大型担子菌中二萜化合物生物合成研究进展

周一鸣,祁建钊,段应策,赵敏,刘成伟

菌物学报 ›› 2023, Vol. 42 ›› Issue (1) : 101-117.

PDF(1428 KB)
中文  |  English
PDF(1428 KB)
菌物学报 ›› 2023, Vol. 42 ›› Issue (1) : 101-117. DOI: 10.13346/j.mycosystema.220374 CSTR: 32115.14.j.mycosystema.220374
综述

大型担子菌中二萜化合物生物合成研究进展

作者信息 +

Research progress of the biosynthesis of diterpenoids in macro-basidiomycetes

Author information +
文章历史 +

摘要

大型担子菌分布广泛,种类繁多,它们是重要的食药用资源的宝库。萜类化合物是其主要活性成分之一,包括倍半萜、二萜和三萜等,这些化合物具有预防、缓解或治疗癌症、抑郁症、糖尿病和高脂血症等多种疾病的功效。目前,从担子菌中分离出的二萜类化合物基本骨架结构特征主要为鸟巢烷(cyathanes)型、截短侧耳素(pleuromutilins)型、guanacastanes型、海松烷(pimaranes)型、松香烷(abietanes)型和毛皮伞烷(crinipellins)型6大类型。本文综述了担子菌中二萜类化合物的结构特点、生物活性和生物合成的研究进展,对参与担子菌中二萜化合物生物合成的二萜合成酶进行了分类,对两种重要的二萜化合物生物合成途径进行了系统总结和论述。本文将为未知二萜化合物生物合成途径及关键基因功能解析提供参考。

Abstract

Macro-basidiomycetes are widely distributed and diverse. They are not only important food resources, but also a treasure of medicinal resources. Terpenoids are one of the main active ingredients found in the fruiting bodies of macrobasidiomycetes, including sesquiterpenes, diterpenes, triterpenes, etc. These compounds have effects of preventing, relieving or treating cancer, depression, diabetes, hyperlipidemia, and other diseases. At present, the basic backbone structure characteristics of diterpenoids isolated from basidiomycetes can be divided into six types: cyathanes, pleuromutilins, guanacastanes, pimaranes, abietanes, and crinipellins. In this review, the structural characteristics, biological activities, and biosynthesis of diterpenoids in basidiomycetes were summarized. Diterpene synthase involved in the biosynthesis of diterpenoids in basidiomycetes is classified, and two important biosynthetic pathways of diterpenoids are systematically summarized and discussed.

关键词

担子菌 / 二萜 / 二萜合成酶 / 生物活性 / 生物合成

Key words

basidiomycetes / diterpenoids / diterpene synthetases / biological activities / biosynthesis

引用本文

导出引用
周一鸣, 祁建钊, 段应策, 赵敏, 刘成伟. 大型担子菌中二萜化合物生物合成研究进展[J]. 菌物学报, 2023, 42(1): 101-117 https://doi.org/10.13346/j.mycosystema.220374
ZHOU Yiming, QI Jianzhao, DUAN Yingce, ZHAO Min, LIU Chengwei. Research progress of the biosynthesis of diterpenoids in macro-basidiomycetes[J]. Mycosystema, 2023, 42(1): 101-117 https://doi.org/10.13346/j.mycosystema.220374
真菌在环境中无处不在,在植物、动物和人类的健康以及广泛的生态系统功能中都发挥着重要作用(Xu 2016)。它们能产生各种各样的次级代谢产物,而次级代谢产物对其自身的正常生长不是必需的化合物,但其在真菌生态学中作为适应因子扮演着重要的角色,例如紫外线防护,并且能够通过在生态相互作用中作为防御化合物或信号分子起作用(Brakhage 2013;Keller 2019)。不仅如此,真菌产生的这些次级代谢产物在人类生活中具有重要的应用,自弗莱明从青霉属Penicillium中发现青霉素并广泛应用以来,真菌次级代谢产物成为药物分子的重要来源(Raja et al. 2017),例如,他汀类、环孢菌素和霉酚酸等已经开始大规模地用于延长人类生命(Keller 2019)。此外,真菌产生的次级代谢产物也表现出对人有害的特性,例如,黄曲霉毒素(AF)、环匹阿尼酸和黄曲霉震颤素等。由于次级代谢产物的重要性,所以对次级代谢产物的合成调控研究已经成为热点。
次级代谢产物的合成是一个复杂过程,需要多个基因参与调控,基因组挖掘工作表明,真菌产生次级代谢产物的能力被大大低估,因为许多真菌次级代谢产物生物合成基因簇在标准培养条件下是沉默的(Brakhage 2013)。类似于原核生物的操纵子,在真菌的基因组中也出现了彼此功能相关的非同源基因成簇存在的现象。这些基因形成基因簇,可参与多种次级代谢途径(Osbourn 2010)。真菌次级代谢基因簇由复杂的调节网络控制,其全局调控主要通过全局调控因子实现,而通路特异性调节由它们调节簇内的基因编码的转录因子介导。本文主要根据近年来对次级代谢产物的研究,综合论述了真菌次级代谢产物的药用价值以及在竞争、防御和发育过程中的生态功能,此外,还描述了次级代谢物生物合成基因簇的转录和表观遗传调控,旨在更加深刻地理解次级代谢产物的合成调控。

1 药用价值

自古以来,人们就将真菌作为药材使用,《神农本草经》和《本草纲目》等书中就有记载,例如茯苓、灵芝等真菌药物。不仅如此,其产生的次级代谢产物在抗菌、抗心血管疾病、抗肿瘤和抗病毒等方面表现出不同的活性,具有重要的药用价值(Wu et al. 2019),其中一些次级代谢产物已经被开发成药物,例如:具有抗菌活性的药物青霉素、灰黄霉素就是从自然界中常见的青霉属Penicillium中分离得到,而卡泊芬净是由Glarea lozoyensis的发酵产物合成的;免疫抑制剂环孢菌素来自TrichodermaTolypocladium属;治疗心血管疾病的药物洛伐他汀类药物来自Aspergillus等属。还有许多次级代谢产物还没有被研发成药物,但是具有重要的药物活性,如陈旭等(2017)从追风伞植物中分离得一株木霉属内生真菌可以产甾体化合物,发现其能抑制两种癌细胞的增殖;孔阳(2019)从白花夹竹桃Nerium indicum mill. cv Paihua中分离出3株具有强抗菌活性的内生真菌,实验结果显示其次级代谢产物不仅对人前列腺癌细胞PC3、人肺癌细胞A549和人乳腺癌细胞MCF-7有良好的抑制效果,而且有一定的抗糖尿病活性;大型真菌Hericium alpestre产生的次级代谢产物——4-羟基-2-吡啶酮类生物碱sambutoxin具有良好的抗肿瘤作用(李璐宁 2019);周岳(2018)从海洋真菌Aspergillus versicolor LZD4403中分离得到的次级代谢产物曲林菌素可以通过抑制巨噬细胞炎症,进而发挥抑制巨噬细胞泡沫化作用,从而发挥抗动脉粥样硬化的作用;近年来研究发现真菌次级代谢产物黑色素在体外对艾滋病病毒有显著的抑制作用,这使天然黑色素有望成为一种新的抗艾滋病药物(Cordero & Casadevall 2017)。以上研究均表明,真菌次级代谢产物在人类医疗健康方面具有重大价值,因此,了解真菌次级代谢产物的功能和合成调控具有重大意义。

2 真菌次级代谢产物功能

次级代谢产物是真菌发育的关键参与者,具有多种功能,并能很好地与其他生物之间形成相互作用。例如,比较常见的黑色素就扮演着非常重要的角色,从辐射防护、免疫防御到作为毒力因子,都具有重要意义。以下从3个方面叙述次级代谢产物在真菌发育过程中的生态功能。

2.1 免受紫外线辐射伤害

真菌黑色素是一种天然色素,一般呈黑棕色,通常在孢子或菌丝中发现,主要通过1,8-二羟基萘(DHN)途径和L-3,4-二羟基苯丙氨酸(L-DOPA)途径合成,还有一部分通过L-酪氨酸降解途径合成。研究表明,黑色素利于保护真菌孢子免受紫外线的伤害(图1),如玉米病菌Cochliobolus heterostrophus的白化突变体无法在田间存活;在黑曲霉中,破坏黑色素的合成会使其对紫外线的敏感度增加(Singaravelan et al. 2008)。许多研究已经证明了真菌黑色素不仅能够抵抗紫外线辐射,而且能够结合和隔离非特异性肽和化合物,产生保护细胞的物理屏障。
图1 黑色素保护孢子免受紫外线辐射损伤

Fig. 1 Melanin protects spores from UV radiation damage.

Full size|PPT slide

2.2 竞争和防御

次级代谢产物有利于真菌在激烈的竞争环境中生存,已经有大量研究表明真菌次级代谢产物在真菌与其他微生物、真菌与昆虫以及真菌与植物之间都起到非常重要的作用(Rohlfs 2015;Zeilinger et al. 2016;Scherlach & Hertweck 2017)。如上文提到的次级代谢产物黑色素,不仅可以保护真菌孢子免受紫外线的伤害,而且可以作为毒力因子。有研究表明通过各种机制影响巨噬细胞在抗真菌免疫过程中的识别和吞噬等环节,降低其抗真菌效应,在烟曲霉感染中,黑色素可通过覆盖细胞壁表面的β-甘露糖,影响巨噬细胞PRRs对烟曲霉识别,帮助烟曲霉在巨噬细胞内存活(Akoumianaki et al. 2016);通过CRISPR/Cas9敲除皮炎外瓶霉的黑色素合成关键酶PKS1基因,也发现白化株对人离体皮肤组织的侵袭力较色素株下降,这表明黑色素能够增强皮炎外瓶霉的侵袭力(Poyntner et al. 2018)。在真菌与细菌的研究中,真菌与细菌通过次级代谢产物相互作用中的例子有很多,细菌青枯雷尔氏菌Ralstonia solanacearum分泌脂肽ralsolamycin,其诱导真菌中的厚垣孢子形成和镰刀菌属中的bikaverin基因簇的表达,进而可减少细菌进入和生长(Spraker et al. 2016);研究发现伊氏杀线真菌胞内存在内生细菌,其合成的次级代谢产物将有助于伊氏杀线真菌在宿主线虫内定殖,增加伊氏杀线菌在生态竞争中的适应性,以便更好地捕杀线虫,减少松树枯萎病(王瑞珍 2017)。在防御昆虫的过程中,真菌往往产生一些有毒的次级代谢产物来保证自身的安全。例如:白僵菌Beauveria bassiana可以通过其次级代谢产物白僵菌素杀死害虫,而且还用聚酮类卵磷脂毒化尸体,以限制其他微生物对其食物的竞争(Fan et al. 2017);同样的,黄曲霉产生的有毒次级代谢产物黄曲霉毒素对昆虫也有一定的杀伤力,研究发现,在黄曲霉毒素丰富的环境中,在与昆虫竞争的试验中,真菌的适应性提高了26倍,而黄曲霉产毒菌株显示出更高的适应性(Keller 2019)。

2.3 真菌发育

真菌产生的次级代谢产物与真菌的发育有着密切联系,上文中已经提到真菌黑色素不仅能够抵抗紫外线辐射,而且能够结合和隔离非特异性肽和化合物,产生保护细胞的物理屏障,为真菌孢子提供保护,使其免受极端环境或昆虫捕食。除此以外,研究表明,土曲霉产生的丁内酯,能在真菌中提高菌丝的分枝、孢子形成(Schimmel et al. 1998);在构巢曲霉中,内源性油酸和亚麻油酸衍生物能调控形成无性和有性孢子的比例(Calvo et al. 2001);镰刀菌属的色素形成需要镰刀菌素(Lena et al. 2012);神经孢菌素neurosporin A可以阻止食虫动物以粗糙脉孢菌孢子为食(Zhao et al. 2017)。事实上,细菌的次级代谢产物也会对真菌发育产生影响,次级代谢产物可以作为种间信号,通过氧化应激调节影响真菌发育。在共培养实验中,铜绿假单胞菌次级代谢产物吩嗪对烟曲霉发育有不同的调节作用,其中高浓度的吩嗪具有抗真菌作用,但中等浓度会诱导真菌产孢(He et al. 2015)。

3 真菌次级代谢产物合成调控

真菌的次级代谢产物按照其合成途径主要分为聚酮类(polyketide)、非核糖体肽类(nonribosomal peptide)、生物碱以及萜类化合物等,次级代谢产物的合成主要通过骨干酶(backbone enzyme)聚合初级代谢产物,而骨干酶产生的代谢物会被其他能进一步改变代谢物生物活性的酶进一步“修饰”,骨干酶定义了产生的次级代谢产物的化学类别。例如,聚酮化合物合酶(polyketide synthases,PKS)从酰基CoA产生聚酮化合物,非核糖体肽合成酶(nonribosomal peptide synthases,NRPS)从氨基酸和萜烯合酶产生非核糖体肽,而萜烯环化酶(分别为TS和TC)从活化的异戊二烯单元产生萜烯(Keller 2019)。总之,真菌次级代谢产物的合成是一个复杂的过程,具体涉及到真菌感受细胞外界环境信号,转录激活和翻译表达水平等,其中每一步都需要多个基因参与调控。参与真菌次级代谢物生物合成的基因通常排列在生物合成基因簇中,生物合成基因簇是一种含特定遗传信息的核苷酸序列,而且其结构基因受表观遗传调控。
真菌次级代谢产物的合成与外界环境刺激有密不可分的联系,已经有研究表明温度和光可以诱导或抑制次级代谢产物的合成。以黄曲霉次级代谢产物黄曲霉毒素为例,黄曲霉毒素簇(图2A)由大约30个不同的基因组成,位于染色体3的端粒附近。在对黄曲霉毒素的研究过程中发现,不同温度培养下黄曲霉产毒能力有所不同(Yang et al. 2019)。除此之外,烟曲霉的次级代谢产物毒素trypacidin和免疫调节剂endocrocin是温度依赖性的(Berthier et al. 2013;Hagiwara et al. 2017),而镰刀菌属中次级代谢产物萜烯T-2毒素的产生也是温度依赖性的(Nazari et al. 2016)。事实上,研究表明光在真菌次级代谢物的合成过程中,也起到信号传导的作用。例如,黄曲霉毒素和杂色曲霉素相关的生物合成基因簇就受到白光抑制(Ozgür et al. 2008),光信号可以通过负调控全局转录因子LaeA来调控aflR,由aflR编码的Zn(II)2Cys6型转录因子可以调节黄曲霉毒素和杂色曲霉素合成基因的表达(图2B);此外,交链孢菌Alternaria alternata产生的真菌毒素交替醇和替代毒素则受白光刺激(Sonja et al. 2014)。真菌生物合成基因的转录一般由转录调控因子控制,可以分为全局性调控因子和特异性转录因子。目前,全局调控最有影响力的转录复合物是Velvet复合物,由LaeA(或Lae1)、VeA(或Vel1)和VelB(或Vel2)组成,LaeA已被证明是曲霉菌和其他丝状真菌的次级代谢的全局性调控因子,考虑到Velvet复合物对次级代谢物表达的全局影响,通过构建laeA缺失株进行实验,在构巢曲霉中敲除laeA能抑制杂色曲霉素和青霉素的合成(Jin & Keller 2004);在黄曲霉中敲除laeA基因能抑制黄曲霉毒素的合成(Amaike & Keller 2009);在轮枝样镰刀菌中敲除laeA基因会抑制bikaverin和fusarin的生物合成(Butchko et al. 2012);在尖孢镰刀菌中敲除laeA基因能抑制白僵菌素的生物合成(López-Berges et al. 2013);敲除产黄青霉中laeA基因会抑制产黄青霉中青霉素和PR毒素的生物合成(Martín 2016);在Penicillium expansum中,敲除laeA基因会抑制棒曲霉素的生物合成(Kumar et al. 2017),结果表明LaeA可以调节杂色曲霉素、黄曲霉毒素、青霉素、bikaverin、fusarin和白僵菌素等次级代谢产物的合成;而敲除veA基因会使一些代谢产物如:黄曲霉毒素、环匹阿尼酸和黄曲霉震颤毒素的合成受到明显抑制(Duran et al. 2007)。表观遗传对真菌次级代谢产物的生物合成也具有调控作用,DNA和组蛋白的甲基化与乙酰化修饰是目前所知的真菌主要的表观遗传调控形式。研究表明,编码组蛋白去乙酰化酶的hdaA的缺失导致转录激活并导致多个生物合成基因簇及其产物的表达增加(Shwab et al. 2007);Lan et al.(2016)研究发现黄曲霉中的组蛋白H3乙酰化酶GcnE参与了AF的合成及其合成基因的激活;中山大学贺竹梅课题组发现,DNA甲基转移酶抑制剂和DNA甲基转移酶基因的敲除能够抑制AF的合成,但是进一步研究发现黄曲霉菌中的DNA甲基化含量较低,其可能没有直接参与AF合成的调控(Liu et al. 2012;Lin et al. 2013;Zhi et al. 2017)。
图2 次级代谢产物黄曲霉毒素和杂色曲霉素的合成调控(+为正向调节,-为负向调节)

A:次级代谢产物黄曲霉毒素合成基因簇;B:次级代谢产物杂色曲霉素合成调控

Fig. 2 Synthetic regulation of aflatoxin and sterigmatocystin (+ indicates positive regulation, - indicates negative regulation).

A: Aflatoxin synthesis gene cluster; B: Versicolorin synthetic regulation.

Full size|PPT slide

此外,我们的前期研究和其他真菌中也发现真菌的次级代谢产物的合成受到了cAMP/PKA通路的调控作用(Yang et al. 2016;Yang et al. 2017)。在构巢曲霉中,cAMP通路上游的Gα亚基FadA能够激活PKA,而PKA能够磷酸化AflR从而抑制它的活性,进而抑制ST/AF合成通路的开启,因此cAMP通路负调控ST/AF合成(Shimizu & Keller 2001;Roze et al. 2004)。我们前期发现将黄曲霉菌中的cAMP高亲和力的磷酸二酯酶pdeH进行缺失后,导致黄曲霉内源cAMP浓度上升,但是由于黄曲霉菌中存在cAMP的高浓度反馈抑制作用导致突变体中的PKA酶活降低,并造成黄曲霉毒素产量都显著上升(Yang et al. 2017)。禾谷镰刀菌中的研究表明,外源cAMP处理或者敲除pde2都能够提高菌内的PKA酶活,从而促进DON毒素合成基因TRI的转录,进而提高DON毒素的合成(Jiang et al. 2016)。近期的研究也发现,蛋白的磷酸化、乙酰化、琥珀酰化和sumo化等翻译后修饰都参与了黄曲霉生长发育和AF合成过程(Nie et al. 2016;Ren et al. 2016;Lv 2017;Ren et al. 2018)。

4 结语

真菌次级代谢产物虽然不是真菌正常生长所必需的化合物,却是真菌发育的重要参与者。本文主要综述了近年来真菌次级代谢产物在抗肿瘤、抗糖尿病和抗动脉粥样硬化等常见病症中的药用价值,为研发新药提供基础;不仅如此,真菌次级代谢产物在真菌与其他微生物、植物和动物之间的互作关系中起到防御和保护的作用。尽管近几年对真菌次级代谢产物的合成调控研究已经取得很大的成就,然而其调控机制非常复杂,想要充分了解还需进一步研究。

参考文献

[1]
Alberti F, Khairudin K, Venegas ER, Davies JA, Hayes PM, Willis CL, Bailey AM, Foster GD, 2017. Heterologous expression reveals the biosynthesis of the antibiotic pleuromutilin and generates bioactive semi-synthetic derivatives. Nature Communications, 8(1): 1831
The rise in antibiotic resistance is a major threat for human health. Basidiomycete fungi represent an untapped source of underexploited antimicrobials, with pleuromutilin-a diterpene produced by Clitopilus passeckerianus-being the only antibiotic from these fungi leading to commercial derivatives. Here we report genetic characterisation of the steps involved in pleuromutilin biosynthesis, through rational heterologous expression in Aspergillus oryzae coupled with isolation and detailed structural elucidation of the pathway intermediates by spectroscopic methods and comparison with synthetic standards. A. oryzae was further established as a platform for bio-conversion of chemically modified analogues of pleuromutilin intermediates, and was employed to generate a semi-synthetic pleuromutilin derivative with enhanced antibiotic activity. These studies pave the way for future characterisation of biosynthetic pathways of other basidiomycete natural products in ascomycete heterologous hosts, and open up new possibilities of further chemical modification for the growing class of potent pleuromutilin antibiotics.
[2]
Anke H, Casser I, Steglich W, Pommer EH, 1987. Phlebiakauranol aldehyde an antifungal and cytotoxic metabolite from Punctularia atropurpurascens. The Journal of Antibiotics, 40(4): 443-449
[3]
Arnone A, Bava A, Fronza G, Nasini G, Ragg E, 2005. Concavine, an unusual diterpenic alkaloid produced by the fungus Clitocybe concava. Tetrahedron Letters, 46(46): 8037-8039
[4]
Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ. Willis CL, O’Dwyer K, Spence DW, Foster GD, 2016. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Scientific Reports, 6: 25202
Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.
[5]
Bailly C, Gao JM, 2020. Erinacine A and related cyathane diterpenoids: molecular diversity and mechanisms underlying their neuroprotection and anticancer activities. Pharmacological Research, 159: 104953
[6]
Chen HP, Liu JK, 2017. Secondary metabolites from higher fungi. Progress in the Chemistry of Organic Natural Products, 106: 1-201
[7]
Chen J, Zeng X, Yang YL, Xing YM, Zhang Q, Li JM, Ma K, Liu HW, Guo SX, 2017. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Scientific Reports, 7(1): 10151
[8]
Cheng W, Li W, 2014. Structural insights into ubiquinone biosynthesis in membranes. Science, 343(6173): 878-881
Biosynthesis of ubiquinones requires the intramembrane UbiA enzyme, an archetypal member of a superfamily of prenyltransferases that generates lipophilic aromatic compounds. Mutations in eukaryotic superfamily members have been linked to cardiovascular degeneration and Parkinson's disease. To understand how quinones are produced within membranes, we report the crystal structures of an archaeal UbiA in its apo and substrate-bound states at 3.3 and 3.6 angstrom resolution, respectively. The structures reveal nine transmembrane helices and an extramembrane cap domain that surround a large central cavity containing the active site. To facilitate the catalysis inside membranes, UbiA has an unusual active site that opens laterally to the lipid bilayer. Our studies illuminate general mechanisms for substrate recognition and catalysis in the UbiA superfamily and rationalize disease-related mutations in humans.
[9]
Christianson DW, 2017. Structural and chemical biology of terpenoid cyclases. Chemical Reviews, 117(17): 11570-11648
The year 2017 marks the twentieth anniversary of terpenoid cyclase structural biology: a trio of terpenoid cyclase structures reported together in 1997 were the first to set the foundation for understanding the enzymes largely responsible for the exquisite chemodiversity of more than 80000 terpenoid natural products. Terpenoid cyclases catalyze the most complex chemical reactions in biology, in that more than half of the substrate carbon atoms undergo changes in bonding and hybridization during a single enzyme-catalyzed cyclization reaction. The past two decades have witnessed structural, functional, and computational studies illuminating the modes of substrate activation that initiate the cyclization cascade, the management and manipulation of high-energy carbocation intermediates that propagate the cyclization cascade, and the chemical strategies that terminate the cyclization cascade. The role of the terpenoid cyclase as a template for catalysis is paramount to its function, and protein engineering can be used to reprogram the cyclization cascade to generate alternative and commercially important products. Here, I review key advances in terpenoid cyclase structural and chemical biology, focusing mainly on terpenoid cyclases and related prenyltransferases for which X-ray crystal structures have informed and advanced our understanding of enzyme structure and function.
[10]
Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J, 2021. Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema, 40: 770-805 (in Chinese)
[11]
Davis EM, Croteau R, 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Topics in Current Chemistry, 209(1): 53-95
[12]
Dickschat JS, 2019. Bacterial diterpene biosynthesis. Angewandte Chemie, 58(45): 15964-15976
[13]
Ding JH, Li ZH, Feng T, Liu JK, 2018. Inonotolides A-C, isopimarane diterpenoid lactones from Inonotus sinensis. Fitoterapia, 127: 410-412
[14]
Dornhelm P, Högenauer G, 1978. The effects of tiamulin, a semisynthetic pleuromutilin derivative, on bacterial polypeptide chain initiation. European Journal of Biochemistry, 91(2): 465-473
Tiamulin, a water-soluble and highly effective semisynthetic derivative of pleuromutilin leads to the formation of physiologically inactive polypeptide chain initiation complexes which readily decompose and do not enter the phase of peptide chain elongation. Once elongation has begun it continues even in the presence of tiamulin as has been shown by measuring the formation of N-acetylphenylalanine-poly(phenylalanine). The formation of abortive initiation complexes was observed regardless of whether AcPhe-tRNA of fMet-tRNA was used as an initiator or whether artificial messengers or a natural messenger, like R17 bacteriophage RNA, was used. When this drug was acting on whole cells, it led to the disappearance of polysomes. The only structures which could be detected were of the monosome size. Therefore, polysomes seem to elongate the polypeptide chains in whole cells in the presence of this antibiotic, but since effective reinitiation is blocked, the polysome pool of the cell soon becomes depleted.
[15]
Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A, 2010. Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Molecular Biology, 73(6): 673-685
Tobacco (Nicotiana sylvestris) glandular trichomes make an attractive target for isoprenoid metabolic engineering because they produce large amounts of one type of diterpenoids, alpha- and beta-cembratrien-diols. This article describes the establishment of tools for metabolic engineering of tobacco trichomes, namely a transgenic line with strongly reduced levels of diterpenoids in the exudate and the characterization of a trichome specific promoter. The diterpene-free tobacco line was generated by silencing the major tobacco diterpene synthases, which were found to be encoded by a family of four highly similar genes (NsCBTS-2a, NsCBTS-2b, NsCBTS-3 and NsCBTS-4), one of which is a pseudogene. The promoter regions of all four CBTS genes were sequenced and found to share over 95% identity between them. Transgenic plants expressing uidA under the control of the NsCBTS-2a promoter displayed a specific pattern of GUS expression restricted exclusively to the glandular cells of the tall secretory trichomes. A series of sequential and internal deletions of the NsCBTS-2a promoter led to the identification of two cis-acting regions. The first, located between positions -589 to -479 from the transcription initiation site, conferred a broad transcriptional activation, not only in the glandular cells, but also in cells of the trichome stalk, as well as in the leaf epidermis and the root. The second region, located between positions -279 to -119, had broad repressor activity except in trichome glandular cells and is mainly responsible for the specific expression pattern of the NsCBTS-2a gene. These results establish the basis for the identification of trans-regulators required for the expression of the CBTS genes restricted to the secretory cells of the glandular trichomes.
[16]
Gampe CM, Carreira EM, 2011. Total syntheses of guanacastepenes N and O. Angewandte Chemie International Edition, 50(13): 2962-2965
[17]
Gershenzon J, Dudareva N, 2007. The function of terpene natural products in the natural world. Nature Chemical Biology, 3(7): 408-414
As the largest class of natural products, terpenes have a variety of roles in mediating antagonistic and beneficial interactions among organisms. They defend many species of plants, animals and microorganisms against predators, pathogens and competitors, and they are involved in conveying messages to conspecifics and mutualists regarding the presence of food, mates and enemies. Despite the diversity of terpenes known, it is striking how phylogenetically distant organisms have come to use similar structures for common purposes. New natural roles undoubtedly remain to be discovered for this large class of compounds, given that such a small percentage of terpenes has been investigated so far.
[18]
Guo C, Dai H, Zhang M, Liao H, Zhang R, Chen B, Han J, Liu H, 2022. Molecular networking assisted discovery and combinatorial biosynthesis of new antimicrobial pleuromutilins. European Journal of Medicinal Chemistry, 243: 114713
[19]
Han JW, Oh M, Lee YJ, Choi J, Choi GJ, Kim H, 2018. Crinipellins A and I, two diterpenoids from the basidiomycete fungus Crinipellis rhizomaticola, as potential natural fungicides. Molecules, 23(9): 2377
[20]
Hgenauer G, 1975. The mode of action of pleuromutilin derivatives. European Journal of Biochemistry, 52(1): 93-98
[21]
Hodgin LA, Högenauer G, 1974. The mode of action of pleuromutilin derivatives. European Journal of Biochemistry, 47(3): 527-533
[22]
Jang HJ, Yang KS, 2011. Inhibition of nitric oxide production in RAW 264.7 macrophages by diterpenoids from Phellinus pini. Archives of Pharmacal Research, 34(6): 913-917
[23]
Johri BN, Brodie HJ, 1971. The physiology of production of the antibiotic cyathin by Cyathus helenae. Canadian Journal of Microbiology, 17(9): 1243-1245
[24]
Kavanagh F, Robbins H, 1951. Antibiotic substances from basidiomycetes:Ⅷ. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proceedings of the National Academy of Sciences of the United States of America, 37(9): 570-574
[25]
Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, Ishiguro Y, Furukawa S, 1994. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Letters, 35(10): 1569-1572
[26]
Kenmoku H, Kato N, Shimada M, Omoto M, Mori A, Mitsuhashi W, Sassa T, 2001. Isolation of (-)-cyatha- 3,12-diene, a common biosynthetic intermediate of cyathane diterpenoids, from an erinacine-producing basidiomycete, Hericium erinaceum, and its formation in a cell-free system. Tetrahedron Letters, 42(42): 7439-7442
[27]
Kenmoku H, Sassa T, Kato N, 2000. Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. ChemInform, 31(22): 4389-4393
[28]
Kenmoku H, Tanaka K, Okada K, Kato N, Sassa T, 2004. Erinacol (cyatha-3,12-dien-14β-ol) and 11-O-acetylcyathin A(3), new cyathane metabolites from an erinacine Q-producing Hericium erinaceum. Bioscience, Biotechnology, and Biochemistry, 68(8): 1786-1789
[29]
Kinghorn AD, Falk H, Gibbons S, Kobayashi JI, 2017. Progress in the chemistry of organic natural products 106. Springer International Publishing. 1-236
[30]
Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge E, Fortman JL, Johnson HE, Anderson JV, 2010. Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry, 71(13): 1466-1473
[31]
Kuhnert E, Surup F, Wiebach V, Bernecker S, Stadler M, 2015. Botryane, noreudesmane and abietane terpenoids from the ascomycete Hypoxylon rickii. Phytochemistry, 117: 116-122
In the course of our screening for new bioactive natural products, a culture of Hypoxylon rickii, a xylariaceous ascomycete collected from the Caribbean island Martinique, was identified as extraordinary prolific producer of secondary metabolites. Ten metabolites of terpenoid origin were isolated from submerged cultures of this species by preparative HPLC. Their structures were elucidated using spectral techniques including 2D NMR and HRESIMS. Three of the compounds were elucidated as new botryanes (1-3) along with three known ones, i.e. (3aS)-3a,5,5,8-tetramethyl-3,3a,4,5-tetrahydro-1H-cyclopenta[de]isochromen-1-one (4), (3aS,8R)-3a,5,5,8-tetramethyl-3,3a,4,5,7,8-hexahydro-1H-cyclopenta[de]isochromen-1-one (5) and botryenanol (6). Further three new sesquiterpenoids featured a 14-noreudesmane-type skeleton and were named hypoxylan A-C (7-9); the diterpenoid rickitin A (10) contains an abietane-type backbone. Compounds 1, 2, 3, 7, and 10 showed cytotoxic effects against murine cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
[32]
Kuzuyama T, 2002. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Bioscience Biotechnology and Biochemistry, 66(8): 1619-1627
Isoprenoids are synthesized by consecutive condensations of their five-carbon precursor, isopentenyl diphosphate, to its isomer, dimethylallyl diphosphate. Two pathways for these precursors are known. One is the mevalonate pathway, which operates in eucaryotes, archaebacteria, and cytosols of higher plants. The other is a recently discovered pathway, the nonmevalonate pathway, which is used by many eubacteria, green algae, and chloroplasts of higher plants. To date, five reaction steps in this new pathway and their corresponding enzymes have been identified. EC numbers of these enzymes have been assigned by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) and are available at http://www.chem.qmw.ac.uk/iubmb/enzyme/reaction/terp/nonMVA.html.
[33]
Lee IS, Kim KC, Yoo ID, Ha BJ, 2015. Inhibition of human neutrophil elastase by labdane diterpenes from the fruiting bodies of Ramaria formosa. Bioscience, Biotechnology, and Biochemistry, 79(12): 1921-1925
[34]
Li CW, Zhang H, Rao P, Zheng DR, Wang Y, Li YH, 2021. Research progress on biosynthesis pathway of pentacyclic triterpenoids in plants. Chinese Traditional and Herbal Drugs, 52(11): 17 (in Chinese)
[35]
Li W, 2016. Bringing bioactive compounds into membranes: the UbiA superfamily of intramembrane aromatic prenyltransferases. Trends in Biochemical Sciences, 41(4): 356-370
The UbiA superfamily of intramembrane prenyltransferases catalyzes a key biosynthetic step in the production of ubiquinones, menaquinones, plastoquinones, hemes, chlorophylls, vitamin E, and structural lipids. These lipophilic compounds serve as electron and proton carriers for cellular respiration and photosynthesis, as antioxidants to reduce cell damage, and as structural components of microbial cell walls and membranes. This article reviews the biological functions and enzymatic activities of representative members of the superfamily, focusing on the remarkable recent research progress revealing that the UbiA superfamily is centrally implicated in several important physiological processes and human diseases. Because prenyltransferases in this superfamily have distinctive substrate preferences, two recent crystal structures are compared to illuminate the general mechanism for substrate recognition.Copyright © 2016 Elsevier Ltd. All rights reserved.
[36]
Li XL, Xu YX, Li Y, Zhang R, Hu TY, Su P, Zhou M, Tang T, Zeng Y, Yang YL, Gao W, 2019. Rapid discovery and functional characterization of diterpene synthases from basidiomycete fungi by genome mining. Fungal Genetics and Biology, 128: 36-42
[37]
Liu C, Zhao C, Pan HH, Kang J, Yu XT, Wang HQ, Li BM, Xie YZ, Chen RY, 2014. Chemical constituents from Inonotus obliquus and their biological activities. Journal of Natural Products, 77(1): 35-41
[38]
Liu CW, Minami A, Ozaki T, Wu J, Kawagishi H, Maruyama J, Oikawa H, 2019. Efficient reconstitution of basidiomycota diterpene erinacine gene cluster in Ascomycota host Aspergillus oryzae based on genomic DNA sequences. Journal of the American Chemical Society, 141(39): 15519-15523
[39]
Liu L, Hu CH, 2010. Advance in fungal diterpene cyclase: a review. Acta Microbiologica Sinica, 50(11): 1438-1445 (in Chinese)
摘要
Diterpenoid is a huge group of nature products isolated from plants and fungi. Diterpene cyclase, which is responsible for the diterpene carbon skeleton formation from geranylgeranyl diphosphate (GGPP), is a key enzyme in the biosynthetic pathway of diterpene. The specificity of diterpene cyclase in different species results in structural diversity and bioactivity variety of diterpenoid. Isolation and characterization of the diterpene cyclase in various species will facilitate studies on the biosynthesis and regulation of diterpenoid in future. Compared to plant diterpenoids, few fungal diterpenoid and diterpene cyclase were studied. This article reviews the research advancement of fungal diterpene cyclase in recent years, especially describes the biosynthesis pathway of diterpenoid, the characteristics and cloning strategies of fungal diterpene cyclase, and the metabolic engineering of diterpenoid.
[40]
Liu Y, Li Y, Ou Y, Xiao S, Lu C, Zheng Z, Shen Y, 2012. Guanacastane-type diterpenoids with cytotoxic activity from Coprinus plicatilis. Bioorganic Medicinal & Chemistry Letters, 22(15): 5059-5062
[41]
Liu YP, Dai Q, Wang WX, He J, Liu JK, 2020. Psathyrins: antibacterial diterpenoids from Psathyrella candolleana. Journal of Natural Products, 83(5): 1725-1729
[42]
Ma K, Zhang Y, Guo C, Yang Y, Han J, Yu B, Yin W, Liu H, 2021. Reconstitution of biosynthetic pathway for mushroom-derived cyathane diterpenes in yeast and generation of new “non-natural” analogues - science direct. Acta Pharmaceutica Sinica B, 11(9): 2945-2956
[43]
Meguro A, Tomita T, Nishiyama M, Kuzuyama T, 2014. Corrigendum: identification and characterization of bacterial diterpene cyclases that synthesize the cembrane skeleton. ChemBioChem, 14(3): 316-321
[44]
Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T, 1998. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases. The Journal of Biological Chemistry, 273(41): 26705-26713
[45]
Ou YX, Li YY, Qian XM, Shen YM, 2012. Guanacastane-type diterpenoids from Coprinus radians. Phytochemistry, 78: 190-196
[46]
Paukner S, Sader SH, Ivezic-Schoenfeld Z, Jones RN, 2013. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY Antimicrobial Surveillance Program in 2010. Antimicrobial Agents and Chemotherapy, 57(9): 4489-4495
BC-3781 is a novel semisynthetic pleuromutilin antibiotic inhibiting bacterial protein synthesis. BC-3781 has completed a phase 2 clinical trial in acute bacterial skin and skin structure infections (ABSSSI). Its antibacterial spectrum additionally covers the predominant pathogens causing community-acquired bacterial pneumonia (CABP). In this study, the antibacterial activity of BC-3781 was evaluated against a contemporary collection of 10,035 bacterial isolates predominately causing ABSSSI and CABP, among other infections, collected within the SENTRY Antimicrobial Surveillance Program worldwide in 2010. BC-3781 exhibited potent activity against organisms commonly isolated from ABSSSI such as Staphylococcus aureus (MIC50/90, 0.12/0.12 μg/ml; 99.8% inhibited at ≤0.5 μg/ml), beta-hemolytic streptococci (MIC50/90, 0.03/0.03 μg/ml; 99.3% inhibited at ≤0.5 μg/ml), and coagulase-negative staphylococci (CoNS; MIC50/90, 0.06/0.12 μg/ml; 97.8% inhibited at ≤1 μg/ml). BC-3781 displayed similar MIC distributions among methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) S. aureus strains. BC-3781 was also active against Enterococcus faecium, with 76.3% of vancomycin-susceptible and 97.0% of vancomycin-resistant isolates being inhibited at BC-3781 concentrations of ≤1 μg/ml. Beta-hemolytic and viridans group streptococci were highly susceptible to BC-3781, with 99.3% and 96.7% of isolates inhibited at ≤0.5 μg/ml, respectively. Further, activity of BC-3781 against Streptococcus pneumoniae (MIC50/90, 0.12/0.25 μg/ml), Haemophilus influenzae (MIC50/90, 1/2 μg/ml), and Moraxella catarrhalis (MIC50/90, 0.12/0.25 μg/ml) was not negatively influenced by β-lactamase production or resistance to other antimicrobial classes tested. In all, BC-3781 displayed a very potent antibacterial profile including the most prevalent bacterial pathogens causing ABSSSI and CABP, thus warranting further clinical development of this antibiotic in these and possibly other indications.
[47]
Peng QY, Zou G, Gao LH, Bai LQ, Tan Y, Wu YY, 2021. Research progress on cyathanes from macrofungi. Acta Edulis Fungi, 28(2): 140-154 (in Chinese)
[48]
Poulsen SM, Karlsson M, Johansson LB, Vester B, 2001. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Molecular Microbiology, 41(5): 1091-1099
The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.
[49]
Quin MB, Flynn CM, Schmidt-Dannert C, 2014. Traversing the fungal terpenome. Natural Product Reports, 31(10): 1449-1473
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.
[50]
Rahelivao MP, Gruner M, Lubken T, Islamov D, Kataeva O, Andriamanantoanina H, Bauer I, Knolker HJ, 2016. Chemical constituents of the soft corals Sinularia vanderlandi and Sinularia gravis from the coast of Madagascar. Organic & Biomolecular Chemistry, 14(3): 989-1001
[51]
Reveglia P, Cimmino A, Masi M, Nocera P, Berova N, Ellestad G, Evidente A, 2018. Pimarane diterpenes: natural source, stereochemical configuration, and biological activity. Chirality, 30(10): 1115-1134
Plants and fungi are seemingly inexhaustible sources of interesting natural products with remarkable structural and biological diversity. One of the most important groups is the terpenes, ubiquitous natural products that are generated by 2 now well-established biosynthetic pathways: the older mevalonate and the more recently discovered 1-deoxyxylulose-5-phosphate. Among the diterpenes, the pimarane diterpenes are a very representative subgroup with several and interesting biological activities resulting from different functional group modifications. In this review, we outline the method of their structure determination, mainly spectroscopic results, their absolute configuration, and structure-activity relationships, were reported, as well as the mode of action for selected examples from plants, marine organisms, and fungi. The pimarane, isopimarane, and ent-pimarane diterpenes covered in this review have a wide range of biological activities including antimicrobial, antifungal, antiviral, phytotoxic, phytoalexin, cytotoxicity, and antispasmodic and relaxant effects.© 2018 Wiley Periodicals, Inc.
[52]
Rohr M, Oleinikov K, Jung M, Sandjo LP, Erkel G, 2017. Anti-inflammatory tetraquinane diterpenoids from a Crinipellis species. Bioorganic & Medicinal Chemistry, 25(2): 514-522
[53]
Schmidt-Dannert C, 2016. Biocatalytic portfolio of basidiomycota. Current Opinion in Chemical Biology, 31: 40-49
Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi.Copyright © 2016 Elsevier Ltd. All rights reserved.
[54]
Schwabe R, Farkas I, Pfander H, 1988. Synthese von (-)-(R)-nephthenol und (-)-(R)-cembren A. Helvetica Chimica Acta, 71(1): 292-297
[55]
Siebert M, Bechthold A, Melzer M, May U, Heide L, 1992. Ubiquinone biosynthesis cloning of the genes coding for chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyl transferase from Escherichia coli. FEBS Letters, 307(3): 347-350
Chorismate pyruvate-lyase activity was detected in extracts of Escherichia coli. 4-Hydroxybenzoate was identified as the product of the enzymatic reaction by chemical derivatization and GC-MS analysis. The ubiC gene, coding for the chorismate pyruvate-lyase, was cloned and sequenced. The molecular weight of the gene product was calculated as 18,776 Da and confirmed by expression of the protein in E. coli minicells. The ubiA gene, coding for the 4-hydroxybenzoate octaprenyl transferase, was identified by sequence homology and complementation of a ubiA- strain. It is located directly downstream of ubiC in a typical operon structure.
[56]
Su P, Guan H, Zhang Y, Xing W, Gao L, Zhao Y, Hu T, Zhou J, Ma B, Tu L, Tong Y, Huang L, Gao W, 2017. Probing the single key amino acid responsible for the novel catalytic function of ent-kaurene oxidase supported by NADPH-cytochrome P 450 Reductases in Tripterygium wilfordii. Frontiers in Plant Science, 8: 1756
[57]
Sugano SS, Suzuki H, Shimokita E, Chiba H, Noji S, Osakabe Y, Osakabe K, 2017. Genome editing in the mushroom- forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Scientific Reports, 7(1): 1260
[58]
Teng LM, Tian XM, Wu F, Dai YC, 2021. A comparison of triterpenoids and polysaccharides in 13 species of wild Ganoderma. Mycosystema, 40(7): 1811-1819 (in Chinese)
[59]
Tsukamoto S, Macabalang AD, Nakatani K, Obara Y, Ohta T, 2003. Tricholomalides A-C, new neurotrophic diterpenes from the mushroom Tricholoma sp. Journal of Natural Products, 66(12): 1578-1581
[60]
Tzeng TT, Chen CC, Lee LY, Chen WP, Lu CK, Shen CC, Huang FCY, Chen CC, Shiao YJ, 2016. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE 9 transgenic mice. Journal of Biomedical Science, 23(1): 1-12
[61]
Wang K, Chen BS, Bao L, Ma K, Han JJ, Wang Q, Guo SX, Liu HW, 2015. A review of research on the active secondary metabolites of Hericium species. Mycosystema, 34(4): 553-568 (in Chinese)
[62]
Wang Q, Xu MM, Liu GQ, Cao CL, Shi GY, Ding ZY, 2021. An efficient strategy to enhance triterpenoid production by liquid superficial-static culture (LSSC) of Ganoderma lingzhi. Mycosystema, 40(3): 656-667 (in Chinese)
[63]
Wang SJ, Li YX, Bao L, Han JJ, Yang XL, Li HR, Wang YQ, Li SJ, Liu HW, 2012. Eryngiolide A, a cytotoxic macrocyclic diterpenoid with an unusual cyclododecane core skeleton produced by the edible mushroom Pleurotus eryngii. Organic Letters, 14(14): 3672-3675
[64]
Wang Y, Wang SJ, Mo SY, Li S, Yang YC, Shi JG, 2006. An abietane diterpene and a sterol from fungus Phellinus igniarius. Chinese Chemical Letters, 2006(4): 481-484
[65]
Wei J, Gao W, Huang CY, 2021. A checklist of edible ectomycorrhizal mushrooms in China. Mycosystema, 40(8): 1938-1957 (in Chinese)
[66]
Wei TZ, Jiang L, Yao YJ, Wang K, Yu XD, Li Y, Wu HJ, Wu HM, Wang YH, Wei XD, 2020. Assessment of the threatened status of macro-basidiomycetes in China. Biodiversity Science, 28(1): 13 (in Chinese)
[67]
Wu F, Zhou LW, Vlasák J, Dai YC, 2022. Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal Diversity, 113: 1-192
[68]
Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC, 2019. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Diversity, 98: 1-76
[69]
Xu Z, Yan S, Bi K, Han J, Chen Y, Wu Z, Chen Y, Liu HW, 2013. Isolation and identification of a new anti- inflammatory cyathane diterpenoid from the medicinal fungus Cyathus hookeri Berk. Fitoterapia, 86: 159-162
[70]
Yamane M, Minami A, Liu C, Ozaki T, Takeuchi I, Tsukagoshi T, Tokiwano T, Gomi K, Oikawa H, 2017. Biosynthetic machinery of diterpene pleuromutilin isolated from basidiomycete fungi. ChemBioChem, 18(23): 2317-2322
The diterpene pleuromutilin is a ribosome-targeting antibiotic isolated from basidiomycete fungi, such as Clitopilus pseudo-pinsitus. The functional characterization of all biosynthetic enzymes involved in pleuromutilin biosynthesis is reported and a biosynthetic pathway proposed. In vitro enzymatic reactions and mutational analysis revealed that a labdane-related diterpene synthase, Ple3, catalyzed two rounds of cyclization from geranylgeranyl diphosphate to premutilin possessing a characteristic 5-6-8-tricyclic carbon skeleton. Biotransformation experiments utilizing Aspergillus oryzae transformants possessing modification enzyme genes allowed the biosynthetic pathway from premutilin to pleuromutilin to be proposed. The present study sets the stage for the enzymatic synthesis of natural products isolated from basidiomycete fungi, which are a prolific source of structurally diverse and biologically active terpenoids.© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[71]
Yan K, Madden L, Choudhry AE, Voigt CS, Copeland RA, Gontarek RR, 2006. Biochemical characterization of the interactions of the novel pleuromutilin derivative retapamulin with bacterial ribosomes. Antimicrobial Agents and Chemotherapy, 50(11): 3875-3881
Retapamulin is a semisynthetic pleuromutilin derivative being developed as a topical antibiotic for treating bacterial infections of the skin. It is potent in vitro against susceptible and multidrug-resistant organisms commonly associated with bacterial skin infections. We report detailed mode of action studies demonstrating that retapamulin binds to the bacterial ribosome with high affinity, inhibits ribosomal peptidyl transferase activity, and partially inhibits the binding of the initiator tRNA substrate to the ribosomal P-site. Taken together, these data distinguish the mode of action of retapamulin from that of other classes of antibiotics. This unique mode of action may explain the lack of clinically relevant, target-specific cross-resistance of retapamulin with antibacterials in current use.
[72]
Yang YL, Zhang S, Ma K, Xu Y, Tao Q, Chen Y, Chen J, Guo S, Ren J, Wang W, Tao Y, Yin WB, Liu H, 2017. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angewandte Chemie, 56(17): 4749-4752
[73]
Yi X, He QL, Liu W, 2019. The biosynthesis of diterpenoids from plants. Chinese Bulletin of Life Sciences, 31(5): 15 (in Chinese)
[74]
Yin X, Feng T, Li ZH, Leng Y, Liu JK, 2014. Five new guanacastane-type diterpenes from cultures of the fungus Psathyrella candolleana. Natural Products and Bioprospecting, 4(3): 149-155
[75]
Yin X, Wei J, Wang WW, Gao YQ, Stadler M, Kou RW, Gao JM, 2019. New cyathane diterpenoids with neurotrophic and anti-neuroinflammatory activity from the bird’s nest fungus Cyathus africanus. Fitoterapia, 134: 201-209
[76]
Yin YY, Wang XL, Xue FF, Huang J, Zhang SB, Liu GQ, 2021. Signal transduction and gene expression analysis of triterpenoid acid synthesis induced by 9,10- cyclomethylheptadecanoic acid in Ganoderma lingzhi. Mycosystema, 40(9): 2317-2329 (in Chinese)
[77]
Ying YM, Zhang LY, Zhang X, Bai HB, Liang DE, Ma LF, Shan WG, Zhan ZJ, 2014. Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus. Phytochemistry, 108: 171-176
[78]
Zhang CC, 2016. Studies on the neurotrophic action of cyathane diterpenoids and meroteroenoids in high fungi. PhD Dissertation, Northwest A&F University, Xi’an. 1-153 (in Chinese)
[79]
Zhang FL, Feng T, 2022. Diterpenes specially produced by fungi: structures, biological activities, and biosynthesis (2010-2020). Journal of Fungi, 8(3): 244
[80]
Zhang L, Li ZH, Dong ZJ, Li Y, Liu JK, 2015. A viscidane diterpene and polyacetylenes from cultures of Hypsizygus marmoreus. Natural Products and Bioprospecting, 5(2): 99-103
[81]
Zhang Y, Li Y, Ye JH, Zhang JJ, Zou J, Pan LT, 2019. The abietane type diterpenes from Isodon (Bl.) Hassk. Chinese Journal of Ethnomedicine and Ethnopharmacy, 28(11): 40-47 (in Chinese)
[82]
Zhou ZY, Liu R, Jiang MY, Zhang L, Niu Y, Zhu YC, Dong ZJ, Liu JK, 2009. Two new cleistanthane diterpenes and a new isocoumarine from cultures of the basidiomycete Albatrellus confluens. Chemical & Pharmaceutical Bulletin, 57(9): 975-978
[83]
戴玉成, 杨祝良, 崔宝凯, 吴刚, 袁海生, 周丽伟, 何双辉, 葛再伟, 吴芳, 魏玉莲, 员瑗, 司静, 2021. 中国森林大型真菌重要类群多样性和系统学研究. 菌物学报, 40: 770-805
[84]
李传旺, 张贺, 饶攀, 郑东然, 王宇, 李玉花, 2021. 植物五环三萜类化合物生物合成途径研究进展. 中草药, 52(11): 17
[85]
刘莉, 胡昌华, 2010. 真菌二萜环化酶的研究进展. 微生物学报, 50(11): 1438-1445
[86]
彭勤颖, 邹根, 高利慧, 白林泉, Tan Y, 吴莹莹, 2021. 大型真菌来源鸟巢烷型二萜研究进展. 食用菌学报, 28(2): 140-154
[87]
滕李铭, 田雪梅, 吴芳, 戴玉成, 2021. 13种野生灵芝菌丝体中胞内三萜与多糖含量的比较. 菌物学报, 40(7): 1811-1819
[88]
汪锴, 陈保送, 宝丽, 马轲, 韩俊杰, 王琦, 郭顺星, 刘宏伟, 2015. 猴头菌属药用真菌活性次级代谢产物研究概况. 菌物学报, 34(4): 553-568
[89]
王琼, 徐萌萌, 刘高强, 曹春蕾, 石贵阳, 丁重阳, 2021. 灵芝液体浅层静置培养高效生产三萜的研究. 菌物学报, 40(3): 656-667
[90]
魏杰, 高巍, 黄晨阳, 2021. 中国菌根食用菌名录. 菌物学报, 40(8): 1938-1957
[91]
魏铁铮, 蒋岚, 姚一建, 王科, 于晓丹, 李熠, 吴海军, 吴红梅, 王永会, 卫晓丹, 2020. 中国大型担子菌受威胁现状评估. 生物多样性, 28(1): 13
[92]
益萱, 贺庆利, 刘文, 2019. 植物来源的二萜化合物的生物合成研究. 生命科学, 31(5): 15
[93]
尹媛媛, 王晓玲, 薛菲菲, 黄佳, 张少冰, 刘高强, 2021. 9,10-环甲基十七烷酸诱导灵芝三萜酸合成的信号转导和基因表达分析. 菌物学报, 40(9): 2317-2329
[94]
张成宸, 2016. 高等真菌鸟巢烷二萜和杂萜的神经突起生长作用研究. 西北农林科技大学博士论文, 西安. 1-153
[95]
张义, 李毅, 叶江海, 张敬杰, 邹娟, 潘炉台, 2019. 香茶菜属植物中松香烷二萜的研究概况. 中国民族民间医药, 28(11): 40-47

基金

中央高校基本科研业务费专项资金资助(2572020DP07)
PDF(1428 KB)

Accesses

Citation

Detail

段落导航
相关文章

/