富硒刺芹侧耳硒肽的提取工艺及其抗氧化活性

陈莉莉, 吴惠华, 徐舒敏, 朱志远, 谢宝贵, 陈炳智

菌物学报 ›› 2025, Vol. 44 ›› Issue (3) : 240261.

PDF(927 KB)
中文  |  English
PDF(927 KB)
菌物学报 ›› 2025, Vol. 44 ›› Issue (3) : 240261. DOI: 10.13346/j.mycosystema.240261 CSTR: 32115.14.j.mycosystema
研究论文

富硒刺芹侧耳硒肽的提取工艺及其抗氧化活性

作者信息 +

Extraction process and antioxidant activities of selenopeptides from selenium-enriched Pleurotus eryngii

Author information +
文章历史 +

摘要

硒是人体必需的微量元素之一,可以通过硒蛋白或硒肽在人体内发挥生理功能。本研究以富硒刺芹侧耳子实体为原料,采用碱提酸沉法获得硒蛋白,进而通过单因素试验,筛选出最优的酶解条件,并在此基础上,进一步使用Box-Behnken设计试验组合,优化硒肽的提取工艺。再从1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl, DPPH)自由基、2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸) [2,2′-azinobis (3-ethylbenzthiazoline-6-sulphonic acid),ABTS]自由基、羟自由基(·OH)及铁还原/抗氧化能力(ferric ion reducing antioxidant power, FRAP)这4个指标,将其与普通多肽进行比较分析。结果表明:当酶添加量8 000 U/g,酶解温度60 ℃,酶解时间73 min,在此工艺条件下提取的硒肽硒含量达226.33 mg/mL。富硒刺芹侧耳子实体硒肽在DPPH自由基清除率、ABTS自由基清除率、羟自由基清除率及FRAP总抗氧化能力均优于普通多肽的抗氧化特性,推测是由于硒含量与多肽具有协同增效作用,从而增强硒肽的抗氧化活性。研究结果为富硒刺芹侧耳子实体硒肽的制备及应用提供依据。

Abstract

Selenium is a crucial trace element in human physiology, playing an essential role in life-sustaining processes through selenoproteins and selenopeptides. In this study, by combining alkali extraction with acid precipitation, selenoproteins were successfully isolated from fruiting bodies of Pleurotus eryngii. Single-factor test was conducted to determine the optimal parameters for enzymatic hydrolysis. Box-Behnken design was applied to further refine the selenopeptide extraction process. Furthermore, four indexes of DPPH, ABTS, hydroxyl radical scavenging, and FRAP were compared and analyzed with ordinary peptides. The results showed that under optimized conditions, the selenium content of the extracted selenopeptides reached 226.33 mg/mL, at enzyme concentration of 8 000 U/g, hydrolysis temperature of 60 ℃, and hydrolysis time of 73 minutes. The selenopeptide of selenium-enriched P. eryngii fruiting bodies exhibited significantly greater antioxidant activity than ordinary peptides in DPPH radical scavenging rate, ABTS radical scavenging rate, hydroxyl radical scavenging rate, and FRAP total antioxidant capacity, likely due to the synergistic effect between selenium content and polypeptides, enhancing the antioxidant activity of selenopeptides. Preparation and application of selenopeptides from selenium-enriched P. eryngii fruiting bodies are in need of further study.

关键词

刺芹侧耳 / 硒肽 / 硒含量 / 抗氧化活性

Key words

Pleurotus eryngii / selenopeptide / selenium content / antioxidant activity

引用本文

导出引用
陈莉莉, 吴惠华, 徐舒敏, 朱志远, 谢宝贵, 陈炳智. 富硒刺芹侧耳硒肽的提取工艺及其抗氧化活性[J]. 菌物学报, 2025, 44(3): 240261 https://doi.org/10.13346/j.mycosystema.240261
CHEN Lili, WU Huihua, XU Shumin, ZHU Zhiyuan, XIE Baogui, CHEN Bingzhi. Extraction process and antioxidant activities of selenopeptides from selenium-enriched Pleurotus eryngii[J]. Mycosystema, 2025, 44(3): 240261 https://doi.org/10.13346/j.mycosystema.240261
光照是食用菌生长发育过程中一个重要的环境因素(Corrochano & Luis 2007;Tisch & Schmoll 2010),食用菌在菌丝体和子实体阶段均受到光照的影响(刘文科和杨其长 2013)。适宜的光照是食用菌实现完整生长所必需的条件,不同品种的食用菌对光照的敏感度不同,同一品种在其生长发育的不同时期对光照的需求量也有差异(Jia et al. 2002;李玉等 2011;段庆虎等 2014)。近年来,研究人员主要从光质、光照强度、光照周期3个方面研究了对食用菌生长发育的影响。侯占山(2020)探究了光照时间与强度对杏鲍菇生长发育及生理的影响,发现子实体菌盖直径随光照时间增加有逐渐增大的趋势,子实体菌柄长度随光照时间增加有逐渐缩短的趋势。郭征(2018)发现红蓝光能缩短秀珍菇原基形成时间,使其产量提高,子实体农艺性状最好。宋寒冰等(2020)研究得出真姬菇菌丝在红光和黑暗环境下生长速度最快,在蓝光下形成的原基数目最多,产量最高。陈岗等(2016)研究了不同LED光质对银耳生长发育的影响,发现经过白光处理后,银耳的单耳质量最高,多糖含量最高,黄光处理后蛋白质含量最高。佟希丹(2012)以金针菇为试验材料,发现红光有利于金针菇原基的形成,且在子实体生长阶段使用蓝光照射能提高其产量。
香菇Lentinula edodes (Berk.) Pegler,俗称香蕈、花菇、冬菇等,属真菌界、担子菌门、伞菌纲、伞菌目、光茸菌科、香菇属,是世界第一大宗食用真菌(Royse et al. 2017),也是目前国内进行规模化生产的主要食用菌之一(刘春如 2001)。目前,香菇栽培已实现工厂化生产。光质在香菇良种选育、生物转化、农业栽培等方面的研究较少,唐利华(2014)研究了环境因子光对香菇菌丝转色的影响,挖掘了光诱导香菇菌丝转色相关的关键候选基因,并在RNA和蛋白质的水平上分析了光诱导香菇菌丝转色形成的生理和遗传机制。卢阳阳(2019)探究了LED光质对香菇胞外酶活性的影响,指出红光处理下香菇菌丝生物量积累最高,胞外酶酶活最大,白光会抑制菌丝生长,绿光、蓝光有利于促进香菇转色,并且对香菇多糖、可溶性蛋白和多酚含量的积累起着积极作用。
现阶段,随着香菇工厂化生产逐渐规模化、周年化、标准化,香菇工厂对环境的集约化及智能化控制的要求也越来越高,越来越精细。在以往的香菇生产中,栽培技术人员主要依靠传统经验进行光照调节,没有系统的理论支撑。在香菇生产栽培中至少可以分为4个重要阶段,分别为营养菌丝生长阶段、菌丝转色形成阶段、原基形成阶段以及子实体生长阶段(唐利华 2014)。不同阶段对光照的需求不同,因此,适宜的光照条件才能对香菇的高产和优产起到促进作用。本试验探究了香菇原基形成阶段及子实体生长阶段不同光质光照对香菇子实体农艺性状与质构品质的影响,旨在为香菇工厂化高效生产提供理论依据,促进香菇产业的快速健康发展。

1 材料与方法

1.1 材料

1.1.1 供试菌株和培养基:供试香菇菌株‘沪香F2',保藏于上海市农业科学院食用菌研究所菌种保藏中心。PDA培养基:马铃薯(去皮)200g,葡萄糖20g,琼脂20g,蒸馏水定容至1L,121℃灭菌20min,pH自然。栽培料配方:86%木屑,13%麸皮,1%碳酸钙(W/W),加水拌匀,含水量54%-56%,pH 5.8-6.2。
1.1.2 主要仪器和设备:透光率0lux的遮光布,青岛绿生生物科技有限公司;不同光质的LED灯,武汉中利源生物科技有限公司;游标卡尺,北京中科捷瑞生物科技有限公司;NR200便携式精密色差仪,湖北图索科技有限公司;质构仪,美国Isenso智能科技有限公司;栽培床架以及培养室由上海国森生物科技有限公司提供。
1.1.3 菌棒制作和培养出菇:采用15cm×33cm(折幅×长度)的聚乙烯塑料袋,使用冲压机装袋,每袋装栽培料(1.0±0.1)kg,121℃灭菌3h,待菌棒冷却后在无菌条件下进行接种,接种后置于25℃培养室避光培养,当菌丝发满菌棒后对其刺孔增氧,并且给予光照进行转色。待菌棒转色完成,菌丝体完成后熟后,将菌棒内袋脱掉出菇。由于培养过程中菌棒中的水分会不断散失,出菇时应适当补充水分。出菇过程中,培养室温度控制在15-20℃,湿度控制在80%-90%,CO2浓度保持在500-800mg/kg。

1.2 培养方法

试验设置8组处理(图1),分别为红光(R)、绿光(G)、蓝光(B)、红绿光(RG)、红蓝光(RB)、绿蓝光(GB)、红绿蓝(RGB)光以及黑暗环境(CK),每组处理准备一个栽培床架,用透光率0lx遮光布从四周将栽培床架围住,在每个栽培床架的上方中部分别安装2根不同光质的LED灯,调节光源的高度,使光源位于香菇菌棒上方50cm处,光照强度为600lx,每天24h照射。
图1 不同光质光照处理

G、GB、B、RG、RB、R、RGB分别为绿光、绿蓝光、蓝光、红绿光、红蓝光、红光、红绿蓝光光照环境下处理,CK为黑暗环境下处理. 下同

Fig. 1 Different light illumination treatment.

G, GB, B, RG, RB, R and RGB are respectively green light, green-blue light, blue light, red-green light, red-blue light, red light, red-green-blue light; CK is treatment under the dark environment. The same below.

Full size|PPT slide

分别为将转色后的香菇菌棒置于红光、绿光、蓝光、红绿光、红蓝光、绿蓝光、红绿蓝光7种光线下全天照射培养,对照组菌棒在完全黑暗的环境下培养,每组处理6个重复(图1)。待子实体达到采收标准(汪勇和赵洪梅 2011)后进行采收,分别称量统计每个香菇菌棒子实体的蕾数和产量,记录其农艺性状,利用色差仪对子实体菌盖和菌柄的颜色进行测定,使用质构仪测定香菇子实体的质构指标。

1.3 香菇子实体农艺性状测定

参考中华人民共和国农业行业标准NY/T2560-2014,植物新品种特异性、一致性和稳定性测试指南——香菇,对子实体农艺性状进行测定。每个处理随机挑选10个香菇子实体,测定不同光质处理的单个菌棒的蕾数和产量、香菇子实体的单菇重量、菌盖重量、菌柄重量、菌盖直径、菌盖厚度、菌柄长度、菌柄直径、菌盖直径与菌柄长度的比值、菌盖直径与菌柄直径的比值。

1.4 香菇子实体颜色测定

选取成熟期的香菇子实体,用便携式精密色差仪分别对香菇菌盖和菌柄颜色进行测定,每个处理选取10个子实体进行测量,每次测量重复3次取平均值得到其L、a、b和c值。

1.5 香菇子实体质构指标测定

采用质构仪(Food Technology Corporation TMS-Pro,USA)检测香菇子实体的硬度(hardness)、粘附度(adhesiveness)、弹性(springiness)、咀嚼性(chewiness)、胶着性(gumminess)和黏聚性(cohesiveness)6个指标。测试参考沈颖越等(2021)的方法。质构仪测定模式:质地多面分析(texture profile analysis,TPA),测试参数如下:利用TA/5直径5mm探头对香菇子实体菌盖顶部进行全质构分析,测前速度1.00mm/s,测试速度2.00mm/s,测后上行速度10.00mm/s,形变量60%,间隔时间2.00s,接触点类型为压力,接触点数值为10.00gf。得到香菇子实体的质地参数:硬度、黏附性、弹性、咀嚼性、胶着性、黏聚性。每组处理分别挑取10个香菇子实体菌盖进行测试,每个菌盖测试1次,最终结果取平均值。

1.6 数据处理及分析

使用IBM SPSS Statistics 22.0软件进行差异显著性分析,采用Duncan法进行多重比较分析。

2 结果与分析

2.1 不同光质光照对香菇菌棒蕾数和产量的影响

不同光质光照条件下,香菇菌棒蕾数和单棒产量见图2。不同光质光照对香菇菌棒蕾数和产量均有较大的影响,整体而言,随着香菇菌棒蕾数的减少,单棒产量呈现降低的趋势。蓝光(B)照射下单棒产量最高,为228.12g,蕾数20.00个;其次是红绿蓝光(RGB),单棒产量220.82g,蕾数24.33个;绿蓝光(GB)处理单棒产量219.40g,蕾数19.83个;红光(R)和完全黑暗(CK)的条件下,菌棒形成的原基少、菇蕾少、产量低,单棒产量分别为173.53g、176.03g。
图2 不同光质光照对香菇子实体蕾数和产量的影响

A:不同光质光照下子实体个数;B:不同光质光照下单棒产量;每组处理数据小写字母完全不同的,表示两组数据差异显著(P<0.05);有任何相同小写字母表示两组数据差异不显著. 下同

Fig. 2 Effects of different light illumination on the number of fruiting bodies and yield of Lentinula edodes.

A: Number of fruiting bodies per cultivated log under different light illumination; B: Yield of per cultivated log under different light illumination; Lowercase letters showing completely different indicate that two sets of data are significantly different (P<0.05); any same lowercase letter indicates that two sets of data are not significantly different. The same below.

Full size|PPT slide

2.2 不同光质光照对香菇子实体颜色的影响

利用色差仪分别测试香菇子实体菌盖和菌柄的颜色(图3图4),“L”表示物体的明亮度,0-100表示从黑色到白色;“a”代表物体的红绿色,正值表示红色,负值表示绿色;“b”表示物体的黄蓝色,正值表示黄色,负值表示蓝色;“c”表示颜色的饱和度,其值越高彩度越高,其值越低越接近灰色。红光(R)和黑暗环境(CK)下,香菇子实体菌盖和菌柄相较于其他处理组L值高,颜色偏白色,说明红光(R)会诱使子实体颜色变淡变白(图3图4)。不同光质光照下,菌盖的a值没有显著差异,b值都为正值,表明香菇子实体菌盖主要是以黄色为主色;菌盖的b值和c值在红光(R)和黑暗环境(CK)下较高,表明红光和黑暗处理下菌盖彩度更高,颜色更纯;菌柄的b、c值在红绿蓝光(RGB)处理下最高,红光(R)处理下最低。
图3 不同光质光照处理条件下香菇子实体颜色比较

A:不同光质光照下子实体颜色;B:不同光质光照下菌盖颜色

Fig. 3 Comparison of the coloration of fruiting bodies of Lentinula edodes under different light illumination.

A: Coloration of fruiting bodies of Lentinula edodes under different light illumination; B: Coloration of pileus of Lentinula edodes under different light illumination.

Full size|PPT slide

图4 不同光质光照对香菇子实体颜色的影响

A-D:不同光质光照下香菇菌盖明亮度(A)、红绿值(B)、黄蓝值(C)和色彩饱和度(D);E-H:不同光质光照下香菇菌柄明亮度(E)、红绿值(F)、黄蓝值(G)和色彩饱和度(H)

Fig. 4 Effects of different light illumination on the coloration of fruiting bodies of Lentinula edodes.

A-D: Pileus luminance (A), red-green values (B), yellow-blue values (C) and color saturation (D) under different light illumination; E-H: Stipe luminance (E), red-green values (F), yellow-blue values (G) and color saturation (H) under different light illumination.

Full size|PPT slide

2.3 不同光质光照对香菇子实体农艺性状的影响

经过8种不用光质光照处理的香菇子实体形态分析结果见图5图6。不同光质光照处理的单菇重量、菌盖重量、菌柄重量、菌柄长度、菌盖直径、菌盖厚度和菌柄直径等农艺性状均存在显著差异(P<0.05)。蓝光(B)和绿光(G)处理下香菇子实体单菇重量较大,分别达到13.47g和13.27g,菌盖重量占整个子实体的比例大,菌盖直径与菌柄长度的比值大,菇型适宜,更受市场的欢迎;其次是蓝绿光(GB)和黑暗环境(CK)下,单菇重量均在12g以上。红光(R)和黑暗条件(CK)下菌柄长度较长,分别达到54.55mm和53.39mm,菌柄质量较大,菌盖直径与菌柄长度的比值小,表明红光(R)和黑暗环境(CK)能促使香菇子实体菌柄的生长,但菇型较差。综上所述,经蓝光(B)和绿光(G)照射的香菇子实体农艺性状最优。
图5 不同光质光照处理条件下香菇子实体形态比较

A:不同光质光照下香菇子实体形态;B:不同光质光照下香菇菌盖形态

Fig. 5 Comparison of fruiting body morphology of Lentinula edodes under different light illumination.

A: Fruiting body morphology of L. edodes under different light illumination; B: Pileus morphology of L. edodes under different light illumination.

Full size|PPT slide

图6 不同光质光照对香菇子实体农艺性状的影响

A:不同光质光照下单菇重量;B:不同光质光照下菌盖重量;C:不同光质光照下菌柄重量;D:不同光质光照下菌盖直径;E:不同光质光照下菌盖厚度;F:不同光质光照下菌柄长度;G:不同光质光照下菌柄直径;H:不同光质光照下菌盖直径与菌柄长度的比值;I:不同光质光照下菌盖直径与菌柄直径的比值

Fig. 6 Effects of different light illumination on agronomic characters of Lentinula edodes fruiting bodies.

A: Single fruiting body weight under different light illumination; B: Pileus weight under different light illumination; C: Stipe weight under different light illumination; D: Pileus diameter under different light illumination; E: Pileus thickness under different light illumination; F: Stipe length under different light illumination; G: Stipe diameter under different light illumination; H: Ratio of pileus diameter to stipe length under different light illumination; I: Ratio of pileus diameter to stipe diameter under different light illumination.

Full size|PPT slide

2.4 不同光质光照对香菇子实体品质的影响

香菇子实体质地是衡量其商品性状好坏的重要指标,影响香菇的货架期、品质和食用口感(易琳琳等 2012;吕明亮等 2020)。香菇采摘后呼吸强度提高,容易出现子实体开伞、软化、腐烂等问题,严重影响香菇的食用价值。用质构仪对香菇子实体的硬度、粘附度、弹性、咀嚼性、胶着性和粘聚性进行测量分析。硬度是样品材料抵抗压入其表面的最大力,体现了香菇内部不发生形变时的受力大小,是最直接反应口感的一项指标。粘附度是样品经过加压变形之后,样品表面若有黏性,会产生负向的力量,在食品领域可以解释为黏牙性口感。弹性是食物在第一咬结束与第二口开始之间可以恢复的高度。咀嚼性为胶着性×弹性,可解释为咀嚼固体食物所需的能量,胶着性为硬度×凝聚力。黏聚性为第一压缩与第二压缩正受力面积的比值。
不同光质光照处理组的香菇子实体在硬度、粘附度、咀嚼性和胶着性指标上存在差异,而在弹性和黏聚性方面无明显差异。绿光(G)和蓝光(B)照射下子实体硬度大、耐咀嚼以及胶着性好。红光(R)和黑暗环境(CK)下香菇子实体硬度、咀嚼性和胶着性较其他处理组偏低,粘附度较高,品质不佳。综合各项指标,绿光和蓝光处理下,香菇子实体的品质最佳(图7)。
图7 不同光质光照对香菇子实体品质的影响

A:不同光质光照下子实体硬度;B:不同光质光照下子实体粘附度;C:不同光质光照下子实体弹性;D:不同光质光照下子实体咀嚼性;E:不同光质光照下子实体胶着性;F:不同光质光照下子实体粘聚性

Fig. 7 Effects of different illumination light on the texture of fruiting bodies of Lentinula edodes.

A: Hardness of fruiting body under different light illumination; B: Adhesiveness of fruiting body under different light illumination; C: Springiness of fruiting body under different light illumination; D: Chewiness of fruiting body under different light illumination; E: Gumminess of fruiting body under different light illumination; F: Cohesiveness of fruiting body under different light illumination.

Full size|PPT slide

3 讨论

本研究选用LED灯作为新型半导体光源,其具有光效高、发热低、寿命长等优点,被广泛应用于农业照明系统中(Watling 2001;谢正林等 2019),同时LED灯也适用于香菇工厂化生产。目前,大部分香菇工厂对出菇环境的调控大多根据自身经验,相关理论的研究较少。关于光照对于香菇生长影响的研究主要集中在菌丝生长阶段以及培养转色阶段(唐利华 2014;卢阳阳 2019),然而菌棒转色的好坏会导致出菇的差异,转色完成后的阶段也是至关重要的环节,直接影响香菇的产量和品质。本研究选取了转色完成后,转色状态一致的菌棒作为试验材料,排除菌棒转色不一致对试验的影响,控制不同处理下的温度、水分含量、CO2浓度,探究香菇菌棒完成转色后,不同光质光照对香菇子实体农艺性状与质构品质的影响,通过调控出菇阶段的光照,达到提高子实体农艺性状以及品质的目的。
本研究表明香菇子实体在蓝光照射下,单菇重量最大,这与刺芹侧耳(李巧珍等 2014)、草菇(余昌霞等 2021)在蓝光环境下子实体单重较大的结果一致。佟希丹(2012)研究表明,金针菇在子实体生长阶段使用蓝光照射能提高其产量,与本研究在蓝光处理下,单棒子实体产量最高的结果类似。
香菇菌棒子实体的产量是评价香菇农艺性状优劣重要指标,产量一般与子实体蕾数呈正相关关系,蕾数越多,产量往往越高。但单个菌棒的蕾数并不是越多越好,一般控制在20-25个左右,蕾数太多,会导致子实体的生长受影响,相互挤压,导致畸形,影响其形态及品质,不利于市场销售,因此合适的蕾数是子实体生长的必要条件。本研究发现,黑暗环境下香菇子实体产量最低,说明香菇出菇阶段与菌丝生长阶段不同,需要一定的光照,并且在蓝光照射下,香菇单棒产量最高,蕾数为20个,符合工厂化生产的要求。
光质对食用菌子实体形态的形成以及色泽的变化有着非常重要的影响(Wu et al. 2013)。本研究根据《中华人民共和国农业行业标准》NY/T2560-2014香菇标准,对香菇子实体的单菇重量、菌盖重量、菌柄重量、菌盖直径、菌盖厚度、菌柄长度、菌柄直径、菌盖直径与菌柄长度的比值、菌盖直径与菌柄直径的比值进行测定分析,参考中华人民共和国农业行业标准——香菇等级规格,结果发现蓝光和绿光条件下,子实体特级和一级比例较高,更能满足消费者的需求;红光处理下,香菇菌柄较其他处理组长,子实体菌盖颜色淡,其原因可能是光照影响香菇相关酶活性水平及营养代谢情况。
质地是鲜香菇品质及耐储藏能力的主要品质指标。质构仪质地多面分析(TPA)检测是模拟人牙齿咀嚼食物的机械过程,该过程能够测定探头对试样的压力及其他相关质地参数,目前在食用菌中逐渐成为品质性状的重要指标。本研究通过使用质构仪对不同处理组的子实体进行质地评价,通过具体的数据得出蓝光和绿光照射下香菇品质最佳,避免了以往利用感官评价可能造成的误差,提高了试验的精准性和科学性。
综上所述,香菇菌棒转色完成后,选用红绿蓝光照射可提高菌棒蕾数,选用蓝光照射可提高香菇子实体产量,并且蓝光照射的香菇子实体农艺性状好,质构品质最佳,因此,可将蓝光作为香菇工厂化生产出菇阶段的首选光质。

参考文献

[1]
Behar A, Dennouni-Medjati N, Harek Y, Dali-Sahi M, Belhadj M, Meziane FZ, 2020. Selenium overexposure induces insulin resistance: in silico study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(6): 1651-1657
[2]
Cai J, Fang Y, Jia JL, Zhang D, Cong X, Cheng SY, 2024. Preparation and physicochemical properties of microcapsules loaded with selenium-enriched peptides and VE. Food Science, 45(1): 181-190 (in Chinese)
摘要
A microcapsule system for the co-encapsulation of selenium-enriched peptides, being hydrophilic, and vitamin E (VE), being lipophilic, was developed using a combination of emulsification and freeze-drying. The effects of wall material concentration, selenium-enriched peptide content, and VE content on the encapsulation efficiency was investigated by single-factor experiments. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) showed that the selenium-enriched peptides and VE were effectively encapsulated in the microcapsules, and the microcapsules possessed good water dispersibility and maintained its double emulsion structure after reconstitution. The results of thermal stability analysis and 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) cation radical scavenging assay confirmed that compared with selenium-enriched peptides, the microcapsules had higher thermal stability and antioxidant activity. Furthermore, electronic nose analysis showed that the microcapsule system possessed a good masking effect on the odor of selenium-enriched peptides. In vitro simulated digestion experiments showed that microencapsulation enhanced the stability of selenium-enriched peptides in simulated gastric juice and lowered the retention rate in simulated intestinal fluid; selenium-enriched peptides were effectively released from the microcapsules. This study will provide a theoretical basis for the development of selenium-enriched functional foods and nutritional supplements.
[3]
Chen BB, Xia Z, Ye HD, Wang QE, Huang W, Zhang LY, Chen WH, Liang D, Liang XT, Yin YZ, Cao Y, Miao JY, 2023. Response surface optimization of selenium-enriched Moringa oleifera seed peptides with antioxidant, ACEI and XOI activities. Journal of Food Measurement and Characterization, 17(2): 1289-1299
[4]
Chen Q, Chen X, Li SH, Ning FJ, Xiong H, Zhao Q, 2022. Preparation, characterization, and in vitro antioxidant activities of natural selenium-enriched peanut protein fractions. Food Bioscience, 49: 101923
[5]
Chen YH, Liao DR, Xiao H, 2024. Dissolution characteristics of selenium in selenium-enriched tea leaves. Journal of Kunming University, 46(3): 51-56 (in Chinese)
[6]
Chen ZN, Lu YQ, Dun XL, Wang XF, Wang HZ, 2023. Research progress of selenium-enriched foods. Nutrients, 15(19): 4189
[7]
Chu MJ, Zhao HX, Shang HT, Huo JQ, Wu TY, Li H, Wang Y, Feng TT, Wei D, 2024. Optimization of Chenopodium quinoa Willd water-soluble protein extraction process and antioxidant activity of the enzymatic peptides. Journal of Food Safety and Quality, 15(11): 301-309 (in Chinese)
[8]
Dong Z, Xiao YQ, Wu H, 2021. Selenium accumulation, speciation, and its effect on nutritive value of Flammulina velutipes (golden needle mushroom). Food Chemistry, 350: 128667
[9]
Gao XL, 2023. Editorial: selenium and human health. Frontiers in Nutrition, 10: 1269204
[10]
Guo HK, Guo SY, Liu HM, 2020. Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate. Bioorganic Chemistry, 105: 104431
[11]
Guo YX, Chen XF, Gong P, Wang RT, Qi ZY, Deng ZF, Han AY, Long H, Wang JT, Yao WB, Yang WJ, Wang J, Li N, 2023. Advances in postharvest storage and preservation strategies for Pleurotus eryngii. Foods, 12(5): 1046
[12]
Hu T, Hui GF, Zhao GS, Guo YB, 2019. Advances in selenium-enriched edible fungi. Acta Edulis Fungi, 26(1): 68-76 (in Chinese)
[13]
Iwaoka M, Oba H, Asami KT, 2022. Antioxidant activity of a selenopeptide modelling the thioredoxin reductase active site is enhanced by NH···Se hydrogen bond in the mixed selenosulfide intermediate. Current Chemical Biology, 16(1): 44-53
[14]
Ji Y, Hu QH, Ma GX, Yu AQ, Zhao LY, Zhang XL, Zhao RQ, 2022. Selenium biofortification in Pleurotus eryngii and its effect on lead adsorption of gut microbiota via in vitro fermentation. Food Chemistry, 396: 133664
[15]
Jiang DY, Su LH, Chen YD, Zhang YL, Zeng WM, 2024. Extraction and antioxidant activities of selenium polysaccharide from selenium-enriched Auricularia heimuer mycelia. Mycosystema, 43(2): 230183 (in Chinese)
[16]
Kora AJ, 2020. Nutritional and antioxidant significance of selenium-enriched mushrooms. Bulletin of the National Research Centre, 44: 34
[17]
Li JM, Wang WJ, Chen H, Lin SY, Mao XY, Yu JM, Chen LL, 2024. Characterization, in vitro antioxidant activity and stability of cattle bone collagen peptides-selenium chelate. Food Chemistry: X, 23: 101789
[18]
Li JM, Wang WJ, Chen H, Wei WL, He SC, Chen LL, 2024. Progress of the source and biological activities of plant-derived selenium-containing peptides. Science and Technology of Food Industry, 45(16): 391-403 (in Chinese)
[19]
Li X, Wang XJ, Liu G, Xu YN, Wu XL, Yi R, Jin F, Sa CL, Su XL, 2021. Antioxidant stress and anticancer activity of peptide-chelated selenium in vitro. International Journal of Molecular Medicine, 48(2): 153
[20]
Li ZW, Wu D, Zhang Z, Liu P, Chen WC, Li W, Wang YF, Yang Y, 2024. Antioxidant properties, UV damage repair activities and structural characteristics of crude polysaccharides of Phallus rubrovolvatus volva colloid isolation product. Mycosystema, 43(8): 140-153 (in Chinese)
[21]
Liu JB, Wang ZQ, Yu YD, Zhang T, Liu BQ, 2021. Optimization of preparation technology of soybean meal peptides by response surface methodology. Journal of Chinese Institute of Food Science and Technology, 21(8): 216-223 (in Chinese)
[22]
Liu KL, Du RF, Chen FS, 2020. Stability of the antioxidant peptide SeMet-Pro-Ser identified from selenized brown rice protein hydrolysates. Food Chemistry, 319: 126540
[23]
Liu L, Li JF, Lan M, Li DB, Zhang KY, Wang YL, Shen JM, Li CN, Zhang H, Sun JM, 2024. Optimization of the preparation process of oyster peptide by enzymatic hydrolysis and its effects on testosterone secretion and oxidative stress in mouse testicular interstitial cells. Science and Technology of Food Industry, 45(9): 168-176 (in Chinese)
[24]
Lu SJ, Li T, Sun JM, Xu ZQ, Qi J, Liu P, Huang JZ, 2022. Amino acid composition and protein evaluation of Lentinula edodes, Pleurotus eryngii and Flammulina velutipe. Edible Fungi of China, 41(1): 45-51 (in Chinese)
[25]
Maia LB, Maiti BK, Moura I, Moura JJG, 2023. Selenium-more than just a fortuitous sulfur substitute in redox biology. Molecules, 29(1): 120
[26]
Maseko T, Callahan DL, Dunshea FR, Doronila A, Kolev SD, Ng K, 2013. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chemistry, 141(4): 3681-3687
The selenium concentration in Agaricus bisporus cultivated in growth compost irrigated with sodium selenite solution increased by 28- and 43-fold compared to the control mushroom irrigated solely with water. Selenium contents of mushroom proteins increased from 13.8 to 60.1 and 14.1 to 137 μgSe/g in caps and stalks from control and selenised mushrooms, respectively. Selenocystine (SeCys; detected as [SeCys]2 dimer), selenomethionine (SeMet), and methyl-selenocysteine (MeSeCys) were separated, identified and quantified by liquid chromatography-electrospray ionisation-mass spectrometry from water solubilised and acetone precipitated proteins, and significant increases were observed for the selenised mushrooms. The maximum selenoamino acids concentration in caps and stalks of control/selenised mushrooms was 4.16/9.65 μg/g dried weight (DW) for SeCys, 0.08/0.58 μg/g DW for SeMet, and 0.031/0.10 μg/g DW for MeSeCys, respectively. The most notable result was the much higher levels of SeCys accumulated by A. bisporus compared to SeMet and MeSeCys, for both control and selenised A. bisporus.Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
[27]
Milovanovic I, Stajic M, Cilerdzic J, Stanojkovic T, Knezevic A, Vukojevic J, 2014. Antioxidant, antifungal and anticancer activities of se-enriched Pleurotus spp. mycelium extracts. Archives of Biological Sciences, 66(4): 1379-1388
[28]
Niedzielski P, Mleczek M, Siwulski M, Rzymski P, Gasecka M, Kozak L, 2015. Supplementation of cultivated mushroom species with selenium: bioaccumulation and speciation study. European Food Research and Technology, 241(3): 419-426
[29]
Qian K, Wu DM, Wang H, Sun YF, Si J, Cui BK, 2022. Biological characteristics and antioxidant activities of wild Ganoderma sichuanense. Mycosystema, 41(4): 601-617 (in Chinese)
[30]
Song JQ, 2019. Evaluation of Pleurotus eryngii peptide activity and development of polypeptide oral liquid. MS Thesis, Northwest A & F University, Yangling. 1-50 (in Chinese)
[31]
Song XL, Xu XM, Chen W, 2022. Antioxidant and immunostimulatory activities of fermented sour soybean milk added with polypeptides from Pleurotus eryngii. Frontiers in Microbiology, 13: 750039
[32]
Tong YH, Zheng HY, You RM, Hu YL, Chen XL, Cheng SY, Zhang SP, 2024. Formula optimization of se-enriched walnut dried noodles and analysis of selenium content. Food Science and Technology, 49(4): 1-9 (in Chinese)
[33]
Wang BY, Zhao N, Li J, Xu RY, Wang TR, Guo L, Ma M, Fan MT, Wei XY, 2021. Selenium-enriched Lactobacillus plantarum improves the antioxidant activity and flavor properties of fermented Pleurotus eryngii. Food Chemistry, 345:128770
[34]
Wang GD, Jiang ZH, Song YW, Xing YT, He SM, Boomi P, 2024. Gut microbiota contribution to selenium deficiency-induced gut-liver inflammation. Biofactors, 50(2): 311-325
[35]
Wang H, Ma JX, Wu DM, Gao N, Si J, Cui BK, 2023. Identifying bioactive ingredients and antioxidant activities of wild Sanghuangporus species of medicinal fungi. Journal of Fungi, 9: 242
[36]
Wang H, Ma JX, Zhou M, Si J, Cui BK, 2022. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Frontiers in Microbiology, 13: 965934
[37]
Wang J, Ma J, Zhu BJ, Yao JY, Wang F, Yang WJ, Feng LD, 2024. Preparation of ACE inhibitory peptide from walnut glutelin-1 by enzymatic hydrolysis. China Oils and Fats, 49(4): 13-19 (in Chinese)
[38]
Wang SQ, Liu FX, Wu J, Yin FJ, Shi YC, 2020. Study on optimization of extraction process and resistance to oxidation of polypeptide from sea cucumber waste liquid. IOP Conference Series: Earth and Environmental Science, 559(1): 012025
[39]
Wang YF, Ji Y, Meng KK, Zhang JS, Zhong L, Zhan QP, Zhao LY, 2024. Effects of different selenium biofortification methods on Pleurotus eryngii polysaccharides: structural characteristics, antioxidant activity and binding capacity in vitro. International Journal of Biological Macromolecules, 275: 133214
[40]
Wei K, Wei Y, Zhou P, Zhu JX, Peng LL, Cheng LZ, Wang YF, Wei XL, 2023. Preparation, characterization, and antioxidant properties of selenium-enriched tea peptides. Foods, 12(22): 4105
[41]
Wen ZG, Zhang YC, Liu YT, Zhou JJ, He ZJ, Liu DZ, Cheng SY, Cai J, 2023. Recent progress and future trends on preparation method and biological activity of rice selenium-rich peptides. Food Science and Technology, 48(11): 18-25 (in Chinese)
[42]
Wu D, Tang C, Liu YF, Li QZ, Wang WH, Zhou S, Zhang Z, Cui FJ, Yang Y, 2019. Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus. Carbohydrate Polymers, 222: 114996
[43]
Wu DZ, Jia X, Zheng XL, Mo YM, Teng JW, Huang L, Xia N, 2023. Physicochemical and functional properties of Pleurotus eryngii proteins with different molecular weight. LWT-Food Science and Technology, 184(1): 115102
[44]
Wu SJ, Zhu ZJ, Chen MF, Huang AH, Xie YZ, Hu HP, Zhang JM, Wu QP, Wang J, Ding Y, 2023. Comparison of neuroprotection and regulating properties on gut microbiota between selenopeptide Val-Pro-Arg-Lys-Leu- SeMet and its native peptide Val-Pro-Arg-Lys-Leu-Met in vitro and in vivo. Journal of Agricultural and Food Chemistry, 71(32): 12203-12215
[45]
Xi T, Feng CP, Cheng FE, Zhao F, Zhang XB, 2015. Preparation of Pleurotus eryngii polypeptide. Journal of Shanxi Agricultural University (Natural Science Edition), 35(1): 490-495 (in Chinese)
[46]
Xie MH, Sun XY, Li P, Shen XC, Fang Y, 2021. Selenium in cereals: insight into species of the element from total amount. Comprehensive Reviews in Food Science and Food Safety, 20(3): 2914-2940
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.© 2021 Institute of Food Technologists®.
[47]
Xie XX, Fang YC, Liu LG, 2020. Research progress on the analysis of selenium element morphology in selenium-rich foods. Modern Food, 12: 15-18 (in Chinese)
[48]
Xiong YY, Huang YT, Li L, Liu YF, Liu LY, Wang LL, Tong LT, Wang FZ, Fan B, 2023. A review of plant selenium-enriched proteins/peptides: extraction, detection, bioavailability, and effects of processing. Molecules, 28: 1223.
[49]
Xu MM, Zhu S, Li YR, Xu S, Shi GY, Ding ZY, 2021a. Effect of selenium on mushroom growth and metabolism: a review. Trends in Food Science & Technology, 118: 328-340
[50]
Xu MM, Zhu S, Wang LL, Wei ZY, Zhao LT, Shi GY, Ding ZY, 2021b. Influence of selenium biofortification on the growth and bioactive metabolites of Ganoderma lucidum. Foods, 10: 1860
[51]
Yang L, Wang WK, Luo LP, Li BJ, Kang C, Zeng WJ, Zheng X, 2023. Extraction process and antioxidant hypoglycemic activities of polysaccharides from Dictyophora rubrovolvata volva. Mycosystema, 42(1): 418-429 (in Chinese)
[52]
Yu AQ, Ji Y, Ma GX, Xu J, Hu QH, 2023. Identification and preparation of selenium‐containing peptides from selenium‐enriched Pleurotus eryngii and their protective effect on lead‐induced oxidative damage in NCTC 1469 hepatocytes. Journal of the Science of Food and Agriculture, 103(9): 4522-4534
[53]
Zhang FY, Luo XF, Huang HY, Zeng HZ, Hu YX, Xie BG, Jiang YJ, Chen BZ, 2023. Extraction technology and antioxidant activities of polypeptides from fruiting bodies of Volvariella volvacea. Mycosystema, 42(2): 584-596 (in Chinese)
[54]
Zhao LY, Yin JH, Li XT, Lu XX, 2023. Association between selenium intake and migraine: a nationwide cross-sectional study. Frontiers in Neuroscience, 17: 1176349
[55]
Zhao Q, McClements DJ, Li JH, Chang CH, Su YJ, Gu LP, Yang YJ, 2024. Egg yolk selenopeptides: preparation, characterization, and immunomodulatory activity. Journal of Agricultural and Food Chemistry, 72(10): 5237-5246
In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 μg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.
[56]
Zheng XL, 2019. Study on preparation, physicochemical properties and antioxidant activity of Pleurotus eryngii isolated protein. MS Thesis, Guangxi University, Nanning. 1-82 (in Chinese)
[57]
Zhu S, Du CD, Yu T, Cong X, Liu YF, Chen SW, Li Y, 2019. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. Journal of Food Science, 84(12): 3504-3511
[58]
Zhu SY, Li YH, Chen X, Zhu ZZ, Li SY, Song JX, Zheng ZQ, Cong X, Cheng SY, 2024. Co-immobilization of alcalase/dispase for production of selenium-enriched peptide from Cardamine violifolia. Foods, 13(11): 1753
[59]
蔡杰, 方媛, 贾继来, 张碟, 丛欣, 程水源, 2024. 共封装硒肽和VE微胶囊制备及其理化特性. 食品科学, 45(1): 181-190
[60]
陈英贺, 缪德仁, 肖涵, 2024. 富硒茶叶中硒的溶出特征. 昆明学院学报, 46(3): 51-56
[61]
褚明娟, 赵蕙新, 尚鹤婷, 霍俊奇, 武天煜, 栗慧, 王莹, 冯亭亭, 魏东, 2024. 藜麦水溶蛋白的提取工艺优化及其酶解多肽抗氧化活性研究. 食品安全质量检测学报, 15(11): 301-309
[62]
胡婷, 惠改芳, 赵桂慎, 郭岩彬, 2019. 富硒食用菌研究进展. 食用菌学报, 26(1): 68-76
[63]
姜冬洋, 苏林贺, 陈亚东, 张彦龙, 曾伟民, 2024. 富硒黑木耳菌丝体硒多糖的提取与抗氧化活性. 菌物学报, 43(2): 230183
为了获得富硒黑木耳菌丝体硒多糖的最佳制备工艺并进一步评估抗氧化作用,本研究以黑木耳菌种九丰、黑丰和西藏6号作为原料,采用耐硒及梯度硒浓度富硒筛选、单因素试验、响应面试验设计分析及抗氧化测定的方法对富硒黑木耳筛选、硒多糖的提取优化和抗氧化活性进行研究。结果表明,3个黑木耳菌种中,九丰耐硒能力最强;富硒发酵实验中,黑木耳菌丝体发酵总硒含量在硒浓度为60 μg/mL时最大;富硒黑木耳菌丝体硒多糖提取的最佳条件为:超声时间25.4 min,水浴时间56 min,料液比1:49 (质量体积比),此条件下硒多糖提取率为(17.49±0.10)%。富硒黑木耳菌丝多糖对DPPH、羟基自由基具有一定的清除能力,并在总还原力试验中表现出较强的还原能力。本试验筛选出最优菌株及最佳富硒发酵硒浓度后,运用响应面的方法对富硒黑木耳菌丝体硒多糖提取条件进行优化,系统地测定出最佳提取条件。研究结果为黑木耳菌株富硒培养及黑木耳硒多糖高效提取及其功能挖掘提供了系统科学的理论依据。
[64]
李建明, 王文君, 陈慧, 韦雯璐, 何思辰, 陈凌利, 2024. 植物富硒肽的来源及生物活性的研究进展. 食品工业科技, 45(16): 391-403
[65]
李紫薇, 吴迪, 张忠, 刘朋, 陈万超, 李文, 王元凤, 杨焱, 2024. 红托竹荪菌托胶质分离产物的抗氧化和光损伤修复作用及其粗多糖的结构特征. 菌物学报, 43(8): 140-153
[66]
刘静波, 王子秦, 于一丁, 张婷, 刘博群, 2021. 响应面法优化豆粕肽制备工艺. 中国食品学报, 21(8): 216-223
[67]
刘璐, 李晶峰, 兰梦, 李冬冰, 张凯月, 王跃龙, 申嘉明, 李春楠, 张辉, 孙佳明, 2024. 牡蛎蛋白酶解肽制备工艺优化及其对小鼠睾丸间质细胞睾酮分泌和氧化应激的影响. 食品工业科技, 45(9): 168-176
[68]
卢士军, 李泰, 孙君茂, 徐泽群, 戚俊, 刘鹏, 黄家章, 2022. 香菇、杏鲍菇和金针菇的氨基酸组成与蛋白质含量评价. 中国食用菌, 41(1): 45-51
[69]
钱坤, 武冬梅, 王豪, 孙一翡, 司静, 崔宝凯, 2022. 野生四川灵芝的生物学特性和抗氧化活性. 菌物学报, 41(4): 601-617
灵芝是我国一类传统药用真菌的统称,具有极高的药用价值和经济价值。为了充分保护和利用该类野生药用真菌资源,本研究对采自广西壮族自治区南宁市的一株野生灵芝进行了菌株分离纯化培养,通过基于内转录间隔区(internal transcribed spacer,ITS)序列的分子生物学分析鉴定为四川灵芝Ganoderma sichuanense。以此为实验菌株,对该种的生物学特性和抗氧化活性进行了研究。探索了不同碳源、氮源、无机盐、pH、温度在固体培养条件下对野生四川灵芝菌丝生长速度的影响。对上述5因子进行单因子试验,从中筛选出4因子再进行正交试验。在试验范围内野生四川灵芝菌丝生长的最佳碳源为麦芽糖,氮源为牛肉膏,无机盐为KH<sub>2</sub>PO<sub>4</sub>,最适pH 7.0,温度30 ℃。通过正交试验进一步优化,得到最佳因子组合为麦芽糖30.0 g/L、牛肉膏5.0 g/L、KH<sub>2</sub>PO<sub>4</sub> 1.0 g/L、pH 6.0。针对液体培养过程中的多糖、三萜、多酚、抗坏血酸含量、超氧化物歧化酶活性及羟自由基清除能力变化进行了测定,发现该野生四川灵芝具有一定的抗氧化活性。
[70]
宋俊奇, 2019. 杏鲍菇多肽活性功能评价及多肽口服液的研制. 西北农林科技大学硕士论文, 杨凌. 1-50
[71]
童宇航, 郑涵予, 游如梦, 胡依黎, 陈小玲, 程水源, 张绍鹏, 2024. 富硒核桃挂面的配方工艺优化及硒含量分析. 食品科技, 49(4): 1-9
[72]
王静, 马劲, 朱柏佳, 姚嘉仪, 汪飞, 杨雯静, 冯龙丹, 2024. 酶解法制备核桃谷蛋白-1 ACE抑制肽的工艺优化. 中国油脂, 49(4): 13-19
[73]
温志刚, 张远聪, 刘媛涛, 周娇娇, 何志军, 刘德政, 程水源, 蔡杰, 2023. 大米硒肽制备方法和生物活性的研究进展. 食品科技, 48(11): 18-25
[74]
席甜, 冯翠萍, 程菲儿, 赵凡, 张晓宝, 2015. 杏鲍菇多肽的制备. 山西农业大学学报(自然科学版), 35(1): 490-495
[75]
谢小雪, 方迎春, 刘龙刚, 2020. 富硒食品中硒元素形态分析的研究进展. 现代食品, 12: 15-18
[76]
杨玲, 王万坤, 罗丽平, 李冰晶, 康超, 曾维军, 郑旋, 2023. 红托竹荪菌托多糖提取工艺及抗氧化降血糖活性. 菌物学报, 42(1): 418-429
为利用红托竹荪菌托,采用酶解法提取菌托多糖,优化多糖提取工艺,并测定多糖分子量、单糖组成、抗氧化及降血糖活性。结果表明,最佳酶解法提取工艺为纤维素酶2.5%、果胶酶0.4%、木瓜蛋白酶1.5%,50 ℃酶解1 h,料液比1:60、提取温度80 ℃、时间3 h,该条件下多糖提取率达15.37%,比热水浸提法提高39.60%。酶解法多糖分子量为3 344 Da (Mn)、522 208 Da (Mw)、2 929 Da (Mp),主要由葡萄糖、甘露糖、葡萄糖醛酸、半乳糖和岩藻糖等组成,葡萄糖占最高,达48.82%。菌托多糖为2.0 mg/mL时,DPPH·清除率为93.83%,Fe<sup>3+</sup>还原能力为0.140 7,α-葡萄糖苷酶活性抑制率为54.62%、α-淀粉酶活性抑制率为56.45%,与热水浸提法相比差异极显著或显著。酶解法提取红托竹荪菌托多糖,提取率较高,具有较高的抗氧化、降血糖活性,具有推广应用价值。
[77]
张芳艺, 罗小芳, 黄惠芸, 曾华贞, 胡宇欣, 谢宝贵, 江玉姬, 陈炳智, 2023. 草菇子实体多肽提取工艺及其抗氧化活性. 菌物学报, 42(2): 584-596
为了优化草菇子实体多肽的提取工艺和探究其抗氧化活性,以草菇子实体为原料,采用酶解法提取草菇子实体多肽,通过单因素试验得出最佳的酶解工艺,并使用Box-Behnken设计试验组合。结果表明:草菇子实体提取多肽的最佳工艺为料液比1:52 (g/mL)、加酶量7 200 U/g、酶解温度43 ℃,此工艺条件下的多肽得率为67.76%。从1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除能力、铁离子还原能力、超氧阴离子自由基清除能力和羟自由基清除能力4个方面研究其体外抗氧化能力,结果表明,草菇子实体多肽对DPPH自由基清除率为74.11%,超氧阴离子自由基和羟自由基清除率分别在69.64%和91.83%达到稳定,草菇子实体多肽还具有一定的还原力,说明草菇子实体多肽可以作为优质抗氧化肽的良好来源。该研究为草菇多肽的高效制备和抗氧化肽等高附加值产品的研发提供理论依据。
[78]
郑新雷, 2019. 杏鲍菇分离蛋白的制备、理化功能特性与抗氧化活性研究. 广西大学硕士论文, 南宁. 1-82

基金

国家重点研发计划(2022YFD1200604)
福建农林大学科技创新专项基金(CXZX2020116A)
福建农林大学科技创新专项基金(KFB23134A)
PDF(927 KB)

Accesses

Citation

Detail

段落导航
相关文章

/