
富硒刺芹侧耳硒肽的提取工艺及其抗氧化活性
Extraction process and antioxidant activities of selenopeptides from selenium-enriched Pleurotus eryngii
硒是人体必需的微量元素之一,可以通过硒蛋白或硒肽在人体内发挥生理功能。本研究以富硒刺芹侧耳子实体为原料,采用碱提酸沉法获得硒蛋白,进而通过单因素试验,筛选出最优的酶解条件,并在此基础上,进一步使用Box-Behnken设计试验组合,优化硒肽的提取工艺。再从1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl, DPPH)自由基、2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸) [2,2′-azinobis (3-ethylbenzthiazoline-6-sulphonic acid),ABTS]自由基、羟自由基(·OH)及铁还原/抗氧化能力(ferric ion reducing antioxidant power, FRAP)这4个指标,将其与普通多肽进行比较分析。结果表明:当酶添加量8 000 U/g,酶解温度60 ℃,酶解时间73 min,在此工艺条件下提取的硒肽硒含量达226.33 mg/mL。富硒刺芹侧耳子实体硒肽在DPPH自由基清除率、ABTS自由基清除率、羟自由基清除率及FRAP总抗氧化能力均优于普通多肽的抗氧化特性,推测是由于硒含量与多肽具有协同增效作用,从而增强硒肽的抗氧化活性。研究结果为富硒刺芹侧耳子实体硒肽的制备及应用提供依据。
Selenium is a crucial trace element in human physiology, playing an essential role in life-sustaining processes through selenoproteins and selenopeptides. In this study, by combining alkali extraction with acid precipitation, selenoproteins were successfully isolated from fruiting bodies of Pleurotus eryngii. Single-factor test was conducted to determine the optimal parameters for enzymatic hydrolysis. Box-Behnken design was applied to further refine the selenopeptide extraction process. Furthermore, four indexes of DPPH, ABTS, hydroxyl radical scavenging, and FRAP were compared and analyzed with ordinary peptides. The results showed that under optimized conditions, the selenium content of the extracted selenopeptides reached 226.33 mg/mL, at enzyme concentration of 8 000 U/g, hydrolysis temperature of 60 ℃, and hydrolysis time of 73 minutes. The selenopeptide of selenium-enriched P. eryngii fruiting bodies exhibited significantly greater antioxidant activity than ordinary peptides in DPPH radical scavenging rate, ABTS radical scavenging rate, hydroxyl radical scavenging rate, and FRAP total antioxidant capacity, likely due to the synergistic effect between selenium content and polypeptides, enhancing the antioxidant activity of selenopeptides. Preparation and application of selenopeptides from selenium-enriched P. eryngii fruiting bodies are in need of further study.
刺芹侧耳 / 硒肽 / 硒含量 / 抗氧化活性 {{custom_keyword}} /
Pleurotus eryngii / selenopeptide / selenium content / antioxidant activity {{custom_keyword}} /
图1 不同光质光照处理G、GB、B、RG、RB、R、RGB分别为绿光、绿蓝光、蓝光、红绿光、红蓝光、红光、红绿蓝光光照环境下处理,CK为黑暗环境下处理. 下同 Fig. 1 Different light illumination treatment. G, GB, B, RG, RB, R and RGB are respectively green light, green-blue light, blue light, red-green light, red-blue light, red light, red-green-blue light; CK is treatment under the dark environment. The same below. |
图2 不同光质光照对香菇子实体蕾数和产量的影响A:不同光质光照下子实体个数;B:不同光质光照下单棒产量;每组处理数据小写字母完全不同的,表示两组数据差异显著(P<0.05);有任何相同小写字母表示两组数据差异不显著. 下同 Fig. 2 Effects of different light illumination on the number of fruiting bodies and yield of Lentinula edodes. A: Number of fruiting bodies per cultivated log under different light illumination; B: Yield of per cultivated log under different light illumination; Lowercase letters showing completely different indicate that two sets of data are significantly different (P<0.05); any same lowercase letter indicates that two sets of data are not significantly different. The same below. |
图3 不同光质光照处理条件下香菇子实体颜色比较A:不同光质光照下子实体颜色;B:不同光质光照下菌盖颜色 Fig. 3 Comparison of the coloration of fruiting bodies of Lentinula edodes under different light illumination. A: Coloration of fruiting bodies of Lentinula edodes under different light illumination; B: Coloration of pileus of Lentinula edodes under different light illumination. |
图4 不同光质光照对香菇子实体颜色的影响A-D:不同光质光照下香菇菌盖明亮度(A)、红绿值(B)、黄蓝值(C)和色彩饱和度(D);E-H:不同光质光照下香菇菌柄明亮度(E)、红绿值(F)、黄蓝值(G)和色彩饱和度(H) Fig. 4 Effects of different light illumination on the coloration of fruiting bodies of Lentinula edodes. A-D: Pileus luminance (A), red-green values (B), yellow-blue values (C) and color saturation (D) under different light illumination; E-H: Stipe luminance (E), red-green values (F), yellow-blue values (G) and color saturation (H) under different light illumination. |
图5 不同光质光照处理条件下香菇子实体形态比较A:不同光质光照下香菇子实体形态;B:不同光质光照下香菇菌盖形态 Fig. 5 Comparison of fruiting body morphology of Lentinula edodes under different light illumination. A: Fruiting body morphology of L. edodes under different light illumination; B: Pileus morphology of L. edodes under different light illumination. |
图6 不同光质光照对香菇子实体农艺性状的影响A:不同光质光照下单菇重量;B:不同光质光照下菌盖重量;C:不同光质光照下菌柄重量;D:不同光质光照下菌盖直径;E:不同光质光照下菌盖厚度;F:不同光质光照下菌柄长度;G:不同光质光照下菌柄直径;H:不同光质光照下菌盖直径与菌柄长度的比值;I:不同光质光照下菌盖直径与菌柄直径的比值 Fig. 6 Effects of different light illumination on agronomic characters of Lentinula edodes fruiting bodies. A: Single fruiting body weight under different light illumination; B: Pileus weight under different light illumination; C: Stipe weight under different light illumination; D: Pileus diameter under different light illumination; E: Pileus thickness under different light illumination; F: Stipe length under different light illumination; G: Stipe diameter under different light illumination; H: Ratio of pileus diameter to stipe length under different light illumination; I: Ratio of pileus diameter to stipe diameter under different light illumination. |
图7 不同光质光照对香菇子实体品质的影响A:不同光质光照下子实体硬度;B:不同光质光照下子实体粘附度;C:不同光质光照下子实体弹性;D:不同光质光照下子实体咀嚼性;E:不同光质光照下子实体胶着性;F:不同光质光照下子实体粘聚性 Fig. 7 Effects of different illumination light on the texture of fruiting bodies of Lentinula edodes. A: Hardness of fruiting body under different light illumination; B: Adhesiveness of fruiting body under different light illumination; C: Springiness of fruiting body under different light illumination; D: Chewiness of fruiting body under different light illumination; E: Gumminess of fruiting body under different light illumination; F: Cohesiveness of fruiting body under different light illumination. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
A microcapsule system for the co-encapsulation of selenium-enriched peptides, being hydrophilic, and vitamin E (VE), being lipophilic, was developed using a combination of emulsification and freeze-drying. The effects of wall material concentration, selenium-enriched peptide content, and VE content on the encapsulation efficiency was investigated by single-factor experiments. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) showed that the selenium-enriched peptides and VE were effectively encapsulated in the microcapsules, and the microcapsules possessed good water dispersibility and maintained its double emulsion structure after reconstitution. The results of thermal stability analysis and 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) cation radical scavenging assay confirmed that compared with selenium-enriched peptides, the microcapsules had higher thermal stability and antioxidant activity. Furthermore, electronic nose analysis showed that the microcapsule system possessed a good masking effect on the odor of selenium-enriched peptides. In vitro simulated digestion experiments showed that microencapsulation enhanced the stability of selenium-enriched peptides in simulated gastric juice and lowered the retention rate in simulated intestinal fluid; selenium-enriched peptides were effectively released from the microcapsules. This study will provide a theoretical basis for the development of selenium-enriched functional foods and nutritional supplements.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
The selenium concentration in Agaricus bisporus cultivated in growth compost irrigated with sodium selenite solution increased by 28- and 43-fold compared to the control mushroom irrigated solely with water. Selenium contents of mushroom proteins increased from 13.8 to 60.1 and 14.1 to 137 μgSe/g in caps and stalks from control and selenised mushrooms, respectively. Selenocystine (SeCys; detected as [SeCys]2 dimer), selenomethionine (SeMet), and methyl-selenocysteine (MeSeCys) were separated, identified and quantified by liquid chromatography-electrospray ionisation-mass spectrometry from water solubilised and acetone precipitated proteins, and significant increases were observed for the selenised mushrooms. The maximum selenoamino acids concentration in caps and stalks of control/selenised mushrooms was 4.16/9.65 μg/g dried weight (DW) for SeCys, 0.08/0.58 μg/g DW for SeMet, and 0.031/0.10 μg/g DW for MeSeCys, respectively. The most notable result was the much higher levels of SeCys accumulated by A. bisporus compared to SeMet and MeSeCys, for both control and selenised A. bisporus.Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
Selenium (Se) is a trace mineral micronutrient essential for human health. The diet is the main source of Se intake. Se-deficiency is associated with many diseases, and up to 1 billion people suffer from Se-deficiency worldwide. Cereals are considered a good choice for Se intake due to their daily consumption as staple foods. Much attention has been paid to the contents of Se in cereals and other foods. Se-enriched cereals are produced by biofortification. Notably, the gap between the nutritional and toxic levels of Se is fairly narrow. The chemical structures of Se compounds, rather than their total contents, contribute to the bioavailability, bioactivity, and toxicity of Se. Organic Se species show better bioavailability, higher nutritional value, and less toxicity than inorganic species. In this paper, we reviewed the total content of Se in cereals, Se speciation methods, and the biological effects of Se species on human health. Selenomethionine (SeMet) is generally the most prevalent and important Se species in cereal grains. In conclusion, Se species should be considered in addition to the total Se content when evaluating the nutritional and toxic values of foods such as cereals.© 2021 Institute of Food Technologists®.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 μg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
蔡杰, 方媛, 贾继来, 张碟, 丛欣, 程水源, 2024. 共封装硒肽和VE微胶囊制备及其理化特性. 食品科学, 45(1): 181-190
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
陈英贺, 缪德仁, 肖涵, 2024. 富硒茶叶中硒的溶出特征. 昆明学院学报, 46(3): 51-56
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
褚明娟, 赵蕙新, 尚鹤婷, 霍俊奇, 武天煜, 栗慧, 王莹, 冯亭亭, 魏东, 2024. 藜麦水溶蛋白的提取工艺优化及其酶解多肽抗氧化活性研究. 食品安全质量检测学报, 15(11): 301-309
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
胡婷, 惠改芳, 赵桂慎, 郭岩彬, 2019. 富硒食用菌研究进展. 食用菌学报, 26(1): 68-76
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
姜冬洋, 苏林贺, 陈亚东, 张彦龙, 曾伟民, 2024. 富硒黑木耳菌丝体硒多糖的提取与抗氧化活性. 菌物学报, 43(2): 230183
为了获得富硒黑木耳菌丝体硒多糖的最佳制备工艺并进一步评估抗氧化作用,本研究以黑木耳菌种九丰、黑丰和西藏6号作为原料,采用耐硒及梯度硒浓度富硒筛选、单因素试验、响应面试验设计分析及抗氧化测定的方法对富硒黑木耳筛选、硒多糖的提取优化和抗氧化活性进行研究。结果表明,3个黑木耳菌种中,九丰耐硒能力最强;富硒发酵实验中,黑木耳菌丝体发酵总硒含量在硒浓度为60 μg/mL时最大;富硒黑木耳菌丝体硒多糖提取的最佳条件为:超声时间25.4 min,水浴时间56 min,料液比1:49 (质量体积比),此条件下硒多糖提取率为(17.49±0.10)%。富硒黑木耳菌丝多糖对DPPH、羟基自由基具有一定的清除能力,并在总还原力试验中表现出较强的还原能力。本试验筛选出最优菌株及最佳富硒发酵硒浓度后,运用响应面的方法对富硒黑木耳菌丝体硒多糖提取条件进行优化,系统地测定出最佳提取条件。研究结果为黑木耳菌株富硒培养及黑木耳硒多糖高效提取及其功能挖掘提供了系统科学的理论依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
李建明, 王文君, 陈慧, 韦雯璐, 何思辰, 陈凌利, 2024. 植物富硒肽的来源及生物活性的研究进展. 食品工业科技, 45(16): 391-403
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
李紫薇, 吴迪, 张忠, 刘朋, 陈万超, 李文, 王元凤, 杨焱, 2024. 红托竹荪菌托胶质分离产物的抗氧化和光损伤修复作用及其粗多糖的结构特征. 菌物学报, 43(8): 140-153
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
刘静波, 王子秦, 于一丁, 张婷, 刘博群, 2021. 响应面法优化豆粕肽制备工艺. 中国食品学报, 21(8): 216-223
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
刘璐, 李晶峰, 兰梦, 李冬冰, 张凯月, 王跃龙, 申嘉明, 李春楠, 张辉, 孙佳明, 2024. 牡蛎蛋白酶解肽制备工艺优化及其对小鼠睾丸间质细胞睾酮分泌和氧化应激的影响. 食品工业科技, 45(9): 168-176
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
卢士军, 李泰, 孙君茂, 徐泽群, 戚俊, 刘鹏, 黄家章, 2022. 香菇、杏鲍菇和金针菇的氨基酸组成与蛋白质含量评价. 中国食用菌, 41(1): 45-51
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
钱坤, 武冬梅, 王豪, 孙一翡, 司静, 崔宝凯, 2022. 野生四川灵芝的生物学特性和抗氧化活性. 菌物学报, 41(4): 601-617
灵芝是我国一类传统药用真菌的统称,具有极高的药用价值和经济价值。为了充分保护和利用该类野生药用真菌资源,本研究对采自广西壮族自治区南宁市的一株野生灵芝进行了菌株分离纯化培养,通过基于内转录间隔区(internal transcribed spacer,ITS)序列的分子生物学分析鉴定为四川灵芝Ganoderma sichuanense。以此为实验菌株,对该种的生物学特性和抗氧化活性进行了研究。探索了不同碳源、氮源、无机盐、pH、温度在固体培养条件下对野生四川灵芝菌丝生长速度的影响。对上述5因子进行单因子试验,从中筛选出4因子再进行正交试验。在试验范围内野生四川灵芝菌丝生长的最佳碳源为麦芽糖,氮源为牛肉膏,无机盐为KH<sub>2</sub>PO<sub>4</sub>,最适pH 7.0,温度30 ℃。通过正交试验进一步优化,得到最佳因子组合为麦芽糖30.0 g/L、牛肉膏5.0 g/L、KH<sub>2</sub>PO<sub>4</sub> 1.0 g/L、pH 6.0。针对液体培养过程中的多糖、三萜、多酚、抗坏血酸含量、超氧化物歧化酶活性及羟自由基清除能力变化进行了测定,发现该野生四川灵芝具有一定的抗氧化活性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
宋俊奇, 2019. 杏鲍菇多肽活性功能评价及多肽口服液的研制. 西北农林科技大学硕士论文, 杨凌. 1-50
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[71] |
童宇航, 郑涵予, 游如梦, 胡依黎, 陈小玲, 程水源, 张绍鹏, 2024. 富硒核桃挂面的配方工艺优化及硒含量分析. 食品科技, 49(4): 1-9
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[72] |
王静, 马劲, 朱柏佳, 姚嘉仪, 汪飞, 杨雯静, 冯龙丹, 2024. 酶解法制备核桃谷蛋白-1 ACE抑制肽的工艺优化. 中国油脂, 49(4): 13-19
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[73] |
温志刚, 张远聪, 刘媛涛, 周娇娇, 何志军, 刘德政, 程水源, 蔡杰, 2023. 大米硒肽制备方法和生物活性的研究进展. 食品科技, 48(11): 18-25
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[74] |
席甜, 冯翠萍, 程菲儿, 赵凡, 张晓宝, 2015. 杏鲍菇多肽的制备. 山西农业大学学报(自然科学版), 35(1): 490-495
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[75] |
谢小雪, 方迎春, 刘龙刚, 2020. 富硒食品中硒元素形态分析的研究进展. 现代食品, 12: 15-18
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[76] |
杨玲, 王万坤, 罗丽平, 李冰晶, 康超, 曾维军, 郑旋, 2023. 红托竹荪菌托多糖提取工艺及抗氧化降血糖活性. 菌物学报, 42(1): 418-429
为利用红托竹荪菌托,采用酶解法提取菌托多糖,优化多糖提取工艺,并测定多糖分子量、单糖组成、抗氧化及降血糖活性。结果表明,最佳酶解法提取工艺为纤维素酶2.5%、果胶酶0.4%、木瓜蛋白酶1.5%,50 ℃酶解1 h,料液比1:60、提取温度80 ℃、时间3 h,该条件下多糖提取率达15.37%,比热水浸提法提高39.60%。酶解法多糖分子量为3 344 Da (Mn)、522 208 Da (Mw)、2 929 Da (Mp),主要由葡萄糖、甘露糖、葡萄糖醛酸、半乳糖和岩藻糖等组成,葡萄糖占最高,达48.82%。菌托多糖为2.0 mg/mL时,DPPH·清除率为93.83%,Fe<sup>3+</sup>还原能力为0.140 7,α-葡萄糖苷酶活性抑制率为54.62%、α-淀粉酶活性抑制率为56.45%,与热水浸提法相比差异极显著或显著。酶解法提取红托竹荪菌托多糖,提取率较高,具有较高的抗氧化、降血糖活性,具有推广应用价值。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[77] |
张芳艺, 罗小芳, 黄惠芸, 曾华贞, 胡宇欣, 谢宝贵, 江玉姬, 陈炳智, 2023. 草菇子实体多肽提取工艺及其抗氧化活性. 菌物学报, 42(2): 584-596
为了优化草菇子实体多肽的提取工艺和探究其抗氧化活性,以草菇子实体为原料,采用酶解法提取草菇子实体多肽,通过单因素试验得出最佳的酶解工艺,并使用Box-Behnken设计试验组合。结果表明:草菇子实体提取多肽的最佳工艺为料液比1:52 (g/mL)、加酶量7 200 U/g、酶解温度43 ℃,此工艺条件下的多肽得率为67.76%。从1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除能力、铁离子还原能力、超氧阴离子自由基清除能力和羟自由基清除能力4个方面研究其体外抗氧化能力,结果表明,草菇子实体多肽对DPPH自由基清除率为74.11%,超氧阴离子自由基和羟自由基清除率分别在69.64%和91.83%达到稳定,草菇子实体多肽还具有一定的还原力,说明草菇子实体多肽可以作为优质抗氧化肽的良好来源。该研究为草菇多肽的高效制备和抗氧化肽等高附加值产品的研发提供理论依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[78] |
郑新雷, 2019. 杏鲍菇分离蛋白的制备、理化功能特性与抗氧化活性研究. 广西大学硕士论文, 南宁. 1-82
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |