
树舌灵芝三萜和杂萜化合物及其药理作用研究进展
Research progress of the pharmacological effects of triterpenoids and meroterpenoids from Ganoderma applanatum
树舌灵芝Ganoderma applanatum是我国重要的药用真菌之一,在我国及东亚地区均有广泛的药用历史和临床应用。长期以来以羊毛甾烷型三萜为基本骨架的四环三萜类化合物被认为是树舌灵芝真菌主要的次级代谢产物和功能成分。树舌灵芝三萜化合物种类繁多,其中7,8-环氧-9(11)-烯-12-酮-灵芝三萜是树舌灵芝区别于灵芝属其他真菌的特征性次生代谢产物之一。近年来,随着各种类型杂萜不断被发现,表明杂萜是树舌灵芝中另一大类重要的次级代谢产物。它们的结构新颖多样,主要类型为含10个碳原子长链的杂萜、含内酯基团的杂萜、含5/6/7元碳环的杂萜、含桥环的杂萜、含氮原子杂萜及二聚体杂萜。不同的结构特征决定了树舌灵芝化合物的药理活性也多种多样。这些化合物具有护肝、促进血管生成、保护神经系统、抑制脂肪细胞分化、抗炎、抑菌等药理活性。本文整理了文献报道的树舌灵芝中天然来源的98个灵芝三萜化合物和67个杂萜化合物的结构及药理活性,旨在为树舌灵芝的深入研究和开发利用提供参考。
Ganoderma applanatum is one of the important medicinal fungi found in China, with a long history of medicinal and clinical application in China and East Asia. Ganoderma triterpenes are tetracyclic derivatives of lanostane, and they have been considered to be the main secondary metabolites and functional components of G. applanatum. Ganoderma triterpenoids have various chemical structures, and 7,8-epoxy-9(11)-ene-12-oxo-ganoderma triterpenoid is one of the characteristic secondary metabolites that distinguish G. applanatum from other species in this genus. With the recent continued discovery of various types of meroterpenoids, it has been shown that these compounds are another important kind of secondary metabolites in G. applanatum. They possess novel and diverse structures, including 10-carbon-chain, lactone-containing, pentacyclic/hexacyclic/heptacyclic, bridged, nitrogen-containing and dimeric meroterpenoids. Their different structural features determine the diverse pharmacological activities of G. applanatum. In addition, these compounds have been reported to have liver-protecting, angiogenesis- promoting, neuroprotective, anti-adipogenic, anti-inflammatory as well as antibacterial pharmacological activities. This article summarizes the structures and pharmacological activities of 98 naturally occurring triterpenoids and 67 meroterpenoids reported in the literature, aiming at providing a reference for further studies and development of G. applanatum.
树舌灵芝 / 三萜 / 杂萜 / 药理活性 {{custom_keyword}} /
Ganoderma applanatum / triterpenoids / meroterpenoids / pharmacological effects {{custom_keyword}} /
表1 树舌灵芝中7,8-环氧-9(11)-烯-12-酮-灵芝三萜化合物Table 1 7,8-epoxy-9(11)-ene-12-oxo-ganoderic triterpenoids in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
1 | Applanoxidic acid A | C30H40O7 | 512.64 | Chairul & Hayash 1994 |
2 | Applanoxidic acid B | C30H40O7 | 512.64 | Chairul & Hayash 1994 |
3 | Applanoxidic acid E | C30H40O7 | 512.64 | Chairul & Hayash 1994 |
4 | Applanoxidic acid F | C30H38O7 | 510.63 | Chairul & Hayash 1994 |
5 | Applanoxidic acid C | C30H38O8 | 526.63 | Chairul & Hayash 1994 |
6 | Applanoxidic acid D | C30H40O8 | 528.64 | Chairul & Hayash 1994 |
7 | Applanoxidic acid G | C30H40O8 | 528.64 | Chairul & Hayash 1994 |
8 | Applanoxidic acid H | C30H42O8 | 530.66 | Chairul & Hayash 1994 |
9 | Ganoapplin B | C30H34O7 | 506.59 | Peng et al. 2023a |
10 | Ganoapplanoid Q | C31H42O7 | 526.67 | Su et al. 2020 |
11 | Applanlactone B | C30H40O7 | 512.64 | Peng et al. 2019 |
12 | Applanlactone C | C30H40O7 | 512.64 | Peng et al. 2019 |
13 | Ganoapplanoid G | C30H40O9 | 544.64 | Su et al. 2020 |
14 | Ganoapplanoid H | C30H38O9 | 542.63 | Su et al. 2020 |
15 | Ganoapplanoid I | C30H40O9 | 544.64 | Su et al. 2020 |
16 | Elfvingic acid C | C30H42O8 | 530.66 | Su et al. 2020 |
17 | Ganoapplanoid C | C30H40O9 | 544.64 | Su et al. 2020 |
18 | Methyl ganoapplanoid C | C31H42O9 | 558.67 | Su et al. 2020 |
19 | Ganoapplanoid B | C30H40O9 | 544.64 | Su et al. 2020 |
20 | Applanoid I | C30H42O9 | 546.66 | Su et al. 2022 |
21 | Methyl ganoapplaniate D | C31H44O8 | 544.68 | Li et al. 2018 |
22 | Methyl ganoapplaniate E | C31H42O8 | 542.67 | Li et al. 2018 |
23 | Ganoapplanic acid F | C30H38O8 | 526.63 | Li et al. 2018 |
24 | Applanoxidic acid G methyl ester | C31H42O8 | 542.67 | Li et al. 2018 |
25 | Elfvingic acid B | C30H40O8 | 528.64 | Li et al. 2018 |
26 | Methyl applaniate B | C31H42O8 | 542.67 | Luo et al. 2020 |
27 | Gibbosic acid A | C30H38O8 | 526.63 | Luo et al. 2020 |
28 | Ganoapplanoid J | C31H38O9 | 554.64 | Su et al. 2020 |
29 | Gibbosic acid E | C30H36O9 | 540.61 | Su et al. 2020 |
30 | Ganoapplanoid F | C29H38O9 | 530.61 | Su et al. 2020 |
31 | Ganoapplanoid E | C30H38O8 | 526.63 | Su et al. 2020 |
32 | Applanoic acid C | C30H38O7 | 510.63 | Peng et al. 2019 |
33 | Applanoic acid E | C30H38O8 | 526.63 | Luo et al. 2020 |
34 | Ganoapplanilactone C | C30H38O7 | 510.63 | Li et al. 2018 |
35 | Ganoapplanoid K | C24H30O5 | 398.49 | Su et al. 2020 |
36 | Ganoapplanoid L | C24H28O5 | 396.48 | Su et al. 2020 |
37 | Applanone D | C24H34O5 | 402.52 | Su et al. 2020 |
38 | 16,17-dehydroapplanone E | C24H28O5 | 396.45 | Luo et al. 2020 |
39 | Applanone E | C24H32O5 | 400.51 | Peng et al. 2019 |
表2 树舌灵芝中的7-酮(羟)-8(9)-烯-11-酮-灵芝三萜化合物Table 2 7-oxo (hydroxy)-8(9)-ene-11-oxo-ganoderic triterpenoids in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
40 | Ganodericacid AP3 | C30H42O8 | 530.65 | Wang & Liu 2008 |
41 | Applandiketone A | C30H40O9 | 544.63 | Gao et al. 2021 |
42 | Applanaic acid C | C30H40O8 | 528.63 | Chen et al. 2021 |
43 | Applandiketone B | C30H42O7 | 514.65 | Gao et al. 2021 |
44 | Ganoapplanoid A | C30H40O8 | 528.63 | Su et al. 2020 |
45 | Ganoapplanoid B | C30H40O8 | 528.63 | Su et al. 2020 |
46 | Ganoapplanilactone A | C30H38O8 | 526.62 | Su et al. 2020 |
47 | Austrolactone | C30H40O8 | 528.63 | Su et al. 2020 |
48 | Ganoderenicfy A | C31H44O8 | 544.68 | Jiang et al. 2022 |
49 | Ganoderenicfy B | C30H42O8 | 530.65 | Jiang et al. 2022 |
50 | Ganoderenic acid G | C30H40O7 | 512.63 | Wang & Liu 2008 |
51 | Applanaic acid A | C30H40O8 | 528.63 | Chen et al. 2021 |
52 | Applanoid H | C30H40O8 | 528.64 | Su et al. 2022 |
53 | Applanaic acid B | C30H38O8 | 526.62 | Chen et al. 2021 |
54 | Applanoid F | C30H42O9 | 546.65 | Su et al. 2022 |
55 | Applanoid G | C30H36O8 | 524.61 | Su et al. 2022 |
56 | Applanhydride A | C30H38O10 | 558.62 | Gao et al. 2021 |
57 | Applanhydride B | C24H28O7 | 428.47 | Gao et al. 2021 |
58 | 3β-acetyloxy-lucidone H | C26H36O6 | 444.56 | Shi et al. 2022 |
59 | 25-methoxy-11-oxo-ganoderiol D | C31H48O6 | 516.71 | Shi et al. 2022 |
60 | Ganoderic acid A | C30H44O7 | 516.67 | Jiang et al. 2022 |
61 | 3β,7β,20,23-tetrahydroxy-11,15-dioxolanosta-8-en-26-oic acid | C30H46O8 | 534.68 | Shim et al. 2004 |
62 | 7β,20,23-trihydroxy-3,11,15-trioxolanosta-8-en-26-oic acid | C30H46O7 | 518.68 | Shim et al. 2004 |
63 | Ganoderenic acid A | C30H42O7 | 514.65 | Wang & Liu 2008 |
64 | Ganoderenic acid B | C30H42O7 | 514.65 | Wang & Liu 2008 |
65 | Ganoderenic acid D | C30H40O7 | 512.63 | Wang & Liu 2008 |
66 | 7β,23-dihydroxy-3,11,15-trioxolanosta-8,20E(22)-dien-26-oic acid | C30H42O7 | 514.65 | Shim et al. 2004 |
67 | 7β-hydroxy-3,11,15,23-tetraoxolanosta-8,20E(22)-dien-26-oic acid | C31H42O7 | 526.66 | Shim et al. 2004 |
68 | Ganoapplanilactone B | C30H38O8 | 526.62 | Li et al. 2018 |
表3 树舌灵芝中的其他结构灵芝三萜Table 3 Chemical structures of other ganoderic triterpenoids in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
69 | Ganoapplanoid M | C30H44O9 | 548.67 | Su et al. 2020 |
70 | Ganoapplanoid N | C30H42O10 | 562.65 | Su et al. 2020 |
71 | Methyl applaniate A | C31H44O10 | 576.67 | Peng et al. 2019 |
72 | Ganoapplanoid P | C30H38O10 | 558.62 | Su et al. 2020 |
73 | Applanlactone A | C30H42O8 | 530.65 | Peng et al. 2019 |
74 | Ganoapplanoid O | C30H42O8 | 530.65 | Su et al. 2020 |
75 | Applanoic acid B | C30H40O8 | 528.63 | Peng et al. 2019 |
76 | Applanone A | C24H34O6 | 418.52 | Peng et al. 2019 |
77 | Applanone B | C24H32O6 | 416.51 | Peng et al. 2019 |
78 | Applanone C | C24H30O6 | 414.49 | Peng et al. 2019 |
79 | Applanoic acid D | C30H38O8 | 526.62 | Peng et al. 2019 |
80 | Applanoic acid F | C30H38O8 | 526.62 | Luo et al. 2020 |
81 | Applanoic acid G | C30H40O8 | 528.63 | Luo et al. 2020 |
82 | Ganoapplin A | C32H38O7 | 534.64 | Peng et al. 2023a |
83 | Applanoid A | C30H40O6 | 498.65 | Su et al. 2022 |
84 | Applanoid B | C30H40O6 | 498.65 | Su et al. 2022 |
85 | Applanoid C | C30H40O7 | 512.63 | Su et al. 2022 |
86 | Applanoid D | C30H40O7 | 512.63 | Su et al. 2022 |
87 | Applanoid E | C30H42O7 | 514.65 | Su et al. 2022 |
88 | Ganoapplanic acid A | C30H40O6 | 496.64 | Li et al. 2018 |
89 | Ganoapplanic acid B | C31H42O5 | 494.66 | Li et al. 2018 |
90 | Ganoapplanic acid C | C30H40O7 | 512.63 | Li et al. 2018 |
91 | Ganoderic acid AP2 | C34H50O8 | 586.76 | Wang & Liu 2008 |
92 | 3α-carboxyacetoxy-24-methylen-23-oxolanost-8-en-26-oic acid | C34H50O7 | 570.76 | Silva et al. 2006 |
93 | 3α-carboxyacetoxy-24-methyl-23-oxolanost-8-en-26-oic acid | C34H52O7 | 572.77 | Silva et al. 2006 |
94 | 3α,16α-dihydroxylanosta-7,9(11),24-trien-21-oic acid | C30H46O4 | 470.68 | Silva et al. 2006 |
95 | 3α,16α,26-trihydroxylanosta-7,9(11),24-trien-21-oic acid | C30H46O5 | 486.68 | Silva et al. 2006 |
96 | 16α-hydroxy-3-oxolanosta-7,9(11),24-trien-21-oic acid | C30H44O4 | 468.67 | Silva et al. 2006 |
97 | 3-oxo-25-methoxy-24,26-dihydroxy-lanosta-7,9(11)-diene | C31H50O4 | 486.73 | Shi et al. 2022 |
98 | 24-methyl-5α-lanosta-25-one | C30H52O | 428.73 | Gan et al. 1998 |
表4 树舌灵芝中含10个碳原子的长链杂萜化合物Table 4 Ganoderma meroterpenoids (GMs) with 10-carbon side chain in Ganoderma applanatum |
表5 树舌灵芝中单环烷杂萜化合物Table 5 GMs with single ring in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
101 | Applanatumol U | C16H18O5 | 290.31 | Luo et al. 2016c |
102 | Lucidulactone B | C17H18O6 | 318.32 | Luo et al. 2017a |
103 | Applanatumol P | C16H18O7 | 322.31 | Luo et al. 2016c |
104 | Applanatumol Q | C17H22O7 | 338.35 | Luo et al. 2016c |
105 | Applanatumol R | C16H20O7 | 324.33 | Luo et al. 2016c |
106 | Applanatumol Z1 | C13H12O5 | 248.23 | Luo et al. 2016c |
107 | Applanatumol Z | C14H16O6 | 280.27 | Luo et al. 2016c |
108 | Applanatumol V | C16H16O6 | 304.29 | Luo et al. 2016c |
109 | Applanatumol W | C17H18O6 | 318.32 | Luo et al. 2016c |
110 | Applanatumol X | C13H12O5 | 248.23 | Luo et al. 2016c |
111 | Applanatumol Y | C14H14O5 | 262.26 | Luo et al. 2016c |
112 | Applanatumol Z2 | C14H12O5 | 260.24 | Luo et al. 2016c |
113 | Applanatumol K | C16H18O7 | 322.31 | Luo et al. 2016c |
114 | Applanatumol L | C17H20O7 | 336.34 | Luo et al. 2016c |
115 | Applanatumol M | C16H16O6 | 304.29 | Luo et al. 2016c |
116 | Applanatumol N | C16H18O7 | 322.31 | Luo et al. 2016c |
117 | Applanatumol O | C16H16O6 | 304.29 | Luo et al. 2016c |
表6 树舌灵芝中螺环杂萜化合物Table 6 GMs with spiro ring in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
118 | Spiroapplanatumine K | C17H18O6 | 318.30 | Luo et al. 2016b |
119 | Spiroapplanatumine L | C16H16O6 | 304.29 | Luo et al. 2016b |
120 | Spiroapplanatumine M | C16H16O6 | 304.29 | Luo et al. 2016b |
121 | Spiroapplanatumine N | C16H16O6 | 304.29 | Luo et al. 2016b |
122 | Spiroapplanatumine O | C16H16O6 | 304.29 | Luo et al. 2016b |
123 | Spiroapplanatumine P | C17H18O6 | 318.32 | Luo et al. 2016b |
124 | Spiroapplanatumine Q | C16H18O6 | 306.31 | Luo et al. 2016b |
125 | Spirolingzhine D | C17H20O6 | 320.34 | Luo et al. 2016b |
126 | Spirolingzhine A | C16H18O6 | 306.31 | Luo et al. 2016b |
127 | Spirolingzhine B | C14H14O6 | 278.26 | Luo et al. 2016b |
128 | Spiroapplanatumine A | C16H14O7 | 318.28 | Luo et al. 2016b |
129 | Spiroapplanatumine C | C16H14O7 | 318.28 | Luo et al. 2016b |
130 | Spiroapplanatumine E | C17H16O7 | 332.30 | Luo et al. 2016b |
131 | Spiroapplanatumine G | C17H16O7 | 332.30 | Luo et al. 2016b |
132 | Spiroapplanatumine I | C17H16O7 | 332.30 | Luo et al. 2016b |
133 | Spiroapplanatumine B | C17H16O7 | 332.30 | Luo et al. 2016b |
134 | Spiroapplanatumine D | C16H14O6 | 302.28 | Luo et al. 2016b |
135 | Spiroapplanatumine F | C16H14O6 | 302.28 | Luo et al. 2016b |
136 | Spiroapplanatumine H | C17H16O6 | 316.30 | Luo et al. 2016b |
137 | Spiroapplanatumine J | C17H18O7 | 334.32 | Luo et al. 2016b |
138 | Applanatumol A | C16H16O6 | 304.29 | Luo et al. 2016a |
表7 树舌灵芝中桥环杂萜化合物Table 7 GMs with bridged ring in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
139 | Applanatumol D | C17H16O8 | 348.30 | Luo et al. 2016c |
140 | Applanatumol E | C18H22O8 | 366.36 | Luo et al. 2016c |
141 | Applanatumol F | C20H26O8 | 394.42 | Luo et al. 2016c |
142 | Applanatumol G | C18H22O8 | 366.36 | Luo et al. 2016c |
143 | Applanatumol H | C16H18O7 | 322.31 | Luo et al. 2016c |
144 | Applanatumol I | C16H16O8 | 336.29 | Luo et al. 2016c |
145 | Applanatumol J | C15H15ClO6 | 326.73 | Luo et al. 2016c |
146 | Lingzhilactone B | C16H16O7 | 320.29 | Luo et al. 2017a |
147 | Applanatumol Z3/Z4 | C19H22O9 | 394.37 | Luo et al. 2017a |
148 | Applanatumol B | C16H18O6 | 306.31 | Luo et al. 2016a |
149 | Lingzhiol | C15H14O6 | 290.27 | Luo et al. 2020 |
150 | Applanatumol C | C15H14O6 | 290.27 | Luo et al. 2016c |
表8 树舌灵芝中二聚杂萜化合物Table 8 Dimeric GMs in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
151 | Applanatumin A | C32H30O12 | 606.57 | Luo et al. 2015 |
152 | Ganoapplanin | C24H20O10 | 468.41 | Li et al. 2016 |
153 | (±)-spiroganoapplanin A | C35H30O12 | 642.60 | Peng et al. 2022 |
154 | Applanmerotic acid A | C32H28O12 | 604.56 | Peng et al. 2021 |
155 | Applanmerotic acid B | C31H24O11 | 572.52 | Peng et al. 2021 |
156 | Applanatumine B | C32H30O13 | 622.57 | Luo et al. 2017b |
157 | Applanatumines C/D | C32H30O12 | 606.57 | Luo et al. 2017b |
表9 树舌灵芝中含氮的杂萜化合物Table 9 Nitrogen-containing GMs in Ganoderma applanatum |
编号 No. | 化合物名称 Compound names | 分子式 Formulas | 分子量 Molecular weight | 参考文献 References |
---|---|---|---|---|
158 | Ganoapplanatumine A | C15H15NO3 | 257.28 | Luo et al. 2016c |
159 | Ganoapplanatumine B | C16H15NO4 | 286.89 | Luo et al. 2016c |
160 | Epi-ganoapplanatumine B | C16H15NO4 | 286.29 | Luo et al. 2016c |
161 | Meroapplanin A | C17H19NO6 | 333.33 | Peng et al. 2020 |
162 | Meroapplanin B | C17H19NO6 | 333.33 | Peng et al. 2020 |
163 | Meroapplanin C | C18H21NO6 | 347.36 | Peng et al. 2020 |
164 | Meroapplanin D | C17H19NO6 | 333.33 | Peng et al. 2020 |
165 | Meroapplanin E | C18H21NO6 | 347.36 | Peng et al. 2020 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
More and more people have recently payed their attention to studies or investigations on medicinal fungi in China. However, many nomenclatural inconsistencies were found in the Chinese reports. The publications on Chinese medicinal fungi were critically reviewed. As a result, 473 medicinal fungi from China were enumerated in the present checklist. All of the names were checked or revised in accordance with the contemporary taxonomy and the latest version of the International Code of Botanical Nomenclature (Vienna Code). The ‘out-of-date’ names, ill-names, and un-existed names and misapplied names in the previous reports were revised. The common synonyms were listed after their valid names. The main medicinal functions of each species, together with the original or important references, were provided.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
From the fruiting bodies of Ganoderma applanatum a new lanostanoid (1) and six known ergosteroids were isolated. Two known lanostanoids and five known steroids were isolated from the fruiting bodies of Ganoderma neo-japonicum. The new lanostanoid was characterized as 24zeta-methyl-5alpha-lanosta-25-one (1).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Five previously undescribed lanostane-type triterpenoids, including two triterpenoids with a rearranged side chain (applanoic acids E and F), one C21 nortriterpenoid (16,17-dehydroapplanone E), as well as two highly oxygenated lanostane triterpenoids (methyl applaniate B and applanoic acid G), were isolated from the fruiting bodies of Ganoderma applanatum (Pers.) Pat. Their structures were elucidated on the basis of spectroscopic analysis, X-ray crystallography and ECD data. Applanoic acid E, 16,17-dehydroapplanone E, and methyl applaniate B showed inhibitory effects on the release of NO by LPS-induced BV-2 cells.Copyright © 2020 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Applanatumin A (1), a novel meroterpenoid dimer, was isolated from the fungus Ganoderma applanatum. Its structure and absolute configuration were assigned on the basis of spectroscopic and computational data. Notably, 1 possesses a new hexacyclic skeleton containing a spiro[benzofuran-2,1'-cyclopentane] motif. A plausible pathway, involving a key Diels-Alder reaction, is proposed for the biosynthesis of 1. Applanatumin A exhibits potent antifibrotic activity in TGF-β1-induced human renal proximal tubular cells.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
Aims: Polypores are an important group of wood-decaying fungi with important ecological functions. Previous studies on the diversity and floristic composition of polypores were mostly in natural forests. Studies on the species, distribution and floristic composition of polypores in botanical gardens were largely unknown. This study systematically investigated the species, distribution and floristic composition of polypores in 31 botanical gardens in China, aiming to clarify whether the botanical gardens can effectively protect polypores while protecting plants. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
<p id="p00005"><strong>Aims:</strong> As the main component of ecosystem, macrofungi have important ecological functions and economic values. In this study, we aim to understand the species diversity, compositions, and resources of macrofungi in Beijing by performing comprehensive investigations, identifications, and analyses.</p><p id="p00010"><strong>Methods:</strong> The macrofungal investigations were carried out in 2020-2022 by using line transect and random sampling methods. Specimens were identified by using morphological and molecular methods, and the complete list of macrofungi in Beijing was obtained based on both identification results and literature surveys. Species composition analyses, floristic geographical component analyses and resource evaluations were carried out based on the list by using statistical methods and literature surveying.</p><p id="p00015"><strong>Results:</strong> A total of 5,448 specimens were collected, and 608 species were identified. The complete list of macrofungi in Beijing containing 619 species belong to 277 genera, 93 families, 22 orders, 6 classes, 2 phyla. Among all the species, 24 belong to Ascomycota, 595 belong to Basidiomycota, five were records new to China, 120 were new to Beijing. There were 19 dominant families with more than 10 species, accounting for 59.61% of the total species, including Agaricaceae, Polyporaceae, Psathyrellaceae, Russulaceae, Tricholomataceae, and so on. There were 33 dominant genera with more than 5 species, accounting for 38.13% of the total species, including <i>Cortinarius</i>, <i>Gymnopus</i>, <i>Inocybe</i>, <i>Leucoagaricus</i>, <i>Russula</i>, and so on. Cosmopolitan, north temperate, and pantropical genera accounted for 61.37%, 31.05%, and 5.42%, respectively. There were 71 edible, 43 medicinal, 22 poisonous, 45 both edible and medicinal fungi.</p> <p id="p00020"><strong>Conclusion:</strong> The species diversity of macrofungi in Beijing is high, and the economic resources are rich. The geographical composition of the flora reflects typical north temperate distribution characteristics. The species number of macrofungi in Beijing could be increased in the future since some large genera of mushrooms, such as, <i>Cortinarius</i>, <i>Entoloma</i>, <i>Inocybe</i>, <i>Russula</i> have not been sufficiently studied.</p>
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
Wood-rotting basidiomycetes have been investigated in the Chinese forest ecosystem for the past 30 years. Two hundred and five pathogenic wood-decayers belonging to 9 orders, 30 families, and 74 genera have been found in Chinese native forests, plantations, and gardens. Seventy-two species (accounting for 35% of the total pathogenic species) are reported as pathogenic fungi in China for the first time. Among these pathogens, 184 species are polypores, nine are corticioid fungi, eight are agarics and five are hydnoid basidiomycetes. One hundred and seventy-seven species (accounting for 86%) cause white rot, while 28 species (accounting for 14%) result in brown rot; 157 species grow on angiosperm trees (accounting for 76.5%) and 44 species occur on gymnosperm trees (accounting for 21.5%), only four species inhabit both angiosperms and gymnosperms (accounting for 2%); 95 species are distributed in boreal to temperate forests and 110 in subtropical to tropical forests. In addition, 17 species, including,, and etc. which were previously treated as pathogenic species in China, do not occur in China according to recent studies. In this paper, the host(s), type of forest, rot type, and distribution of each pathogenic species in China are given.© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
崔宝凯, 潘新华, 潘峰, 孙一翡, 邢佳慧, 戴玉成, 2023. 中国灵芝属真菌的多样性与资源. 菌物学报, 42: 170-178
灵芝属是大型真菌的一个重要类群,具有重要的经济价值、生态价值和文化价值。尽管国内外对灵芝属真菌的研究较多,但灵芝属真菌的分类一直存在诸多问题,我国过去报道的灵芝属真菌有114个分类单元,但其中很多的分类地位存在争议。本文基于凭证标本,确认我国目前发现的灵芝种类有40种,其中具有ITS分子序列的种类有39种,其他74个分类单元或为同物异名或为待定种。本文提供的中国39种灵芝的ITS序列可为今后准确鉴定灵芝的野生和栽培种类提供依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
戴玉成, 杨祝良, 2008. 中国药用真菌名录及部分名称的修订. 菌物学报, 27(6): 801-824
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
李彩虹, 2023. 基于生物信息学方法鉴定皮肤黑色素瘤失巢凋亡相关基因并构建预后模型. 吉林大学硕士论文, 长春. 1-41
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
林志彬, 2015. 灵芝的现代研究(第4版). 北京: 北京大学医学出版社. 10-15
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
邵泓杰, 孙军花, 刘建波, 陈若芸, 康洁, 2024. 灵芝三萜的化学成分及药理活性研究进展. 菌物研究, 22(1): 39-59
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
滕李铭, 田雪梅, 吴芳, 戴玉成, 2021. 13种野生灵芝菌丝体中胞内三萜与多糖含量的比较. 菌物学报, 40: 1811-1819
为探究不同野生灵芝的主要活性成分以及对野生灵芝的开发利用价值,对13种野生灵芝菌株在同一条件下进行液体发酵,采用化学分析的方法,比较菌丝体胞内三萜和多糖的含量差异。结果显示,13种灵芝菌株的三萜和多糖含量有很大差异,其中无柄紫灵芝Ganoderma mastoporum、亮盖灵芝G. lucidum和树舌灵芝G. applanatum的三萜含量较高;树舌灵芝G. applanatum、紫芝G. sinense和褐灵芝G. brownii的多糖含量较高。目前国内广泛栽培灵芝G. lingzhi的野生菌株发酵产物中的三萜和多糖含量并不是最高的,研究结果表明不同种类的野生灵芝还有进一步挖掘的潜在价值。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
图力古尔, 戴玉成, 2004. 长白山主要食药用木腐真菌多样性及其保育. 菌物研究, 2(2): 26-30
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
王永祥, 2022. 保山赤芝中杂萜的定向获取及体外抗肾纤维化探究. 云南民族大学硕士论文, 昆明. 1-112
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
吴兴亮, 戴玉成, 林尤河, 2004. 中国灵芝科资源及其地理分布Ⅲ. 贵州科学, 22(4): 36-40
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
武英达, 满孝武, 员瑗, 戴玉成, 2022. 中国各省植物园中多孔菌种类、分布和组成. 生物多样性, 30: 22213
多孔菌是木材腐朽菌中最关键的真菌类群, 是森林生态系统的重要组成部分。为了明确植物园对植物上真菌资源的保护状况, 在2010-2021年间, 作者对全国31个省(自治区、直辖市)的31个代表性植物园中木本植物上的多孔菌进行了系统调查、标本采集和种类鉴定, 记录多孔菌164种, 隶属于担子菌门伞菌纲6目23科79属。其中, 中国科学院西双版纳热带植物园、儋州热带植物园和广西药用植物园多孔菌种类最多, 分别有90种、46种和37种; 兰州植物园、西宁植物园和乌鲁木齐植物园物种数量最少, 分别有4种、3种和2种。在植物园中, 分布最多的物种是云芝栓孔菌(Trametes versicolor)、白囊耙齿菌(Irpex lacteus)和黑管孔菌(Bjerkandera adusta), 分别生长在24、18和18个植物园中, 而软多孢孔菌(Abundisporus mollissimus)等32种多孔菌只发现于中国科学院西双版纳热带植物园中。在164种多孔菌中, 常见种、偶见种和稀有种分别有114、40和10种。生长在植物园中的多孔菌仅占全国所有森林生态系统多孔菌总数的16%, 而植物园中发现的稀有种仅占全国稀有种总数的3.1%。在10种稀有多孔菌中, 有6种发现于中国科学院西双版纳热带植物园的天然林中, 其中4种稀有多孔菌发现于植物园内的人工林中, 占植物园所有多孔菌的2.4%, 占全国稀有多孔菌的1.3%。所调查植物园多孔菌包括了热带、亚热带、温带、北半球广布和寒温带成分, 分别包括50、45、38、20和11种, 占本研究多孔菌总数的30.5%、27.4%、23.2%、12.2%和6.7%。目前中国植物园保存了我国60%的植物种类, 包括85%的珍稀濒危植物, 但对生长在植物园中的多孔菌资源保护作用有限。因此, 对稀有多孔菌的保育仍需聚焦在森林生态系统的保护上。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
徐维启, 李玥, 李海蛟, 刘冬梅, 杨宁, 张琦, 何双辉, 2023. 北京市大型真菌物种多样性调查与资源评价. 生物多样性, 31: 23196
大型真菌作为生态系统的主要组成部分, 具有重要的生态功能与经济价值。本研究于2020-2022年采用样线法和随机踏查法对北京市大型真菌资源进行调查, 共采集标本5,448份。通过形态学与分子生物学方法鉴定物种608种, 进一步结合相关文献资料确定北京市大型真菌共619种, 隶属于2门6纲22目93科277属, 其中担子菌门595种, 子囊菌门24种, 中国新记录种5种, 北京新记录种120种。基于以上物种名录开展物种组成和区系地理分析以及资源评价, 结果表明: 含10种以上的优势科共19科, 占总物种数的59.61%, 主要有: 蘑菇科、多孔菌科、小脆柄菇科、红菇科、口蘑科等; 含5种以上的优势属有33属, 占总物种数的38.13%, 主要有: 丝膜菌属(Cortinarius)、裸脚伞属(Gymnopus)、丝盖伞属(Inocybe)、白环蘑属(Leucoagaricus)、红菇属(Russula)等。北京市大型真菌以世界广布属(61.37%)和北温带分布属(31.05%)为主, 其次是泛热带分布属(5.42%)。北京市共有食用菌71种、药用菌43种、有毒菌22种、食药兼用菌45种。本研究结果为北京市大型真菌的物种多样性保护以及资源利用提供了科学依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
应建浙, 卯晓岚, 马启明, 宗毓臣, 文华安, 1987. 中国药用真菌图鉴. 北京: 科学出版社. 1-579
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
袁守军, 2016. 多药合用药效学协同、相加和拮抗定量计算新方法的建立. 中国药理学与毒理学杂志, 30(12): 1316-1332
许多严重疾病如癌症的病因复杂,属于多靶点疾病,针对多个靶点联合用药比单靶点用药更容易实现治疗目的。药物联用可产生多层面的相互作用,最终表现为药效发生协同、相加或拮抗。对其进行定量评价的前提是获得多药合用组合的预期相加效应值。但长期以来一直缺乏精确计算协同、相加和拮抗的可靠方法,使新复方药物研究等发展受阻。通过等效剂量兑换和引入药理学中的药效的序贯和集合原理,作者发现了多药合用组合预期相加效应的数学规律,简述如下:多药合用剂量组合的预期相加效应值是一个连续的数值范围,即预期相加效应值是药物组合剂量的闭区间数集函数,建立了通用型计算公式。在二维坐标系中显示为一条量效曲带,与多药合用组合的实际量效曲线构成一幅“一条曲带和一条曲线”的图像。组成预期相加量效曲带的量效曲线的数量,随着合用药物数量的增加呈指数性增长。通过计算实际量效曲线和相加量效曲带的交点坐标,能够得出多药合用组合药效发生协同、相加或拮抗的剂量范围;通过比较实际量效曲线中的效应值(或剂量值)与相加量效曲带的偏离状况,能够得出发生协同、相加或拮抗程度的指标,如剂量合用指数和效应合用指数等。该方法能为新复方药物研发、多药联合效应的定量评价和中药复方的效应评价等提供可靠通用的计算方法,简称为“一带一线”法。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
张筱, 闫克芹, 冯定庆, 凌斌, 2019. 环氧合酶2在肿瘤发生发展中的作用研究进展. 肿瘤防治研究, 46(11): 1036-1039
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |