碳源对玫烟色虫草菌丝生长、芽生孢子产生及其耐热性的影响

李义华,刁红亮,周稳稳,马瑞燕

菌物学报 ›› 2022, Vol. 41 ›› Issue (1) : 51-58.

PDF(604 KB)
中文  |  English
PDF(604 KB)
菌物学报 ›› 2022, Vol. 41 ›› Issue (1) : 51-58. DOI: 10.13346/j.mycosystema.210197 CSTR: 32115.14.j.mycosystema.210197
研究论文

碳源对玫烟色虫草菌丝生长、芽生孢子产生及其耐热性的影响

作者信息 +

Effects of carbon sources on mycelial growth, blastospore production and thermotolerance of Cordyceps fumosorosea

Author information +
文章历史 +

摘要

提高虫生真菌孢子应对热胁迫的能力是生防菌应用研究的关键,为研究菌丝培养阶段碳源对玫烟色虫草Cordyceps fumosorosea IF-1106耐热性的影响,选择了麦芽糖、可溶性淀粉、蔗糖、葡萄糖、果糖、海藻糖为碳源的培养基对玫烟色虫草IF-1106进行液体培养,评估了不同碳源条件下菌丝的生长、产孢及所产芽生孢子的耐热性。结果表明,在菌株培养阶段,培养基中碳源的种类及浓度对菌丝产量、产孢量及所产芽生孢子的耐热性有显著影响,其中蔗糖为碳源时,所产芽生孢子的耐热性强,45 ℃热胁迫条件下LT50为1.65 h;蔗糖浓度为40 g/L时,可产生大量耐热芽生孢子,液体培养3 d后产孢量可达3.43×107个孢子/mL。为探索不同培养条件下所产芽生孢子耐热性不同的原因,提取了孢子内的海藻糖并采用离子色谱法对其进行了定量分析,发现耐热性高的芽生孢子胞内海藻糖含量普遍较低,可见海藻糖是与芽生孢子耐热性密切相关的内源物质。综上所述,选择适宜的培养基是调控孢子耐热性的有效途径,本研究为生产高耐热的玫烟色虫草生防制剂提供了有益的指导。

Abstract

Improving the ability of resistance of entomogenous fungal spores to heat stress is critical for effectiveness of biocontrol. The effect of carbon sources on the growth, blastopore production and thermotolerance of Cordyceps fumosorosea IF-1106 was investigated. Maltose, soluble starch, sucrose, glucose, and fructose were selected as carbon sources, and the mycelial growth, sporulation and thermotolerance of the produced blastospores were evaluated under liquid cultures condition. The results show that the mycelial yield, sporulation and thermotolerance of blastospores are significantly impacted by different carbon sources at different concentrations in the media. Sucrose was advantageous for blastospore production and thermotolerance. The blastospore production reached 3.43×107 spores/mL in liquid culture for 3 days at sucrose concentration of 40 g/L and the LT50 was 1.65 h under 45 °C heat stress. The trehalose in the spores was extracted and quantitatively analyzed by ion chromatography. It was found that the trehalose content in the spores with high heat resistance was generally low, indicating that trehalose is an endogenous substance related to the thermotolerance of blastospores. In summary, choosing an appropriate medium is an effective way to regulate the heat resistance of blastospores and useful for production of high heat-resistant biocontrol preparations of Cordyceps fumosorosea.

关键词

生防真菌 / 玫烟色虫草 / 液体发酵 / 芽生孢子 / 耐热性 / 海藻糖

Key words

biocontrol fungi / Cordyceps fumosorosea / liquid fermentation / blastospores / thermotolerance / trehalose

引用本文

导出引用
李义华, 刁红亮, 周稳稳, 马瑞燕. 碳源对玫烟色虫草菌丝生长、芽生孢子产生及其耐热性的影响[J]. 菌物学报, 2022, 41(1): 51-58 https://doi.org/10.13346/j.mycosystema.210197
LI Yihua, DIAO Hongliang, ZHOU Wenwen, MA Ruiyan. Effects of carbon sources on mycelial growth, blastospore production and thermotolerance of Cordyceps fumosorosea[J]. Mycosystema, 2022, 41(1): 51-58 https://doi.org/10.13346/j.mycosystema.210197
真菌在环境中无处不在,在植物、动物和人类的健康以及广泛的生态系统功能中都发挥着重要作用(Xu 2016)。它们能产生各种各样的次级代谢产物,而次级代谢产物对其自身的正常生长不是必需的化合物,但其在真菌生态学中作为适应因子扮演着重要的角色,例如紫外线防护,并且能够通过在生态相互作用中作为防御化合物或信号分子起作用(Brakhage 2013;Keller 2019)。不仅如此,真菌产生的这些次级代谢产物在人类生活中具有重要的应用,自弗莱明从青霉属Penicillium中发现青霉素并广泛应用以来,真菌次级代谢产物成为药物分子的重要来源(Raja et al. 2017),例如,他汀类、环孢菌素和霉酚酸等已经开始大规模地用于延长人类生命(Keller 2019)。此外,真菌产生的次级代谢产物也表现出对人有害的特性,例如,黄曲霉毒素(AF)、环匹阿尼酸和黄曲霉震颤素等。由于次级代谢产物的重要性,所以对次级代谢产物的合成调控研究已经成为热点。
次级代谢产物的合成是一个复杂过程,需要多个基因参与调控,基因组挖掘工作表明,真菌产生次级代谢产物的能力被大大低估,因为许多真菌次级代谢产物生物合成基因簇在标准培养条件下是沉默的(Brakhage 2013)。类似于原核生物的操纵子,在真菌的基因组中也出现了彼此功能相关的非同源基因成簇存在的现象。这些基因形成基因簇,可参与多种次级代谢途径(Osbourn 2010)。真菌次级代谢基因簇由复杂的调节网络控制,其全局调控主要通过全局调控因子实现,而通路特异性调节由它们调节簇内的基因编码的转录因子介导。本文主要根据近年来对次级代谢产物的研究,综合论述了真菌次级代谢产物的药用价值以及在竞争、防御和发育过程中的生态功能,此外,还描述了次级代谢物生物合成基因簇的转录和表观遗传调控,旨在更加深刻地理解次级代谢产物的合成调控。

1 药用价值

自古以来,人们就将真菌作为药材使用,《神农本草经》和《本草纲目》等书中就有记载,例如茯苓、灵芝等真菌药物。不仅如此,其产生的次级代谢产物在抗菌、抗心血管疾病、抗肿瘤和抗病毒等方面表现出不同的活性,具有重要的药用价值(Wu et al. 2019),其中一些次级代谢产物已经被开发成药物,例如:具有抗菌活性的药物青霉素、灰黄霉素就是从自然界中常见的青霉属Penicillium中分离得到,而卡泊芬净是由Glarea lozoyensis的发酵产物合成的;免疫抑制剂环孢菌素来自TrichodermaTolypocladium属;治疗心血管疾病的药物洛伐他汀类药物来自Aspergillus等属。还有许多次级代谢产物还没有被研发成药物,但是具有重要的药物活性,如陈旭等(2017)从追风伞植物中分离得一株木霉属内生真菌可以产甾体化合物,发现其能抑制两种癌细胞的增殖;孔阳(2019)从白花夹竹桃Nerium indicum mill. cv Paihua中分离出3株具有强抗菌活性的内生真菌,实验结果显示其次级代谢产物不仅对人前列腺癌细胞PC3、人肺癌细胞A549和人乳腺癌细胞MCF-7有良好的抑制效果,而且有一定的抗糖尿病活性;大型真菌Hericium alpestre产生的次级代谢产物——4-羟基-2-吡啶酮类生物碱sambutoxin具有良好的抗肿瘤作用(李璐宁 2019);周岳(2018)从海洋真菌Aspergillus versicolor LZD4403中分离得到的次级代谢产物曲林菌素可以通过抑制巨噬细胞炎症,进而发挥抑制巨噬细胞泡沫化作用,从而发挥抗动脉粥样硬化的作用;近年来研究发现真菌次级代谢产物黑色素在体外对艾滋病病毒有显著的抑制作用,这使天然黑色素有望成为一种新的抗艾滋病药物(Cordero & Casadevall 2017)。以上研究均表明,真菌次级代谢产物在人类医疗健康方面具有重大价值,因此,了解真菌次级代谢产物的功能和合成调控具有重大意义。

2 真菌次级代谢产物功能

次级代谢产物是真菌发育的关键参与者,具有多种功能,并能很好地与其他生物之间形成相互作用。例如,比较常见的黑色素就扮演着非常重要的角色,从辐射防护、免疫防御到作为毒力因子,都具有重要意义。以下从3个方面叙述次级代谢产物在真菌发育过程中的生态功能。

2.1 免受紫外线辐射伤害

真菌黑色素是一种天然色素,一般呈黑棕色,通常在孢子或菌丝中发现,主要通过1,8-二羟基萘(DHN)途径和L-3,4-二羟基苯丙氨酸(L-DOPA)途径合成,还有一部分通过L-酪氨酸降解途径合成。研究表明,黑色素利于保护真菌孢子免受紫外线的伤害(图1),如玉米病菌Cochliobolus heterostrophus的白化突变体无法在田间存活;在黑曲霉中,破坏黑色素的合成会使其对紫外线的敏感度增加(Singaravelan et al. 2008)。许多研究已经证明了真菌黑色素不仅能够抵抗紫外线辐射,而且能够结合和隔离非特异性肽和化合物,产生保护细胞的物理屏障。
图1 黑色素保护孢子免受紫外线辐射损伤

Fig. 1 Melanin protects spores from UV radiation damage.

Full size|PPT slide

2.2 竞争和防御

次级代谢产物有利于真菌在激烈的竞争环境中生存,已经有大量研究表明真菌次级代谢产物在真菌与其他微生物、真菌与昆虫以及真菌与植物之间都起到非常重要的作用(Rohlfs 2015;Zeilinger et al. 2016;Scherlach & Hertweck 2017)。如上文提到的次级代谢产物黑色素,不仅可以保护真菌孢子免受紫外线的伤害,而且可以作为毒力因子。有研究表明通过各种机制影响巨噬细胞在抗真菌免疫过程中的识别和吞噬等环节,降低其抗真菌效应,在烟曲霉感染中,黑色素可通过覆盖细胞壁表面的β-甘露糖,影响巨噬细胞PRRs对烟曲霉识别,帮助烟曲霉在巨噬细胞内存活(Akoumianaki et al. 2016);通过CRISPR/Cas9敲除皮炎外瓶霉的黑色素合成关键酶PKS1基因,也发现白化株对人离体皮肤组织的侵袭力较色素株下降,这表明黑色素能够增强皮炎外瓶霉的侵袭力(Poyntner et al. 2018)。在真菌与细菌的研究中,真菌与细菌通过次级代谢产物相互作用中的例子有很多,细菌青枯雷尔氏菌Ralstonia solanacearum分泌脂肽ralsolamycin,其诱导真菌中的厚垣孢子形成和镰刀菌属中的bikaverin基因簇的表达,进而可减少细菌进入和生长(Spraker et al. 2016);研究发现伊氏杀线真菌胞内存在内生细菌,其合成的次级代谢产物将有助于伊氏杀线真菌在宿主线虫内定殖,增加伊氏杀线菌在生态竞争中的适应性,以便更好地捕杀线虫,减少松树枯萎病(王瑞珍 2017)。在防御昆虫的过程中,真菌往往产生一些有毒的次级代谢产物来保证自身的安全。例如:白僵菌Beauveria bassiana可以通过其次级代谢产物白僵菌素杀死害虫,而且还用聚酮类卵磷脂毒化尸体,以限制其他微生物对其食物的竞争(Fan et al. 2017);同样的,黄曲霉产生的有毒次级代谢产物黄曲霉毒素对昆虫也有一定的杀伤力,研究发现,在黄曲霉毒素丰富的环境中,在与昆虫竞争的试验中,真菌的适应性提高了26倍,而黄曲霉产毒菌株显示出更高的适应性(Keller 2019)。

2.3 真菌发育

真菌产生的次级代谢产物与真菌的发育有着密切联系,上文中已经提到真菌黑色素不仅能够抵抗紫外线辐射,而且能够结合和隔离非特异性肽和化合物,产生保护细胞的物理屏障,为真菌孢子提供保护,使其免受极端环境或昆虫捕食。除此以外,研究表明,土曲霉产生的丁内酯,能在真菌中提高菌丝的分枝、孢子形成(Schimmel et al. 1998);在构巢曲霉中,内源性油酸和亚麻油酸衍生物能调控形成无性和有性孢子的比例(Calvo et al. 2001);镰刀菌属的色素形成需要镰刀菌素(Lena et al. 2012);神经孢菌素neurosporin A可以阻止食虫动物以粗糙脉孢菌孢子为食(Zhao et al. 2017)。事实上,细菌的次级代谢产物也会对真菌发育产生影响,次级代谢产物可以作为种间信号,通过氧化应激调节影响真菌发育。在共培养实验中,铜绿假单胞菌次级代谢产物吩嗪对烟曲霉发育有不同的调节作用,其中高浓度的吩嗪具有抗真菌作用,但中等浓度会诱导真菌产孢(He et al. 2015)。

3 真菌次级代谢产物合成调控

真菌的次级代谢产物按照其合成途径主要分为聚酮类(polyketide)、非核糖体肽类(nonribosomal peptide)、生物碱以及萜类化合物等,次级代谢产物的合成主要通过骨干酶(backbone enzyme)聚合初级代谢产物,而骨干酶产生的代谢物会被其他能进一步改变代谢物生物活性的酶进一步“修饰”,骨干酶定义了产生的次级代谢产物的化学类别。例如,聚酮化合物合酶(polyketide synthases,PKS)从酰基CoA产生聚酮化合物,非核糖体肽合成酶(nonribosomal peptide synthases,NRPS)从氨基酸和萜烯合酶产生非核糖体肽,而萜烯环化酶(分别为TS和TC)从活化的异戊二烯单元产生萜烯(Keller 2019)。总之,真菌次级代谢产物的合成是一个复杂的过程,具体涉及到真菌感受细胞外界环境信号,转录激活和翻译表达水平等,其中每一步都需要多个基因参与调控。参与真菌次级代谢物生物合成的基因通常排列在生物合成基因簇中,生物合成基因簇是一种含特定遗传信息的核苷酸序列,而且其结构基因受表观遗传调控。
真菌次级代谢产物的合成与外界环境刺激有密不可分的联系,已经有研究表明温度和光可以诱导或抑制次级代谢产物的合成。以黄曲霉次级代谢产物黄曲霉毒素为例,黄曲霉毒素簇(图2A)由大约30个不同的基因组成,位于染色体3的端粒附近。在对黄曲霉毒素的研究过程中发现,不同温度培养下黄曲霉产毒能力有所不同(Yang et al. 2019)。除此之外,烟曲霉的次级代谢产物毒素trypacidin和免疫调节剂endocrocin是温度依赖性的(Berthier et al. 2013;Hagiwara et al. 2017),而镰刀菌属中次级代谢产物萜烯T-2毒素的产生也是温度依赖性的(Nazari et al. 2016)。事实上,研究表明光在真菌次级代谢物的合成过程中,也起到信号传导的作用。例如,黄曲霉毒素和杂色曲霉素相关的生物合成基因簇就受到白光抑制(Ozgür et al. 2008),光信号可以通过负调控全局转录因子LaeA来调控aflR,由aflR编码的Zn(II)2Cys6型转录因子可以调节黄曲霉毒素和杂色曲霉素合成基因的表达(图2B);此外,交链孢菌Alternaria alternata产生的真菌毒素交替醇和替代毒素则受白光刺激(Sonja et al. 2014)。真菌生物合成基因的转录一般由转录调控因子控制,可以分为全局性调控因子和特异性转录因子。目前,全局调控最有影响力的转录复合物是Velvet复合物,由LaeA(或Lae1)、VeA(或Vel1)和VelB(或Vel2)组成,LaeA已被证明是曲霉菌和其他丝状真菌的次级代谢的全局性调控因子,考虑到Velvet复合物对次级代谢物表达的全局影响,通过构建laeA缺失株进行实验,在构巢曲霉中敲除laeA能抑制杂色曲霉素和青霉素的合成(Jin & Keller 2004);在黄曲霉中敲除laeA基因能抑制黄曲霉毒素的合成(Amaike & Keller 2009);在轮枝样镰刀菌中敲除laeA基因会抑制bikaverin和fusarin的生物合成(Butchko et al. 2012);在尖孢镰刀菌中敲除laeA基因能抑制白僵菌素的生物合成(López-Berges et al. 2013);敲除产黄青霉中laeA基因会抑制产黄青霉中青霉素和PR毒素的生物合成(Martín 2016);在Penicillium expansum中,敲除laeA基因会抑制棒曲霉素的生物合成(Kumar et al. 2017),结果表明LaeA可以调节杂色曲霉素、黄曲霉毒素、青霉素、bikaverin、fusarin和白僵菌素等次级代谢产物的合成;而敲除veA基因会使一些代谢产物如:黄曲霉毒素、环匹阿尼酸和黄曲霉震颤毒素的合成受到明显抑制(Duran et al. 2007)。表观遗传对真菌次级代谢产物的生物合成也具有调控作用,DNA和组蛋白的甲基化与乙酰化修饰是目前所知的真菌主要的表观遗传调控形式。研究表明,编码组蛋白去乙酰化酶的hdaA的缺失导致转录激活并导致多个生物合成基因簇及其产物的表达增加(Shwab et al. 2007);Lan et al.(2016)研究发现黄曲霉中的组蛋白H3乙酰化酶GcnE参与了AF的合成及其合成基因的激活;中山大学贺竹梅课题组发现,DNA甲基转移酶抑制剂和DNA甲基转移酶基因的敲除能够抑制AF的合成,但是进一步研究发现黄曲霉菌中的DNA甲基化含量较低,其可能没有直接参与AF合成的调控(Liu et al. 2012;Lin et al. 2013;Zhi et al. 2017)。
图2 次级代谢产物黄曲霉毒素和杂色曲霉素的合成调控(+为正向调节,-为负向调节)

A:次级代谢产物黄曲霉毒素合成基因簇;B:次级代谢产物杂色曲霉素合成调控

Fig. 2 Synthetic regulation of aflatoxin and sterigmatocystin (+ indicates positive regulation, - indicates negative regulation).

A: Aflatoxin synthesis gene cluster; B: Versicolorin synthetic regulation.

Full size|PPT slide

此外,我们的前期研究和其他真菌中也发现真菌的次级代谢产物的合成受到了cAMP/PKA通路的调控作用(Yang et al. 2016;Yang et al. 2017)。在构巢曲霉中,cAMP通路上游的Gα亚基FadA能够激活PKA,而PKA能够磷酸化AflR从而抑制它的活性,进而抑制ST/AF合成通路的开启,因此cAMP通路负调控ST/AF合成(Shimizu & Keller 2001;Roze et al. 2004)。我们前期发现将黄曲霉菌中的cAMP高亲和力的磷酸二酯酶pdeH进行缺失后,导致黄曲霉内源cAMP浓度上升,但是由于黄曲霉菌中存在cAMP的高浓度反馈抑制作用导致突变体中的PKA酶活降低,并造成黄曲霉毒素产量都显著上升(Yang et al. 2017)。禾谷镰刀菌中的研究表明,外源cAMP处理或者敲除pde2都能够提高菌内的PKA酶活,从而促进DON毒素合成基因TRI的转录,进而提高DON毒素的合成(Jiang et al. 2016)。近期的研究也发现,蛋白的磷酸化、乙酰化、琥珀酰化和sumo化等翻译后修饰都参与了黄曲霉生长发育和AF合成过程(Nie et al. 2016;Ren et al. 2016;Lv 2017;Ren et al. 2018)。

4 结语

真菌次级代谢产物虽然不是真菌正常生长所必需的化合物,却是真菌发育的重要参与者。本文主要综述了近年来真菌次级代谢产物在抗肿瘤、抗糖尿病和抗动脉粥样硬化等常见病症中的药用价值,为研发新药提供基础;不仅如此,真菌次级代谢产物在真菌与其他微生物、植物和动物之间的互作关系中起到防御和保护的作用。尽管近几年对真菌次级代谢产物的合成调控研究已经取得很大的成就,然而其调控机制非常复杂,想要充分了解还需进一步研究。

参考文献

[1]
Behle RW, Garcia-Gutierrez C, Tamez-Guerra P, Mcguire MR, Jackson MA, 2006. Pathogenicity of blastospores and conidia of Paecilomyces fumosoroseus against larvae of the mexican bean beetle, Epilachna varivestis Mulsant. Southwestern Entomologist, 31(4):289-295
[2]
Elbein AD, Pan YT, Pastuszak I, Carroll D, 2003. New insights on trehalose: a multifunctional molecule. Glycobiology, 13(4):17-27
Trehalose is a nonreducing disaccharide in which the two glucose units are linked in an alpha,alpha-1,1-glycosidic linkage. This sugar is present in a wide variety of organisms, including bacteria, yeast, fungi, insects, invertebrates, and lower and higher plants, where it may serve as a source of energy and carbon. In yeast and plants, it may also serve as a signaling molecule to direct or control certain metabolic pathways or even to affect growth. In addition, it has been shown that trehalose can protect proteins and cellular membranes from inactivation or denaturation caused by a variety of stress conditions, including desiccation, dehydration, heat, cold, and oxidation. Finally, in mycobacteria and corynebacteria, trehalose is an integral component of various glycolipids that are important cell wall structures. There are now at least three different pathways described for the biosynthesis of trehalose. The best known and most widely distributed pathway involves the transfer of glucose from UDP-glucose (or GDP-glucose in some cases) to glucose 6-phosphate to form trehalose-6-phosphate and UDP. This reaction is catalyzed by the trehalose-P synthase (TPS here, or OtsA in Escherichia coli ). Organisms that use this pathway usually also have a trehalose-P phosphatase (TPP here, or OtsB in E. coli) that converts the trehalose-P to free trehalose. A second pathway that has been reported in a few unusual bacteria involves the intramolecular rearrangement of maltose (glucosyl-alpha1,4-glucopyranoside) to convert the 1,4-linkage to the 1,1-bond of trehalose. This reaction is catalyzed by the enzyme called trehalose synthase and gives rise to free trehalose as the initial product. A third pathway involves several different enzymes, the first of which rearranges the glucose at the reducing end of a glycogen chain to convert the alpha1,4-linkage to an alpha,alpha1,1-bond. A second enzyme then releases the trehalose disaccharide from the reducing end of the glycogen molecule. Finally, in mushrooms there is a trehalose phosphorylase that catalyzes the phosphorolysis of trehalose to produce glucose-1-phosphate and glucose. This reaction is reversible in vitro and could theoretically give rise to trehalose from glucose-1-P and glucose. Another important enzyme in trehalose metabolism is trehalase (T), which may be involved in energy metabolism and also have a regulatory role in controlling the levels of trehalose in cells. This enzyme may be important in lowering trehalose concentrations once the stress is alleviated. Recent studies in yeast indicate that the enzymes involved in trehalose synthesis (TPS, TPP) exist together in a complex that is highly regulated at the activity level as well as at the genetic level.
[3]
Gasch AP, Werner-Washburne M, 2002. The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4-5):181-192
[4]
Hallsworth JE, Magan N, 1996. Culture age, temperature and pH affect the polyol and trehalose contents of fungal propagules. Applied & Environmental Microbiology, 62(7):2435-2442
[5]
Hallsworth JE, Magan N, 1994. Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology, 140(10):2705-2713
[6]
Jaronski ST, Jackson MA, 2012. Mass production of entomopathogenic Hypocreales. In: Lacey LA (ed.) Manual of techniques in invertebrate pathology. Academic Press, London. 257-286
[7]
Kepler RM, Luangsa-Ard JJ, Hywel-Jones NL, Quandt CA, Sung GH, Rehner SA, Shrestha B, 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus, 8(2):335-353
The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of and its many genera have received extensive study in the last two decades, however resolution of competing names in has not yet been addressed. Here we present a molecular phylogenetic investigation of that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, and and the rejection of eight generic names,,,, and. Two new generic names, and, and a new species,, are described. New combinations are also proposed in the genera and
[8]
Kim JS, Je YH, Roh JY, 2010. Production of thermotolerant entomopathogenic Isaria fumosorosea SFP-198 conidia in corn-corn oil mixture. Journal of Industrial Microbiology & Biotechnology, 37(4):419
[9]
Kim JS, Kassa A, Skinner M, Hata T, Parker BL, 2011. Production of thermotolerant entomopathogenic fungal conidia on millet grain. Journal of Industrial Microbiology & Biotechnology, 38(6):697-704
[10]
Magan N, 2001. Physiological approaches to improving the ecological fitness of fungal biocontrol agents in fungi as biocontrol agents. Fungi as biocontrol agents: progress, problems and potential. CAB International Publishing, Wallingford.239-252
[11]
Mascarin GM, Jackson MA, Kobori NN, Behle RW, Dunlap CA, Ítalo Delalibera Júnior, 2015. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores. Applied Microbiology & Biotechnology, 99(16):6653-6665
[12]
Mascarin GM, Kobori NN, Quintela ED, Delalibera I, 2013. The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (hemiptera: aleyrodidae) and their conidial production using solid substrate fermentation. Biological Control, 66(3):209-218
[13]
Meng H, 2015. Insecticidal spectrum measurement of Isaria fumosorosea IF-1106 and comparison with pathogenicity of Beauveria bassiana. Master Thesis, Shanxi Agricultural University, Taigu.16-20 (in Chinese)
[14]
Rangel DEN, Anderson AJ, Roberts DW, 2008. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research, 112(11):1362-1372
[15]
Rangel DEN, Fernandes EKK, Anderson AJ, Roberts DW, 2012. Culture of Metarhizium robertsii on salicylicacid supplemented medium induces increased conidial thermotolerance. Fungal Biology, 116(3):438-442
[16]
Ruijter GJG, Bax M, Patel H, Flitter SJ, 2003. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell, 2(4):690
D-Mannitol is the predominant carbon compound in conidiospores of the filamentous fungus Aspergillus niger and makes up 10 to 15% of the dry weight. A number of physiological functions have been ascribed to mannitol, including serving as a reserve carbon source, as an antioxidant, and to store reducing power. In this study, we cloned and characterized the A. niger mpdA gene, which encodes mannitol 1-phosphate dehydrogenase (MPD), the first enzyme in the mannitol biosynthesis pathway. The mpdA promoter contains putative binding sites for the development-specific transcription factors BRLA and ABAA. Furthermore, increased expression of mpdA in sporulating mycelium suggests that mannitol biosynthesis is, to a certain extent, developmentally regulated in A. niger. Inactivation of mpdA abolished mannitol biosynthesis in growing mycelium and reduced the mannitol level in conidiospores to 30% that in the wild type, indicating that MPD and mannitol 1-phosphate phosphatase form the major metabolic pathway for mannitol biosynthesis in A. niger. The viability of spores after prolonged storage and germination kinetics were normal in an mpdA null mutant, indicating that mannitol does not play an essential role as a reserve carbon source in A. niger conidia. However, conidiospores of a DeltampdA strain were extremely sensitive to a variety of stress conditions, including high temperature, oxidative stress and, to a lesser extent, freezing and lyophilization. Since mannitol supplied in the medium during sporulation repaired this deficiency, mannitol appears to be essential for the protection of A. niger spores against cell damage under these stress conditions.
[17]
Singer MA, Lindquist S, 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1(5):639-648
The disaccharide trehalose is produced in large quantities by diverse organisms during a variety of stresses. Trehalose prevents proteins from denaturing at high temperatures in vitro, but its function in stress tolerance in vivo is controversial. We report that trehalose stabilizes proteins in yeast cells during heat shock. Surprisingly, trehalose also suppresses the aggregation of denatured proteins, maintaining them in a partially-folded state from which they can be activated by molecular chaperones. The continued presence of trehalose, however, interferes with refolding, suggesting why it is rapidly hydrolyzed following heat shock. These findings reconcile conflicting reports on the role of trehalose in stress tolerance, provide a novel tool for accessing protein folding intermediates, and define new parameters for modulating stress tolerance and protein aggregation.
[18]
Stephan D, Zimmermann G, 1998. Development of a spray-drying technique for submerged spores of entomopathogenic fungi. Biocontrol Science & Technology, 8(1):3-11
[19]
Tian J, Gong YH, Ma RY, 2018. Optimization technology of liquid fermentation of Isaria fumosorosea IF-1106 strain: China, CN108342329A. 2018-07-31 (in Chinese)
[20]
Wang DF, Zeng MS, Wang QS, Wu GY, 2010. Biochemical and molecular bases of stress-tolerance of entomogenous fungi and their application. Biotechnology Bulletin, 10:49-54 (in Chinese)
[21]
Wyatt GR, 1956. The chemistry of insect hemolymph. Journal of General Physiology, 39(6):853-868
[22]
Ying SH, Feng MG, 2010. Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. Journal of Applied Microbiology, 97(2):323-331
[23]
孟豪, 2015. 玫烟色棒束孢IF-1106杀虫谱测定及与球孢白僵菌的致病力对比. 山西农业大学硕士论文,太谷. 16-20
[24]
田晶, 弓玉红, 马瑞燕, 2018. 玫烟色棒束孢IF-1106菌株液体发酵优化工艺:中国,CN108342329A. 2018-07-31
[25]
王定锋, 曾明森, 王庆森, 吴光远, 2010. 虫生真菌抗逆的生化分子基础及利用. 生物技术通报, 10:49-54

基金

高等学校科技创新项目(2021L093)
山西省重点研发计划项目(201903D211001-1)
大同黄花产业发展研究院科研合作项目(2020HXDTHH03)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(604 KB)

Accesses

Citation

Detail

段落导航
相关文章

/