植物园中的多孔菌资源保护作用有限。因此, 对稀有多孔菌的保育仍需聚焦在森林生态系统的保护上。
[60]
徐维启, 李玥, 李海蛟, 刘冬梅, 杨宁, 张琦, 何双辉, 2023. 北京市大型真菌物种多样性调查与资源评价. 生物多样性, 31: 23196
大型真菌作为生态系统的主要组成部分, 具有重要的生态功能与经济价值。本研究于2020-2022年采用样线法和随机踏查法对北京市大型真菌资源进行调查, 共采集标本5,448份。通过形态学与分子生物学方法鉴定物种608种, 进一步结合相关文献资料确定北京市大型真菌共619种, 隶属于2门6纲22目93科277属, 其中担子菌门595种, 子囊菌门24种, 中国新记录种5种, 北京新记录种120种。基于以上物种名录开展物种组成和区系地理分析以及资源评价, 结果表明: 含10种以上的优势科共19科, 占总物种数的59.61%, 主要有: 蘑菇科、多孔菌科、小脆柄菇科、红菇科、口蘑科等; 含5种以上的优势属有33属, 占总物种数的38.13%, 主要有: 丝膜菌属(Cortinarius)、裸脚伞属(Gymnopus)、丝盖伞属(Inocybe)、白环蘑属(Leucoagaricus)、红菇属(Russula)等。北京市大型真菌以世界广布属(61.37%)和北温带分布属(31.05%)为主, 其次是泛热带分布属(5.42%)。北京市共有食用菌71种、药用菌43种、有毒菌22种、食药兼用菌45种。本研究结果为北京市大型真菌的物种多样性保护以及资源利用提供了科学依据。
[61]
应建浙, 卯晓岚, 马启明, 宗毓臣, 文华安, 1987. 中国药用真菌图鉴. 北京: 科学出版社. 1-579
[62]
袁守军, 2016. 多药合用药效学协同、相加和拮抗定量计算新方法的建立. 中国药理学与毒理学杂志, 30(12): 1316-1332
许多严重疾病如癌症的病因复杂,属于多靶点疾病,针对多个靶点联合用药比单靶点用药更容易实现治疗目的。药物联用可产生多层面的相互作用,最终表现为药效发生协同、相加或拮抗。对其进行定量评价的前提是获得多药合用组合的预期相加效应值。但长期以来一直缺乏精确计算协同、相加和拮抗的可靠方法,使新复方药物研究等发展受阻。通过等效剂量兑换和引入药理学中的药效的序贯和集合原理,作者发现了多药合用组合预期相加效应的数学规律,简述如下:多药合用剂量组合的预期相加效应值是一个连续的数值范围,即预期相加效应值是药物组合剂量的闭区间数集函数,建立了通用型计算公式。在二维坐标系中显示为一条量效曲带,与多药合用组合的实际量效曲线构成一幅&ldquo;一条曲带和一条曲线&rdquo;的图像。组成预期相加量效曲带的量效曲线的数量,随着合用药物数量的增加呈指数性增长。通过计算实际量效曲线和相加量效曲带的交点坐标,能够得出多药合用组合药效发生协同、相加或拮抗的剂量范围;通过比较实际量效曲线中的效应值(或剂量值)与相加量效曲带的偏离状况,能够得出发生协同、相加或拮抗程度的指标,如剂量合用指数和效应合用指数等。该方法能为新复方药物研发、多药联合效应的定量评价和中药复方的效应评价等提供可靠通用的计算方法,简称为&ldquo;一带一线&rdquo;法。
[63]
张筱, 闫克芹, 冯定庆, 凌斌, 2019. 环氧合酶2在肿瘤发生发展中的作用研究进展. 肿瘤防治研究, 46(11): 1036-1039

基金

广西自然科学基金(2023GXNSFAA026286)
国家自然科学基金(81560627)
PDF(1744 KB)

55

Accesses

0

Citation

Detail

段落导航
相关文章

/