糙皮侧耳AQPs基因家族鉴定与表达分析

胡继鹏, 鲍大鹏, 邹根, 高贺宇, 尚俊军, 唐利华

菌物学报 ›› 2025, Vol. 44 ›› Issue (3) : 240252.

PDF(940 KB)
中文  |  English
PDF(940 KB)
菌物学报 ›› 2025, Vol. 44 ›› Issue (3) : 240252. DOI: 10.13346/j.mycosystema.240252 CSTR: 32115.14.j.mycosystema
研究论文

糙皮侧耳AQPs基因家族鉴定与表达分析

作者信息 +

Identification and expression analyses of the aquaporin gene family in Pleurotus ostreatus

Author information +
文章历史 +

摘要

水通道蛋白(AQP)基因家族在真菌的水分运输及多种生理过程中发挥重要作用。本研究通过生物信息学方法系统鉴定糙皮侧耳Pleurotus ostreatus AQP家族成员(PoAQPs),并对其理化性质、亚细胞定位、染色体定位、系统进化关系、保守基序以及启动子顺式作用元件进行分析。同时,通过RT-qPCR检测PoAQPs基因在不同生长阶段以及水分过剩胁迫条件下的相对表达量。分析显示,糙皮侧耳基因组中共鉴定出5个PoAQPs成员,分为经典AQP和AQGP 2个亚家族,均含有MIP超家族结构域和经典的水通道蛋白三级结构特征;5个PoAQPs基因分布于4条染色体上,亚细胞定位预测结果显示,这些基因均定位于细胞膜;同一亚家族的成员具有相似的保守基序;启动子区域富含大量的激素响应和非生物胁迫相关的调控作用元件;RT-qPCR结果显示,PoAQPs基因在不同生长阶段和水分过剩胁迫条件下的表达存在显著差异,且主要在糙皮侧耳的子实体阶段以及水分过剩胁迫8 h中高表达。推测PoAQPs在调控糙皮侧耳的生长发育及非生物胁迫响应中发挥作用,这一发现为深入理解糙皮侧耳的水分调控机制及抗胁迫品种的培育提供了理论支持。

Abstract

The aquaporin (AQP) gene family plays a crucial role in water transport and various physiological processes in fungi. In this study, the members of the AQP family in Pleurotus ostreatus (PoAQPs) were systematically identified using bioinformatics approaches, and their physicochemical properties, subcellular localization, chromosomal distribution, phylogenetic relationships, conserved motifs, and cis-regulatory elements of the promoters were analysed. The relative expression levels of PoAQPs were evaluated in various growth stages and under waterlogging stress conditions using RT-qPCR. As a result, five members of the aquaporin (PoAQPs) gene family in the genome of Pleurotus ostreatus were identified, which were categorized into two subfamilies, classical aquaporins (AQPs) and aquaglyceroporins (AQGPs). All members contained the MIP superfamily domain and exhibited the characteristic tertiary structure of classical water channel proteins. The five PoAQPs genes were distributed among four chromosomes, and subcellular localization predictions indicated that these genes were located at the cell membrane. Members within the same subfamily shared similar conserved motifs. The promoter regions were enriched with numerous regulatory elements related to hormonal responses and abiotic stress. RT-qPCR results revealed significant differences in the expression levels of PoAQPs genes in various growth stages and in response to waterlogging stress, with particularly high expression during the fruiting body stage and after 8 hours of waterlogging stress. It is suggested that PoAQPs are involved in the regulation of the growth, the development of Pleurotus ostreatus as well as the responses to abiotic stress. These findings offer valuable theoretical insights into the mechanisms of water regulation in Pleurotus ostreatus and give support to the breeding of stress-resistant varieties.

关键词

糙皮侧耳 / 水通道蛋白 / 基因家族 / 生物信息学 / 表达分析

Key words

Pleurotus ostreatus / aquaporins / gene family / bioinformatics / expression analysis

引用本文

导出引用
胡继鹏, 鲍大鹏, 邹根, 高贺宇, 尚俊军, 唐利华. 糙皮侧耳AQPs基因家族鉴定与表达分析[J]. 菌物学报, 2025, 44(3): 240252 https://doi.org/10.13346/j.mycosystema.240252
HU Jipeng, BAO Dapeng, ZOU Gen, GAO Heyu, SHANG Junjun, TANG Lihua. Identification and expression analyses of the aquaporin gene family in Pleurotus ostreatus[J]. Mycosystema, 2025, 44(3): 240252 https://doi.org/10.13346/j.mycosystema.240252
糙皮侧耳Pleurotus ostreatus (Jacq.) P Kumm.,俗称平菇,是全球广泛栽培的重要食用菌,因其极高的经济和营养价值而备受青睐(Ma et al. 2018;Özdemir et al. 2021;Effiong et al. 2024)。“雨后出蘑菇”这一自然现象揭示了水分在蘑菇形态转变中的关键作用,其对蘑菇子实体产量和品质具有重要影响。随着全球气候变化和环境压力的加剧,作为一种新兴农业生产方式,食用菌种植的产量和质量正面临严峻挑战(Bennett & Classen 2020;Kumar et al. 2021)。因此,深入研究糙皮侧耳对环境胁迫的适应机制显得尤为重要,不仅有助于提高栽培效率,还为开发更具环境适应性的食用菌新品种提供理论依据,从而保障食用菌产业的可持续发展。
水通道蛋白(aquaporins, AQPs)是一类高度保守的跨膜蛋白,主要负责选择性转运水分子及某些小分子溶质,如甘油、尿素和部分气体(Agre et al. 2002)。自1992年首次鉴定出水通道蛋白以来,AQPs已在植物、动物及微生物中被广泛鉴定和研究,显示出其在调节细胞内外水分平衡及响应环境胁迫中起着关键作用(Chevriau et al. 2024)。在真菌中,AQPs主要分为两类:经典水通道蛋白(aquaporin, AQP)和水-甘油通道蛋白(aquaglyceroporins, AQGP),它们均属于主要内在蛋白(MIPs)超家族,负责跨膜运输水和中性溶质(Tanghe et al. 2006;Verma et al. 2014)。已有研究集中在特定真菌中的AQPs功能,包括酿酒酵母Saccharomyces cerevisiae (Xu & Zwiazek 2020)、代氏根霉Rhizopus delemar (Turgeman et al. 2016)、灰葡萄孢菌Botrytis cinerea (An et al. 2016)和沙漠松露Terfezia claveryi (Navarro-Ródenas et al. 2012)。如酵酒酵母中存在两类水通道蛋白:经典水通道蛋白(Aqy1和Aqy2)和水-甘油通道蛋白(Fps1和Yfl054) (Pettersson et al. 2005)。其中,Aqy1与孢子形成有关,而Aqy2则参与形态发生过程(Ahmadpour et al. 2014)。Fps1在酿酒酵母的渗透压调节中发挥核心作用,通过调控细胞内甘油的水平来适应不同的渗透压条件。在高渗透压条件下,其活性降低以保留甘油,而在低渗透压条件下则恢复活性以释放甘油(Tamás et al. 1999)。类似地,菌根真菌“沙漠松露”中的TcAQP1不仅能够转运水分,还能转运CO2,这一功能与其在半干旱环境中的适应性及其共生机制密切相关(Navarro-Ródenas et al. 2012)。
目前,关于丝状真菌AQPs的研究仍然有限,尤其是在糙皮侧耳中,尚未见到关于AQPs基因家族鉴定的报道,特别是AQPs在糙皮侧耳子实体发育及非生物胁迫中的作用尚未得到充分表征。
本研究通过生物信息学方法鉴定PoAQPs家族成员,并对其理化性质、亚细胞定位、染色体定位、系统进化关系、保守基序以及启动子顺式作用元件进行分析,最后利用RT-qPCR分析PoAQPs基因在不同生长阶段及水分过剩胁迫条件下的表达模式。该研究结果可为食用菌领域的AQPs研究提供新数据,同时对优化食用菌栽培管理、提升子实体产量及品质具有潜在的应用价值。

1 材料与方法

1.1 菌株、试剂和仪器

糙皮侧耳ATCC56271标准菌株取自上海市农业科学院食用菌研究所。TRIzol和cDNA反转录试剂盒[生工生物工程(上海)股份有限公司]、ABI 7300型荧光定量PCR仪(Thermo Fisher Scientific公司)。

1.2 样品处理

按照87%棉籽壳、12%麸皮和1%石灰的配方制作出菇栽培料,水分含量控制在60%,pH 7.0-7.5。每个组培瓶分装50 g培养料,121 ℃高压灭菌3 h后,置于超净工作台中接入等量糙皮侧耳二级种菌块,放入25 ℃恒温培养箱中培养,待菌丝长满后移至出菇箱。在水分过剩胁迫处理中,将去离子水均匀等量倒入组培瓶中,确保水分完全浸没菌丝体,水浸处理时间设置为0、4、8和12 h,满足水浸时间后将水倒出。所有水浸操作均在无菌条件下进行,避免外源污染。对糙皮侧耳的菌丝、原基、幼小和成熟子实体阶段的样品进行取样,同时在不同水浸时间下对菌丝进行取样。所有样品均经过液氮速冻处理,并存放于-80 °C超低温冰箱中,以备后续实验使用。所有实验均设有3个生物学重复,以确保结果的可靠性和可重复性。

1.3 PoAQPs家族成员鉴定

从InterPro数据库(https://www.ebi.ac.uk/interpro/entry/pfam/PF00230/curation/)下载水通道蛋白AQPs (PF00230)家族的hmm文件,从Ensembel数据库下载糙皮侧耳的全基因组(GCA_000697685.1)、蛋白质、cds和GFF3数据文件。将糙皮侧耳全基因组蛋白文件与种子文件通过Tbtools软件中的simple HMM search构建的隐马尔可科夫模型进行比对,得到候选的糙皮侧耳蛋白质序列(Zeng et al. 2023)。随后从NCBI网站(https://www.ncbi.nlm.nih.gov/)下载模式真菌AQPs同源序列,并使用BLAST工具进行比对。对HMMER和BLAST结果取交集,共得到5条PoAQPs蛋白序列。用CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)鉴定保守结构域,每条蛋白都含有MIP超家族结构域。

1.4 PoAQPs家族成员的生物信息学分析

1.5 PoAQPs家族成员的系统进化分析

根据已经得到的5个蛋白序列,并结合多个已报道的真菌的水通道蛋白进行进化分析,构建系统发育树。使用MEGA11软件采用最大似然法对AQPs家族的蛋白序列构建系统进化树,Bootstrap设为1 000进行自检(Kumar et al. 2018)。使用在线工具iTOL v6 (https://itol.embl.de/)和Adobe Illustrator 2023软件美化进化树。

1.6 PoAQPs基因家族成员保守基序、染色体定位分析

通过MEME软件将蛋白序列转换成Mast- out文件,再用Tbtools软件(Chen et al. 2020)对motif进行可视化分析。使用TBTtools软件,输入全基因组的Gff3文件和5个AQPs蛋白序列ID,可视化得到PoAQPs的染色体位置分布。

1.7 PoAQPs顺式作用元件分析

通过Tbtools软件提取PoAQPs基因家族的前2 000 bp启动子序列,在Plantcare (http://bioinformatics.psb.ugent.be/webtools/plantcare/html)中预测顺式作用元件,整理之后用Tbtools进行可视化。

1.8 RT-qPCR分析

为进一步解析PoAQPs基因家族各成员的功能,本研究采用RT-qPCR分析了5个PoAQPs基因在不同生长阶段及不同水分过剩胁迫时间下的表达模式。使用RNA提取试剂盒分别提取糙皮侧耳不同发育时期(菌丝体、原基、幼小子实体和成熟子实体)以及不同水分过剩胁迫时间(0、4、8和12 h)下的样本总RNA,按照试剂盒说明书反转录为cDNA。针对PoAQPs家族蛋白序列及内参基因设计了特异性引物(表1),利用荧光定量PCR仪进行扩增。根据扩增所得的Ct值,采用2-ΔΔCT法计算基因相对表达量(Jozefczuk & Adjaye 2011)。
表1 糙皮侧耳PoAQPs基因的RT-qPCR引物

Table 1 Specific primers for RT-qPCR of PoAQPs genes in Pleurotus ostreatus

基因ID
Gene ID
基因名称
Gene name
上游引物
Forward primer (5ʹ→3ʹ)
下游引物
Reverse primer (5ʹ→3ʹ)
KDQ32801 PoAQPs1 CCACGCGATCGACATCTTTG ATAATCCGCCGCGTAGGTAG
KDQ25901 PoAQPs2 TGGTGCCGCTTTGGTCTAC AAAGAGCCCAGCAGTGTTC
KDQ25940 PoAQPs3 CCGGTTGGAGTTGGGTTGAC CCCAGTACACCCAGTGATGTG
KDQ24900 PoAQPs4 CGGTGCGGCAATGAATACTG GCCAATACACCCAATGGTGC
KDQ28261 PoAQPs5 GGGCTCACACTCTTCGTTGG CGGGCCGAGCCAATAAATCC
β-actin ATCCACGAGACAACATACAAC GATAGAACCACCAATCCAAA

2 结果与分析

2.1 PoAQPs家族成员的鉴定及理化性质分析

结合HMM和BLAST比对分析,共鉴定出5条PoAQPs序列。CDD结构域分析结果显示,这些蛋白均具有典型的MIP结构域,将其依次命名为PoAQPs1-PoAQPs5。PoAQPs家族成员的理化性质分析表明(表2),家族成员的蛋白序列长度较为一致,介于173-277 aa之间;PoAQPs平均分子量为27.15 kDa,其中PoAQPs3的分子量最大,为29.72 kDa,PoAQPs4最小,为20.78 kDa;蛋白质等电点(pI)介于6.06 (PoAQPs1)-9.75 (PoAQPs4)之间;疏水性介于0.479 (PoAQPs5)-0.661 (PoAQPs4);亚细胞定位预测显示,PoAQPs均定位于细胞膜。
表2 PoAQPs家族成员的理化性质

Table 2 Physicochemical properties of PoAQPs family members

基因ID
Gene ID
基因名称
Gene name
蛋白序列长度
Protein length (aa)
分子量
Molecular
weight (kDa)
等电点
Isoelectric
point
疏水性
Hydrophobicity
亚细胞定位
Subcellular location
KDQ32801 PoAQPs1 249 26.775 28 6.06 0.600 细胞膜 Plasma membrane
KDQ25901 PoAQPs2 272 29.228 09 8.32 0.606 细胞膜 Plasma membrane
KDQ25940 PoAQPs3 277 29.724 69 9.40 0.637 细胞膜 Plasma membrane
KDQ24900 PoAQPs4 195 20.781 46 9.75 0.661 细胞膜 Plasma membrane
KDQ28261 PoAQPs5 173 29.218 93 6.58 0.479 细胞膜 Plasma membrane

2.2 PoAQPs家族成员二级和三级结构分析

PoAQPs中的二级结构占比大致相同 (表3),其中无规则卷曲占比最大(40.56%- 50.55%),其次是α-螺旋(34.44%-41.03%)和延伸链(15.02%-24.10%)。使用SWISS-MODEL成功预测了PoAQPs家族成员的三级结构 (图1)。这些蛋白的核心结构均由6个跨膜螺旋(TM1-TM6)组成,并由5个连接环(Loop A-E)连接,这种高度保守的结构在所有PoAQPs中均显著保留。所有5个PoAQPs蛋白均展示出典型的NPA基序(Asn-Pro-Ala),位于2个半螺旋(HB和HE)的N端之间,该基序可能是这些蛋白质功能的关键,尤其是水分子转运及选择性通透性。值得注意的是,PoAQPs2和PoAQPs5的细胞外C末端环(Loop E)较长,PoAQPs4展示了独特的Loop B延伸结构,PoAQPs1和PoAQPs4在TM4和TM5之间的相互作用更为紧密,这暗示它们可能存在不同的构象开关机制。
表3 糙皮侧耳PoAQPs二级结构分析

Table 3 Secondary structure analyses of PoAQPs in Pleurotus ostreatus

基因ID
Gene ID
基因名称
Gene name
α-螺旋(Hh)
Alpha helix (%)
无规则卷曲(Cc)
Random coil (%)
延伸链(Ee)
Extended strand (%)
KDQ32801 PoAQPs1 35.34 40.56 24.10
KDQ25901 PoAQPs2 35.66 42.28 22.06
KDQ25940 PoAQPs3 38.27 47.29 14.44
KDQ24900 PoAQPs4 41.03 41.03 17.95
KDQ28261 PoAQPs5 34.43 50.55 15.02
图1 糙皮侧耳PoAQPs三级结构预测

Fig. 1 Prediction of tertiary structure of the PoAQPs in Pleurotus ostreatus.

Full size|PPT slide

2.3 PoAQPs基因家族成员系统发育分析

为了明确糙皮侧耳AQP家族成员的进化关系,本研究结合多个已经报道的代表性真菌水通道蛋白序列进行系统发育树的构建。进化分析显示,糙皮侧耳的PoAQPs可分为2个亚类:经典水通道蛋白(AQP)和水-甘油通道蛋白(AQGP) (图2)。其中PoAQPs3、PoAQPs4和PoAQPs5聚类于经典的AQP亚类,表现出与其他真菌AQP高度保守的特征,表明其主要参与水分子选择性转运的功能;而PoAQPs1和PoAQPs2则属于AQGP亚类,与众多已知的甘油通道蛋白聚为一簇,暗示它们不仅具有转运水的功能,还可能在甘油及其他小分子溶质的转运过程中发挥重要作用。糙皮侧耳AQP的系统发育分析为进一步理解糙皮侧耳水通道蛋白的多样性及其在环境适应性中的特异性功能提供了重要的参考依据。
图2 不同物种AQPs系统进化树

Fig. 2 Phylogenetic tree of AQPs in different species.

Full size|PPT slide

2.4 PoAQPs家族成员Motif分析

通过使用MEME和TBTtools软件对糙皮侧耳PoAQPs进行Motif分析,共预测出8个Motif (Motif 1-Motif 8) (图3)。分析结果显示,每个PoAQPs蛋白序列中均包含Motif 2、Motif 3和Motif 5,表明这些Motif在糙皮侧耳PoAQPs中分布最广泛,保守性最强。亲缘关系较近的PoAQPs通常具有相似的Motif,反映了它们之间密切的亲缘关系。相比之下,Motif差异较大的PoAQPs往往分属不同的亚族,具有较远的亲缘关系,导致它们的蛋白质Motif数量和分布存在显著差异,如PoAQPs1和PoAQPs5。此分析揭示了糙皮侧耳AQPs家族中不同成员在结构上的保守性与多样性,为进一步研究其功能特性提供了重要线索。
图3 PoAQPs基因家族成员的保守基序

Fig. 3 Conserved motif analyses of PoAQPs gene family members.

Full size|PPT slide

2.5 PoAQPs染色体定位分析

PoAQPs家族成员的染色体定位分析发现(图4),5个PoAQPs分布于4条染色体上,包括Chr4、Chr8、Chr10和Chr11,且分布并不均匀。其中,Chr10上聚集了2个PoAQPs基因(PoAQPs2PoAQPs3),而其余染色体上均只定位了一个PoAQPs基因。PoAQPs基因家族的这种不均匀分布可能反映了基因复制或染色体重排在基因进化中的作用,尤其是Chr10上的多基因分布可能代表了相关功能基因的簇群现象,揭示了其在特定生物过程中的协同作用。这种分布格局的揭示为深入理解糙皮侧耳水通道蛋白基因的演化与功能调控提供了重要线索。
图4 PoAQPs基因的染色体定位

Fig. 4 Chromosomal location of PoAQPs genes.

Full size|PPT slide

2.6 PoAQPs家族成员顺式作用元件分析

PoAQPs基因启动子区的顺式作用元件分析揭示了其在基因转录调控及环境响应中的潜在功能。通过PlantCARE数据库对PoAQPs基因上游2 000 bp区域的顺式作用元件进行预测,共鉴定出12种不同类型的元件,包括光响应、水杨酸响应、脱落酸响应、厌氧诱导、细胞周期调控、低温响应、分生组织表达、参与缺氧特异性诱导、参与干旱诱导的MYB结合位点、昼夜节律控制、生长素响应以及MYBHv1结合位点元件(图5)。这些元件在PoAQPs基因的启动子区域内具有较高的一致性,表明这些基因家族成员可能通过多种生物途径共同调控糙皮侧耳的生长发育及对环境胁迫的应答。这些发现为进一步探索PoAQPs基因在不同环境条件下的调控机制提供了理论依据。
图5 糙皮侧耳PoAQPs家族成员的启动子顺式作用元件分析

Fig. 5 Analyses of promoter cis-acting elements of PoAQPs gene family members in Pleurotus ostreatus.

Full size|PPT slide

2.7 PoAQPs的表达分析

RT-qPCR分析显示,PoAQPs基因在不同生长阶段和水分过剩胁迫条件下的表达存在显著差异。在生长过程中,PoAQPs1PoAQPs2PoAQPs5的表达量逐渐增加,并在成熟子实体阶段达到最高峰(图6A)。相比之下,PoAQPs3的表达在整个发育过程中变化较小,仅在成熟子实体阶段显著上调。以上结果表明PoAQPs在糙皮侧耳子实体形成阶段发挥重要作用。 在水分过剩胁迫实验中(图6B),PoAQPs1PoAQPs2PoAQPs4PoAQPs5的表达量呈现出先升后降的趋势,并在8 h时达到峰值。尤其是PoAQPs5,在12 h时依然保持较高的表达水平,表明其在长期水分胁迫中的潜在适应性。相反,PoAQPs3的表达则呈现出先降后升再降的趋势,并在12 h时达到最低值。这些PoAQPs基因表达水平的变化可能反映了它们在调节细胞内外水势变化和维持细胞膨压中的关键作用,从而帮助调控细胞内的水分平衡,避免因水分过量导致的细胞损伤。总的来说,PoAQPs家族成员在糙皮侧耳不同生长发育阶段和水分过剩胁迫响应中的表达模式和功能表现出显著差异。这些结果为进一步探讨PoAQPs的生物学功能提供了关键线索。
图6 糙皮侧耳不同生长阶段(A)及水分过剩胁迫(B)下PoAQPs基因的表达模式分析 A:不同生长阶段下PoAQPs的相对表达量,M、P、Y、S分别表示糙皮侧耳的菌丝体、原基、幼小子实体和成熟子实体阶段;B:不同水分过剩胁迫时间下PoAQPs的相对表达量. 数据为平均值±标准差(n=3),*表示组间有显著性差异,*、**、***和****分别表示在P<0.05、P<0.01、P<0.001、P<0.000 1水平上差异显著

Fig. 6 Analysis of PoAQPs gene expression patterns in Pleurotus ostreatus under different growth stages (A) and waterlogging stress (B). A: The relative expression levels of PoAQPs at different growth stages, with M, P, Y, and S representing the mycelium, primordium, young fruiting body, and mature fruiting body stages of Pleurotus ostreatus, respectively. B: The relative expression levels of PoAQPs under different waterlogging stress durations. Data are presented as the mean ± standard deviation (n=3). * Indicates significant differences between groups, with *, **, ***, and **** indicating significance levels of P<0.05, P<0.01, P<0.001, and P<0.000 1, respectively.

Full size|PPT slide

3 讨论

在动植物和真菌中,AQPs不仅参与细胞水分的转运和维持细胞渗透压平衡,还在细胞应对外界环境变化、调节生长发育进程中起到重要作用(Maurel & Chrispeels 2001)。研究表明,过表达Aqy1Aqy2增强了酿酒酵母的冷冻耐受性(Tanghe et al. 2002);AQP8调节灰葡萄孢菌Botrytis cinerea的细胞发育和活性氧生成,并在致病过程中发挥重要作用(An et al. 2016)。由于基因组测序技术的快速发展,已经在很多真菌中鉴定出AQPs,如黑曲霉Aspergillus niger 7个(Laothanachareon et al. 2023)、木霉Trichoderma atroviride 7个(Amira et al. 2021)、灵芝Ganoderma lingzhi 5个(朱全宇 2022)、禾谷镰孢菌Fusarium graminearum 5个(丁明玉 2018),这些结果为AQPs在真菌生长发育、环境适应及水分调控等生物学功能的研究奠定了基础。本研究从糙皮侧耳基因组中成功鉴定出5个PoAQPs基因家族成员。系统发育分析将5个PoAQPs基因分为两大类:经典水通道蛋白(AQP)和水通道-甘油通道蛋白(AQGP),这种分类与在其他真菌中的报道一致,表明这些基因在真菌中的进化和功能具有一定的序列保守性(Chevriau et al. 2024)。进一步的Motif分析揭示了尽管这些基因的序列存在差异,但其保守的NPA基序可能决定了这些蛋白的基本功能,如水分子运输和选择性通透性(Törnroth-Horsefield et al. 2006)。PoAQPs基因启动子区域含有大量与非生物胁迫相关的调控作用元件,如低温响应和缺氧诱导,表明PoAQPs基因家族参与糙皮侧耳非生物胁迫过程。
MIP超家族结构域是水通道蛋白的关键特征,负责水分子在细胞膜上的高效选择性运输(Xiong et al. 2023)。该结构域的存在表明这些PoAQPs具有经典的水分运输功能,确保在不同环境条件下的水分平衡。同时,MIP超家族结构域的保守性也揭示这些蛋白在进化过程中保留了其核心功能,可能参与了糙皮侧耳对环境胁迫的响应和适应过程。PoAQPs在三级结构上具有显著保守性,尤其是6个跨膜螺旋和NPA基序(图1),而NPA基序的存在被认为是水通道蛋白能够高效选择性转运水分子的基础,阻止质子的通过(Murata et al. 2000;Hub & de Groot 2008)。这种结构的保守性支持了其在水分子转运中的核心功能,同时通过特定的电性环境维持选择性通透性。尽管PoAQPs成员在整体结构上表现出高度的保守性,但每个成员在关键区域的结构变异可能与其在不同发育阶段或环境胁迫下的功能分化有关。例如,PoAQPs2和PoAQPs5中细胞外C末端环较长的Loop E可能反映了其在环境胁迫中的特定功能,而PoAQPs4中独特的Loop B延伸结构可能赋予其特殊的分子识别或信号传导功能。这些结构上的差异揭示了这些蛋白质在应对不同环境条件和细胞功能需求时的功能多样性(Lee et al. 1997)。这些预测的结构不仅揭示了PoAQPs家族成员的功能多样性,还为未来的实验验证提供了重要的参考。
在糙皮侧耳的不同生长阶段及水分过剩胁迫条件下,PoAQPs基因的表达量和趋势不同。本研究发现,PoAQPs基因均在子实体阶段高表达,表明它们可能在子实体的形成和成熟中发挥重要作用,这与先前在其他真菌中观察到的AQPs基因在发育过程中的功能相一致。例如,AQPs在调控丝状真菌菌丝的生长、菌核和分生孢子的形成及孢子萌发方面发挥重要作用(Li et al. 2013;Nehls & Dietz 2014)。同时,AQPs还与次级代谢物的产生和分子运输过程有关(Turgeman et al. 2016;Ding et al. 2018)。这种现象可能源于AQPs在调控细胞膨压和水分运输中的关键作用,这对于维持真菌子实体的正常生长发育至关重要。在水分过剩胁迫条件下,PoAQPs1PoAQPs2PoAQPs4PoAQPs5的基因表达量呈先升后降的趋势,并在胁迫8 h达到峰值,其中PoAQPs5在胁迫12 h后依然保持高表达。类似的响应模式在其他真菌(如酿酒酵母)中也有报道,AQPs通过在不同环境中维持细胞内适应环境的渗透压,从而防止细胞脱水或过度膨胀(Benga 2009;Xu & Zwiazek 2020)。与此同时,AQPs在植物病原真菌和共生真菌中也扮演重要角色,其不仅影响真菌自身的生长,还通过调节水分运输来改变真菌与宿主植物的相互作用(Lu et al. 2023;Wang et al. 2024)。如丛枝菌根(AM)真菌可以通过调控共生植物桑树根系中PIPsTIPs家族基因的表达,促进桑树水分吸收和氮素利用(涂德辉等 2022)。
本研究通过生物信息学方法在糙皮侧耳基因组中鉴定出5个PoAQPs,系统发育分析显示5个PoAQPs属于2个不同的亚家族,均含有MIP超家族结构域和经典的AQPs三级结构特征。同时PoAQPs基因在糙皮侧耳不同生长阶段和不同水分过剩胁迫时间下存在差异性表达,表明PoAQPs在糙皮侧耳的子实体成熟及响应非生物胁迫中起到重要作用。研究结果为食用菌AQPs领域的研究提供了新的见解,为解析糙皮侧耳的水分调控分子机制和培育抗胁迫品种提供理论依据。未来,通过进一步的AQPs功能验证及更深入的环境适应性研究,有望更好地理解AQPs在真菌生态学中的作用,从而为食用菌栽培育种及产业发展提供潜在的新策略。

作者贡献

胡继鹏:设计和完成实验、分析数据、撰写和修改文稿;鲍大鹏:提供论文思路;邹根:指导实验;尚俊军:参与设计实验、指导论文写作;高贺宇:参与完成实验、分析数据;唐利华:指导实验和论文写作。

利益冲突

作者声明,该研究不存在任何潜在利益冲突的商业或财务关系。

参考文献

[1]
Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S, 2002. Aquaporin water channels-from atomic structure to clinical medicine. The Journal of Physiology, 542(Pt 1): 3-16
[2]
Ahmadpour D, Geijer C, Tamás MJ, Lindkvist-Petersson K, Hohmann S, 2014. Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochimica et Biophysica Acta, 1840(5): 1482-1491
The yeast Saccharomyces cerevisiae provides unique opportunities to study roles and regulation of aqua/glyceroporins using frontline tools of genetics and genomics as well as molecular cell and systems biology.S. cerevisiae has two similar orthodox aquaporins. Based on phenotypes mediated by gene deletion or overexpression as well as on their expression pattern, the yeast aquaporins play important roles in key aspects of yeast biology: establishment of freeze tolerance, during spore formation as well as determination of cell surface properties for substrate adhesion and colony formation. Exactly how the aquaporins perform those roles and the mechanisms that regulate their function under such conditions remain to be elucidated. S. cerevisiae also has two different aquaglyceroporins. While the role of one of them, Yfl054c, remains to be determined, Fps1 plays critical roles in osmoregulation by controlling the accumulation of the osmolyte glycerol. Fps1 communicates with two osmo-sensing MAPK signalling pathways to perform its functions but the details of Fps1 regulation remain to be determined.Several phenotypes associated with aqua/glyceroporin function in yeasts have been established. However, how water and glycerol transport contribute to the observed effects is not understood in detail. Also many of the basic principles of regulation of yeast aqua/glyceroporins remain to be elucidated.Studying the yeast aquaporins and aquaglyceroporins offers rich insight into the life style, evolution and adaptive responses of yeast and rewards us with discoveries of unexpected roles and regulatory mechanisms of members of this ancient protein family. This article is part of a Special Issue entitled Aquaporins.© 2013.
[3]
Amira MB, Faize M, Karlsson M, Dubey M, Frąc M, Panek J, Fumanal B, Gousset-Dupont A, Julien JL, Chaar H, Auguin D, Mom R, Label P, Venisse JS, 2021. Fungal X-intrinsic protein aquaporin from Trichoderma atroviride: structural and functional considerations. Biomolecules, 11(2): 338
[4]
An B, Li B, Li H, Zhang Z, Qin G, Tian S, 2016. Aquaporin 8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. The New Phytologist, 209(4): 1668-1680
[5]
Benga G, 2009. Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life, 61(2): 112-133
Water channels or water channel proteins (WCPs) are transmembrane proteins that have a specific three-dimensional structure with a pore that can be permeated by water molecules. WCPs are large families (over 450 members) that are present in all kingdoms of life. The first WCP was discovered in the human red blood cell (RBC) membrane in 1980s. In 1990s other WCPs were discovered in plants, microorganisms, various animals, and humans; and it became obvious that the WCPs belong to the superfamily of major intrinsic proteins (MIPs, over 800 members). WCPs include three subfamilies: (a) aquaporins (AQPs), which are water specific (or selective water channels); (b) aquaglyceroporins (and glycerol facilitators), which are permeable to water and/or other small molecules; and (c) "superaquaporins" or subcellular AQPs. WCPs (and MIPs) have several structural characteristics which were better understood after the atomic structure of some MIPs was deciphered. The structure-function relationships of MIPs expressed in microorganisms (bacteria, archaea, yeast, and protozoa), plants, and some multicellular animal species [nematodes, insects, fishes, amphibians, mammals (and humans)] are described. A synthetic overview on the WCPs from RBCs from various species is provided. The physiological roles of WCPs in kidney, gastrointestinal system, respiratory apparatus, central nervous system, eye, adipose tissue, skin are described, and some implications of WCPs in various diseases are briefly presented. References of detailed reviews on each topic are given. This is the first review providing in a condensed form an overview of the whole WCP field that became in the last 20 years a very hot area of research in biochemistry and molecular cell biology, with wide and increasing implications.
[6]
Bennett AE, Classen AT, 2020. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias. Ecology, 101(4): e02978
[7]
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R, 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8): 1194-1202
The rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface. The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization. A wide variety of graphs can be prepared in TBtools using a new plotting engine ("JIGplot") developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature. TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 1.6 or newer. It is freely available to non-commercial users at https://github.com/CJ-Chen/TBtools/releases.Copyright © 2020 The Author. Published by Elsevier Inc. All rights reserved.
[8]
Chevriau J, Zerbetto de Palma G, Jozefkowicz C, Vitali V, Canessa Fortuna A, Ayub N, Soto G, Bienert GP, Zeida A, Alleva KE, 2024. Permeation mechanisms of hydrogen peroxide and water through plasma membrane intrinsic protein (PIP) aquaporins. The Biochemical Journal, 481(19): 1329-1347
[9]
Ding M, Li J, Fan X, He F, Yu X, Chen L, Zou S, Liang Y, Yu J, 2018. Aquaporin 1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Current Genetics, 64(5): 1057-1069
[10]
Ding MY, 2018. Functional characterization of aquaporin genes in Fusarium graminearum. MS Thesis, Shangdong Agricultural University, Tai’an. 1-60 (in Chinese)
[11]
Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN, 2024. Comparative antioxidant activity and phytochemical content of five extracts of Pleurotus ostreatus (oyster mushroom). Scientific Reports, 14(1): 3794
[12]
Hub JS, de Groot BL, 2008. Mechanism of selectivity in aquaporins and aquaglyceroporins. Proceedings of the National Academy of Sciences of the United States of America, 105(4): 1198-1203
[13]
Jozefczuk J, Adjaye J, 2011. Quantitative real-time PCR-based analysis of gene expression. Methods in Enzymology, 500: 99-109
Quantitative real-time polymerase chain reaction (QRT-PCR) has become an extensively applied technique. It enables quantitative analyses of gene expression applicable to basic molecular biology, medicine, and diagnostics. Nowadays, it is broadly used to describe messenger RNA (mRNA) expression patterns and to compare the relative levels of mRNA within distinct biological samples. The scope of the QRT-PCR technique makes it applicable across a wide range of experimental conditions and allows experimental comparison between normal and abnormal tissue. Most importantly, this technique enables additional independent confirmation of microarray or next generation sequencing (NGS)-based results. An inherent advantage of QRT-PCR is the large dynamic range, remarkable sensitivity, and sequence-specificity. We provide a detailed step by step guide to the principles underlying a successful QRT-PCR experiment.Copyright © 2011 Elsevier Inc. All rights reserved.
[14]
Kumar S, Stecher G, Li M, Knyaz C, Tamura K, 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
[15]
Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF, 2021. Ecology and evolution of marine fungi with their adaptation to climate change. Frontiers in Microbiology, 12: 719000
[16]
Laothanachareon T, Asin-Garcia E, Volkers RJM, Tamayo-Ramos JA, Martins Dos Santos VAP, Schaap PJ, 2023. Identification of Aspergillus niger aquaporins involved in hydrogen peroxide signaling. Journal of Fungi, 9(4): 499
[17]
Lee MD, King LS, Agre P, 1997. The aquaporin family of water channel proteins in clinical medicine. Medicine, 76(3): 141-156
The aquaporins are a family of membrane channel proteins that serve as selective pores through which water crosses the plasma membranes of many human tissues and cell types. The sites where aquaporins are expressed implicate these proteins in renal water reabsorption, cerebrospinal fluid secretion and reabsorption, generation of pulmonary secretions, aqueous humor secretion and reabsorption, lacrimation, and multiple other physiologic processes. Determination of the aquaporin gene sequences and their chromosomal locations has provided insight into the structure and pathophysiologic roles of these proteins, and primary and secondary involvement of aquaporins is becoming apparent in diverse clinical disorders. Aquaporin-1 (AQP1) is expressed in multiple tissues including red blood cells, and the Colton blood group antigens represent a polymorphism on the AQP1 protein. AQP2 is restricted to renal collecting ducts and has been linked to congenital nephrogenic diabetes insipidus in humans and to lithium-induced nephrogenic diabetes insipidus and fluid retention from congestive heart failure in rat models. Congenital cataracts result from mutations in the mouse gene encoding the lens homolog Aqp0 (Mip). The present understanding of aquaporin physiology is still incomplete; identification of additional members of the aquaporin family will affect future studies of multiple disorders of water distribution throughout the body. In some tissues, the aquaporins may participate in the transepithelial movement of fluid without being rate limiting, so aquaporins may be involved in clinical disorders without being causative. As outlined in this review, our challenge is to identify disease states in which aquaporins are involved, to define the aquaporins' roles mechanistically, and to search for ways to exploit this information therapeutically.
[18]
Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD, 2013. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. The New Phytologist, 197(2): 617-630
[19]
Lu Q, Jin L, Wang P, Liu F, Huang B, Wen M, Wu S, 2023. Effects of interaction of protein hydrolysate and arbuscular mycorrhizal fungi effects on citrus growth and expressions of stress-responsive genes (Aquaporins and SOSs) under salt stress. Journal of Fungi, 9(10): 983
[20]
Ma L, Zhao Y, Yu J, Ji H, Liu A, 2018. Characterization of Se-enriched Pleurotus ostreatus polysaccharides and their antioxidant effects in vitro. International Journal of Biological Macromolecules, 111: 421-429
[21]
Maurel C, Chrispeels MJ, 2001. Aquaporins. A molecular entry into plant water relations. Plant Physiology, 125(1): 135-138
[22]
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y, 2000. Structural determinants of water permeation through aquaporin-1. Nature, 407(6804): 599-605
[23]
Navarro-Ródenas A, Ruíz-Lozano JM, Kaldenhoff R, Morte A, 2012. The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Molecular Plant-Microbe Interactions, 25(2): 259-266
Terfezia claveryi is a hypogeous mycorrhizal fungus belonging to the so-called "desert truffles," with a good record as an edible fungus and of considerable economic importance. T. claveryi improves the tolerance to water stress of the host plant Helianthemum almeriense, for which, in field conditions, symbiosis with T. claveryi is valuable for its survival. We have characterized cDNAs from T. claveryi and identified a sequence related to the aquaporin gene family. The full-length sequence was obtained by rapid amplification of cDNA ends and was named TcAQP1. This aquaporin gene encoded a functional water-channel protein, as demonstrated by heterologous expression assays in Saccharomyces cerevisiae. The mycorrhizal fungal aquaporin increased both water and CO(2) conductivity in the heterologous expression system. The expression patterns of the TcAQP1 gene in mycelium, under different water potentials, and in mycorrhizal plants are discussed. The high levels of water conductivity of TcAQP1 could be related to the adaptation of this mycorrhizal fungus to semiarid areas. The CO(2) permeability of TcAQP1 could be involved in the regulation of T. claveryi growth during presymbiotic phases, making it a good candidate to be considered a novel molecular signaling channel in mycorrhizal fungi.
[24]
Nehls U, Dietz S, 2014. Fungal aquaporins: cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, 98(21): 8835-8851
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today's MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker's yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.
[25]
Özdemir S, Serkan Yalçın M, Kılınç E, 2021. Preconcentrations of Ni(II) and Pb(II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles. Food Chemistry, 336: 127675
[26]
Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S, 2005. Aquaporins in yeasts and filamentous fungi. Biology of the Cell, 97(7): 487-500
Recently, genome sequences from different fungi have become available. This information reveals that yeasts and filamentous fungi possess up to five aquaporins. Functional analyses have mainly been performed in budding yeast, Saccharomyces cerevisiae, which has two orthodox aquaporins and two aquaglyceroporins. Whereas Aqy1 is a spore-specific water channel, Aqy2 is only expressed in proliferating cells and controlled by osmotic signals. Fungal aquaglyceroporins often have long, poorly conserved terminal extensions and differ in the otherwise highly conserved NPA motifs, being NPX and NXA respectively. Three subgroups can be distinguished. Fps1-like proteins seem to be restricted to yeasts. Fps1, the osmogated glycerol export channel in S. cerevisiae, plays a central role in osmoregulation and determination of intracellular glycerol levels. Sequences important for gating have been identified within its termini. Another type of aquaglyceroporin, resembling S. cerevisiae Yfl054, has a long N-terminal extension and its physiological role is currently unknown. The third group of aquaglyceroporins, only found in filamentous fungi, have extensions of variable size. Taken together, yeasts and filamentous fungi are a fruitful resource to study the function, evolution, role and regulation of aquaporins, and the possibility to compare orthologous sequences from a large number of different organisms facilitates functional and structural studies.
[27]
Tamás MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S, 1999. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Molecular Microbiology, 31(4): 1087-1104
The accumulation of compatible solutes, such as glycerol, in the yeast Saccharomyces cerevisiae, is a ubiquitous mechanism in cellular osmoregulation. Here, we demonstrate that yeast cells control glycerol accumulation in part via a regulated, Fps1p-mediated export of glycerol. Fps1p is a member of the MIP family of channel proteins most closely related to the bacterial glycerol facilitators. The protein is localized in the plasma membrane. The physiological role of Fps1p appears to be glycerol export rather than uptake. Fps1 delta mutants are sensitive to hypo-osmotic shock, demonstrating that osmolyte export is required for recovery from a sudden drop in external osmolarity. In wild-type cells, the glycerol transport rate is decreased by hyperosmotic shock and increased by hypo-osmotic shock on a subminute time scale. This regulation seems to be independent of the known yeast osmosensing HOG and PKC signalling pathways. Mutants lacking the unique hydrophilic N-terminal domain of Fps1p, or certain parts thereof, fail to reduce the glycerol transport rate after a hyperosmotic shock. Yeast cells carrying these constructs constitutively release glycerol and show a dominant hyperosmosensitivity, but compensate for glycerol loss after prolonged incubation by glycerol overproduction. Fps1p may be an example of a more widespread class of regulators of osmoadaptation, which control the cellular content and release of compatible solutes.
[28]
Tanghe A, van Dijck P, Dumortier F, Teunissen A, Hohmann S, Thevelein JM, 2002. Aquaporin expression correlates with freeze tolerance in baker’s yeast, and overexpression improves freeze tolerance in industrial strains. Applied and Environmental Microbiology, 68(12): 5981-5989
Little information is available about the precise mechanisms and determinants of freeze resistance in baker's yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant baker's yeast strains for use in frozen dough applications.
[29]
Tanghe A, van Dijck P, Thevelein JM, 2006. Why do microorganisms have aquaporins? Trends in Microbiology, 14(2): 78-85
Aquaporins are channel proteins that enhance the permeability of cell membranes for water. They have been found in Bacteria, Archaea and Eukaryotes. However, their absence in many microorganisms suggests that aquaporins do not fulfill a broad role such as turgor regulation or osmoadaptation but, instead, fulfill a role that enables microorganisms to have specific lifestyles. The recent discovery that aquaporins enhance cellular tolerance against rapid freezing suggests that they have ecological relevance. We have identified several examples of large-scale freeze-thawing of microbes in nature and we also draw attention to alternative lifestyle-related functions for aquaporins, which will be a focus of future research.
[30]
Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P, 2006. Structural mechanism of plant aquaporin gating. Nature, 439(7077): 688-694
[31]
Tu DH, Zhang F, Mao MM, Xing D, 2022. Influence of arbuscular mycorrhizal fungi on nitrogen accumulation and expression of aquaporins in Morus alba root. Plant Physiology Journal, 58(8): 1607-1616 (in Chinese)
[32]
Turgeman T, Shatil-Cohen A, Moshelion M, Teper-Bamnolker P, Skory CD, Lichter A, Eshel D, 2016. The role of aquaporins in pH-dependent germination of Rhizopus delemar spores. PLoS One, 11(3): e0150543
[33]
Verma RK, Prabh ND, Sankararamakrishnan R, 2014. New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions. BMC Evolutionary Biology, 14:173
Background: Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins ( MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. Results: We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/ arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (delta and gamma 2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. Conclusions: Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the delta AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions.
[34]
Wang D, Ni Y, Xie K, Li Y, Wu W, Shan H, Cheng B, Li X, 2024. Aquaporin ZmTIP2; 3 promotes drought resistance of maize through symbiosis with arbuscular mycorrhizal fungi. International Journal of Molecular Sciences, 25(8): 4205
[35]
Xiong M, Li C, Wang W, Yang B, 2023. Protein structure and modification of aquaporins. Advances in Experimental Medicine and Biology, 1398: 15-38
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.© 2023. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
[36]
Xu H, Zwiazek JJ, 2020. Fungal aquaporins in ectomycorrhizal root water transport. Frontiers in Plant Science, 11: 302
Ectomycorrhizal fungi influence root water transport of host plants. To delineate the exact mechanisms of how fungal partner alters root water relations, it is important to understand the functions of fungal transmembrane water channels, i.e., aquaporins, the key component in the symplastic pathways. In this paper, we discussed what roles the fungal aquaporins may play in root water transport. We also highlighted the opportunities of using integrated approaches to address rising questions in future hotspots of aquaporin and root water relations research.Copyright © 2020 Xu and Zwiazek.
[37]
Zeng Q, Jia H, Ma Y, Xu L, Ming R, Yue J, 2023. Genome-wide identification and expression pattern profiling of the aquaporin gene family in papaya (Carica papaya L.). International Journal of Molecular Sciences, 24(24): 17276
[38]
Zhu QY, 2022. Research on the mechanism of aquaporin and NADPH oxidase regulating triterpenoid synthesis of Ganoderma lucidum under drought stress. MS Thesis, Nanjing Agricultural University, Nanjing. 1-92 (in Chinese)
[39]
丁明玉, 2018. 禾谷镰刀菌水通道蛋白的功能研究. 山东农业大学硕士论文, 泰安. 1-60
[40]
涂德辉, 张芳, 毛明明, 邢丹, 2022. 丛枝菌根真菌对桑树根系氮积累及水通道蛋白表达的影响. 植物生理学报, 58(8): 1607-1616
[41]
朱全宇, 2022. 水通道蛋白与NADPH氧化酶调控干旱胁迫下灵芝三萜合成的机制研究. 南京农业大学硕士论文, 南京. 1-92

基金

国家自然科学基金(32172649)
山东重点研发计划(2022CXGC010610)
PDF(940 KB)

49

Accesses

0

Citation

Detail

段落导航
相关文章

/