四种桑黄类真菌挥发性风味成分分析

杨娟娟,孙波,王卓仁,刘启燕,赵会长,周洪英

菌物学报 ›› 2023, Vol. 42 ›› Issue (4) : 1009-1022.

PDF(1801 KB)
中文  |  English
PDF(1801 KB)
菌物学报 ›› 2023, Vol. 42 ›› Issue (4) : 1009-1022. DOI: 10.13346/j.mycosystema.230004 CSTR: 32115.14.j.mycosystema.230004
研究论文

四种桑黄类真菌挥发性风味成分分析

作者信息 +

Analyses of volatile flavor components in four sanghuang fungi

Author information +
文章历史 +

摘要

风味是影响消费者对产品接纳度的主要因素之一。为探究不同桑黄类真菌挥发性化合物的差异,使用顶空固相微萃取和气相色谱-质谱联用技术对2株桑树桑黄Sanghuangporus sanghuang、3株瓦尼桑黄Sanghuangporus vaninii、1株忍冬桑黄Sanghuangporus lonicericola和1株粗毛纤孔菌Inonotus hispidus的挥发性风味成分进行了分析,并结合相对气味活度值(relative odor activity values, ROAV)分析不同组分对整体风味的贡献。CAR/PDMS、DVB/CAR/PDMS两种萃取头从7个供试菌株中检测出62种挥发性成分,其中相同成分有31种,表明使用多种类型萃取头能提高提取效果。整体而言,CAR/PDMS萃取头提取菌株SH77、SH86、SH91中挥发性成分效果更好,DVB/CAR/PDMS萃取头提取菌株SH48、SH89、SH92、SH93中的挥发性成分效果更好。各菌株主体挥发性成分有较大差异,同种菌株挥发性成分组成更相近,己醛是共有的主体挥发性成分。桑树桑黄SH89和SH93共有的主体挥发性成分(ROAV≥1)有萘、壬醛、己醛和2-十一酮,瓦尼桑黄SH48、SH91和SH92的主体挥发性成分是己醛,忍冬桑黄SH77的主体挥发性成分有壬醛、葵醛等。粗毛纤孔菌SH86的主体挥发性成分有庚醛、1-庚醇等。不同栽培时间SH91挥发性物质比较结果显示,50 d的SH91较为浓郁,100 d的最淡。本研究可为以后桑黄类真菌品种改良以及产品的开发利用提供参考。

Abstract

Flavor is one of the main factor affecting the acceptance of consumers to food. To investigate the difference in volatile compounds of different sanghuang fungi, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the volatile compounds from two Sanghuangporus sanghuang strains, three S. vaninii strains, one S. lonicericola strain, and one Inonotus hispidus strain. The contribution of the different components to the overall flavour was analysed in relation to relative odor activity value (ROAV). Sixty-two volatile compounds were detected from seven tested strains by CAR/PDMS and DVB/CAR/PDMS extraction heads, including 31 common components, indicating that using multiple types of extraction heads could improve the extraction effect. Overall, the CAR/PDMS extraction head was more effective in extracting volatiles from S. lonicericola SH77, I. hispidus SH86, and S. vaninii SH91, and the DVB/CAR/PDMS extraction head was more effective in extracting volatiles from S. vaninii SH48, S. sanghuang SH89, S. vaninii SH92, and S. sanghuang SH93. The main volatiles of seven strains differed considerably, and the volatile components of the same species of sanghuang fungi are more or less similar. The main volatile component shared by seven strains was hexanal. The main volatile components (ROAV≥1) shared by S. sanghuang strains SH89 and SH93 are naphthalene, nonanal, hexanal, and 2-undecanone, while the main volatile components of S. vaninii strains SH48, SH91, and SH92 are hexanal, and the main volatile components of S. lonicericola SH77 are nonanal, decanal, etc. The main volatile components of I. hispidus SH86 are heptanal, 1-heptanol, etc. Comparison of the volatile substances of S. vaninii SH91 in three different cultivation time showed that the volatiles were comparatively dense in 50 days and the lightest in 100 days. This study provides reference for further improvement of sanghuang cultivars in the development and utilization of the fungal products.

关键词

桑树桑黄 / 瓦尼桑黄 / 忍冬桑黄 / 粗毛纤孔菌 / 顶空固相微萃取 / 气相色谱质谱 / 挥发性成分 / 相对气味活度值

Key words

Sanghuangporus sanghuang / S. vaninii / S. lonicericola / Inonotus hispidus / headspace solid-phase microextraction / gas chromatography-mass spectrometry / volatile compounds / relative odor activity value

引用本文

导出引用
杨娟娟, 孙波, 王卓仁, 刘启燕, 赵会长, 周洪英. 四种桑黄类真菌挥发性风味成分分析[J]. 菌物学报, 2023, 42(4): 1009-1022 https://doi.org/10.13346/j.mycosystema.230004
YANG Juanjuan, SUN Bo, WANG Zhuoren, LIU Qiyan, ZHAO Huizhang, ZHOU Hongying. Analyses of volatile flavor components in four sanghuang fungi[J]. Mycosystema, 2023, 42(4): 1009-1022 https://doi.org/10.13346/j.mycosystema.230004
丛赤壳科Nectriaceae成立于1865年,模式属为丛赤壳属Nectria (Fr.) Fr.。Rossman et al. (1999)根据形态学特征,将广义的丛赤壳类真菌划分为丛赤壳科和生赤壳科Bionectriaceae。丛赤壳科的主要特征包括子座发达或具基部子座,子囊壳肉质,具丛赤壳型中心体,单生至聚生,表生,近球形、球形、倒梨形至椭圆球形,子囊壳颜色鲜艳,KOH+,LA+,子囊壳表面光滑、具疣状物或毛状物,壳壁厚度通常大于25 μm, 子囊圆柱形至柱棒状, 子囊孢子椭圆形至拟纺锤形, 无分隔至具多个分隔,表面平滑、具条纹、小刺或疣状突起,无色至淡黄褐色(Rossman et al. 1999;庄文颖 2013;Lombard et al. 2015)。目前丛赤壳科已知约55属900余种(Lombard et al. 2015),我国累计报道16属100余种(庄文颖 2013; Zeng & Zhuang 2014, 2015, 2016a, 2016b, 2016c, 2017, 2018, 2019, 2020, 2021a, 2021b; Zeng et al. 2018)。 该科真菌主要分布于温带和热带地区,物种多样性丰富,对农林业发展有重要影响,开展资源调查和系统分类研究,将更新对我国种质资源的认识。

1 材料与方法

研究材料主要采自安徽、河南、湖北、云南和西藏等地的自然保护区和森林公园。采用常规研究方法(Rossman et al. 1999),记录子囊壳在3%氢氧化钾(potassium hydroxide,KOH)水溶液和100%乳酸(lactic acid,LA)溶液中的颜色变化。为观察解剖结构特征,将子囊壳置于冷冻切片机YD-1508A(中国金华)上制作厚度约6-8 μm的切片,在解剖镜Olympus SZX7下选取结构完整的切片用乳酚棉兰染色,显微观察其壳壁结构和附属物特征。挑取单个子囊壳制作压片,经乳酚棉兰染色,显微观察子囊和子囊孢子的形状、大小,孢子的颜色、表面纹饰和分隔情况;采用Zeiss Axioskop 2 plus (哥廷根)光学显微镜配备的Canon G5摄像系统拍照。观察菌株在CMD (cornmeal dextrose agar)、PDA (potato dextrose agar)和SNA (synthetic nutrient-poor agar) (Nirenberg 1976)培养基上25 ℃培养7 d的菌落形态,测量菌落直径。
研究标本存放于中国科学院微生物研究所菌物标本馆(herbarium mycologicum academiae sinicae,HMAS),菌种保藏于微生物研究所真菌学国家重点实验室。参照Wang & Zhuang (2004)的方法提取菌丝DNA,使用引物ITS5/ITS4 (White et al. 1990)和LR0R/LR5 (Rehner & Samuels 1994)扩增ITS和LSU序列,获得序列提交至GenBank,使用BioEdit 7.0.5.3 (Hall 1999)进行序列拼接、比对和编辑,运用BLASTN在NCBI (https://www.ncbi.nlm.nih.gov/)数据库进行检索。
本研究综合形态解剖、培养性状、DNA序列和无性阶段等特征,对各标本进行系统分类鉴定。采用最大简约(maximum parsimony,MP)和贝叶斯(Bayesian inference,BI)方法明确其系统发育位置,选取ITS和LSU序列构建系统发育树。进化树中,最大简约分析支持率(bootstrap proportion,BP)大于50%和贝叶斯分析后验概率(posterior probability,PP)大于90%分别显示在各分支节点上。

2 分类

肯达拉赤壳 图1
Cosmospora khandalensis (Thirum. & Sukapure) Gräfenhan & Seifert [as 'khandalense'], in Gräfenhan, Schroers, Nirenberg & Seifert, Stud. Mycol. 68: 96, 2011. Fig. 1
Cephalosporium khandalense Thirum. & Sukapure, in Sukapure & Thirumalachar, Mycologia 58(3): 359, 1966.
图1 肯达拉赤壳 (HMAS 247850)

A-C:25 ℃培养7 d的菌落形态 (A:PDA;B:CMD;C:SNA);D-L:分生孢子梗和分生孢子. 标尺:D-L=10 μm

Fig. 1 Cosmospora khandalensis (HMAS 247850).

A-C: Colonies after 7 d at 25 °C (A: PDA; B: CMD; C: SNA); D-L: Conidiophores and conidia. Bars: D-L=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长7 d菌落直径22-23 mm,表面絮状,气生菌丝致密,白色,产生黄绿色色素;在CMD培养基上,25 ℃生长7 d菌落直径23-24 mm,表面绒毛状,气生菌丝稀疏,白色,产生黄绿色色素;在SNA培养基上,25 ℃生长7 d菌落直径21-23 mm,表面绒毛状,气生菌丝稀疏,白色,产生淡黄绿色色素。无性阶段acremonium型,分生孢子梗无色,不分枝或简单分枝,产孢细胞为单瓶梗,圆柱形,长34-64 μm,基部宽1.5-2.5 μm,顶部宽1.0-1.5 μm;分生孢子卵圆形至椭圆形,末端钝圆,无分隔,无色,表面平滑,2.5-5×1.5-2 μm,末端具黏性,通常聚集成团。
标本:湖北神农架木城哨卡,枯枝上生,2014 Ⅸ 22,郑焕娣、曾昭清、秦文韬、陈凯 10045,HMAS 247850 (ITS、LSU GenBank登录号:OK103798、OK103806)。
世界分布:中国、印度、日本、阿根廷、巴西。
讨论:湖北菌株分离自枯枝,其菌落形态、分生孢子等特征与Sukapure & Thirumalachar (1966)和Herrera et al. (2015)的描述一致。序列分析显示中国材料与产于印度的模式菌株(CBS 356.65) ITS序列仅相差1 bp (522/523),LSU完全相同(796/796)。
翠绿赤壳 图2
Cosmospora viridescens (C. Booth) Gräfenhan & Seifert, in Gräfenhan, Schroers, Nirenberg & Seifert, Stud. Mycol. 68: 96, 2011. Fig. 2
Nectria viridescens C. Booth, Mycol. Papers 73: 89, 1959.
图2 翠绿赤壳 (HMAS 247851)

A-C:25 ℃培养7 d的菌落形态 (A:PDA;B:CMD;C:SNA);D-L:分生孢子梗和分生孢子. 标尺:D-L=10 μm

Fig. 2 Cosmospora viridescens (HMAS 247851).

A-C: Colonies after 7 d at 25 °C (A: PDA; B: CMD; C: SNA); D-L: Conidiophores and conidia. Bars: D-L=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长7 d菌落直径23-24 mm,表面絮状,气生菌丝致密,白色,产生黄色至黄绿色色素;在CMD培养基上,25 ℃生长7 d菌落直径25-26 mm,表面絮状,气生菌丝较稀疏,白色,产生黄绿色色素;在SNA培养基上,25 ℃生长7 d菌落直径25-27 mm,表面绒毛状,气生菌丝稀疏,白色。无性阶段acremonium型,分生孢子梗无色,不分枝或简单分枝,产孢细胞为单瓶梗,圆柱形,长30-68 μm,基部宽1.8-2.5 μm,顶部宽1.0-1.2 μm;分生孢子椭圆形至杆形,末端钝圆,无分隔,无色,表面平滑,3-5×2-3 μm,末端具黏性,少数聚集成团。
标本:西藏米林南伊沟,Ganoderma sp.上生,2016 Ⅸ 13,郑焕娣、曾昭清、王新存、陈凯、张玉博 10806,HMAS 247851 (ITS、LSU GenBank登录号:OK103799、OK103807)。
世界分布:中国、捷克、丹麦、英国。
讨论:西藏菌株的形态特征与Booth (1959)提供的原始描述一致。Gräfenhan et al. (2011)对其形态相近种进行了详细讨论。我国菌株与捷克菌株(CBS 102430)的ITS和LSU序列分别相差2 bp (518/520)和3 bp (785/788),与来自英国的模式菌株(IMI 73377a)相差5 bp (534/539)和6 bp (782/788),将上述差异视为种内变异。这是该种首次在亚洲发现(Herrera et al. 2015)。
剑孢新赤壳 图3
Neocosmospora protoensiformis Sand.-Den. & Crous, in Sandoval-Denis, Lombard & Crous, Persoonia 43: 156, 2019. Fig. 3
Fusarium protoensiforme (Sand.-Den. & Crous) O’Donnell, Geiser, Kasson & T. Aoki, in Aoki, Geiser, Kasson & O'Donnell, Index Fungorum 440: 3, 2020.
图3 剑孢新赤壳 (HMAS 290889)

A-C:自然基物上的子囊壳;D,E:25 ℃培养7 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-I:子囊及子囊孢子;J-L:子囊孢子;M,N:分生孢子梗和小型分生孢子;O:小型分生孢子;P-S:大型分生孢子. 标尺:A-C=1 mm;F=50 μm;G-S=10 μm

Fig. 3 Neocosmospora protoensiformis (HMAS 290889).

A-C: Ascomata on natural substratum; D, E: Colonies after 7 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-I: Asci with ascospores; J-L: Ascospores; M, N: Conidiophores and microconidia; O: Microconidia; P-S: Macroconidia. Bars: A-C=1 mm; F=50 μm; G-S=10 μm.

Full size|PPT slide

无子座;子囊壳单生至群生,表生,球形至梨形,表面具疣状物,乳突较小,干后侧面明显凹陷,新鲜时为鲜红色,干后为深红色,在3% KOH水溶液中呈暗红色,100%乳酸溶液中呈黄色,高274-363 μm,直径216-294 μm;疣状物高4-40 μm,细胞球形至近球形,8-22×6-20 μm;壳壁厚20-50 μm,细胞矩胞组织至角胞组织,5.4-15×2.2-8 μm,胞壁厚1.0-1.5 μm;子囊棒状,顶部简单,无顶环,具8个孢子,43-60×5-10 μm;子囊孢子椭圆形,具1个分隔,分隔处稍缢缩,无色,表面平滑,在子囊中斜向单列排列,10-15× 5-8 μm。
在PDA培养基上,25℃培养7 d菌落直径40 mm,气生菌丝致密,白色;在SNA培养基上,25 ℃培养7 d菌落直径45 mm,白色,气生菌丝稀疏;分生孢子梗简单分枝,锥形、近圆柱形至针形,表面光滑,长22-56 μm,基部宽2-3 μm,顶部宽1-1.5 μm;大型分生孢子镰刀形,通常一端带小弯钩,具4-9个分隔,50-85×4-5 μm;小型分生孢子卵圆形、棒状至椭圆形,不弯曲,具0(-1)个分隔,无色,表面平滑,8-17(-20)×3-5 μm,末端具黏性,少数聚集成团。
标本:云南高黎贡山百花岭,枯树皮上生,2017 Ⅸ 15,张意、郑焕娣、王新存、张玉博 11363,HMAS 290889 (ITS、LSU GenBank登录号:OK103800、OK103808)。
世界分布:中国、委内瑞拉。
讨论:该种可在人工培养基上产生子囊壳,与自然基物上的相比,子囊壳和子囊孢子的大小基本一致,子囊稍大(53-105×8-13.8 μm vs. 43-60× 5-10 μm) (Sandoval-Denis et al. 2019),我国菌株与产自委内瑞拉的模式菌株(NRRL 22178)的ITS序列相差5 bp (518/523),LSU序列完全一致(535/535)。本研究将上述差异处理为种内变异。
罗杰森假赤壳 图4
Pseudocosmospora rogersonii C.S. Herrera & P. Chaverri, Mycologia 105(5): 1299, 2013. Fig. 4
图4 罗杰森假赤壳 (HMAS 247852)

A,B:25 ℃培养14 d的菌落形态 (A:PDA;B:SNA);C-I:分生孢子梗和分生孢子;J,K:分生孢子. 标尺:C-K=10 μm

Fig. 4 Pseudocosmospora rogersonii (HMAS 247852).

A, B: Colonies after 14 d at 25 °C (A: PDA; B: SNA); C-I: Conidiophores and conidia; J, K: Conidia. Bars: C-K=10 μm.

Full size|PPT slide

在PDA培养基上,25 ℃生长14 d菌落直径37 mm,具壳状,粉红至米褐色,背面同色;在SNA培养基上,25 ℃生长14 d菌落直径15 mm,气生菌丝极稀疏,淡粉色。无性阶段acremonium型,分生孢子梗简单,不分枝,圆柱形,朝顶部渐细,无色,长28-95 μm,基部宽1.2-1.5 μm,顶部宽0.8-1 μm。分生孢子矩形、椭圆形至杆状,不分隔,无色,表面平滑,2.5-5×1-1.8 μm。
标本:安徽金寨天堂寨,真菌上生,2011 Ⅷ 24,陈双林、庄文颖、曾昭清、郑焕娣7889,HMAS 247852 (ITS、LSU GenBank登录号:OK103796、OK103804)。
世界分布:中国、美国。
讨论:与Herrera et al. (2013)基于美国材料对该种的描述相比,我国安徽菌株的分生孢子略小(2.5-5×1-1.8 μm vs. 2.9-5.5×1.1-2.6 μm),其他特征相同。菌株7889的ITS (520/520)和LSU (764/764)序列与模式菌株BPI 1107121完全一致。该种在我国发现使其分布范围由北美洲扩展至亚洲。
瘤顶赤壳 图5
Tumenectria laetidisca (Rossman) Salgado & Rossman, in Salgado-Salazar, Rossman & Chaverri, Fungal Diversity 80: 451, 2016. Fig. 5
Nectria laetidisca Rossman, Mycol. Pap. 150: 36, 1983.
=Cylindrocarpon bambusicola Matsush., Matsush. Mycol. Mem. 5: 9. 1987.
图5 瘤顶赤壳 (HMAS 290890)

A-C:自然基物上的子囊壳;D,E:25 ℃培养14 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-K:分生孢子梗和分生孢子;L:厚垣孢子. 标尺:A-C=1 mm;F=50 μm;G-L=10 μm

Fig. 5 Tumenectria laetidisca (HMAS 290890).

A-C: Ascomata on natural substratum; D, E: Colonies after 14 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-K: Conidiophores and conidia; L: Chlamydospores. Bars: A-C=1 mm; F=50 μm; G-L=10 μm.

Full size|PPT slide

无子座;子囊壳单生,表生,球形至近球形,顶部具乳突,高38-75 μm,基部宽50-100 μm,顶部宽30-50 μm,干后不凹陷,新鲜时为鲜红色,干后为深红色,在3% KOH水溶液中呈暗红色,100%乳酸溶液中呈黄色,高225-304 μm,直径206-225 μm;壳壁厚28-48 μm,分2层,外层厚23-41 μm,细胞角胞组织至球胞组织,5-13× 3-8 μm,胞壁厚0.8-1.0 μm;内层厚5-7 μm,细胞矩胞组织,8-15×2.5-3.5 μm,胞壁厚0.6-0.8 μm;子囊和子囊孢子未见。
在PDA培养基上,25 ℃生长14 d菌落直径36 mm,表面絮状,气生菌丝致密,白色,背面产生米黄色至淡黄褐色色素;在SNA培养基上,25 ℃生长14 d菌落直径42 mm,表面绒毛状,气生菌丝稀疏,白色。无性阶段cylindrocarpon型,分生孢子梗无色,产孢细胞圆柱形,18-35×3.5- 5 μm;大型分生孢子圆柱形至纺锤形,中间宽,两端略圆,具3-5个分隔,48-77.1×7.4-10.9 μm;偶见厚垣孢子,球形至近球形,直径5-18 μm,间生或串生。
标本:河南洛阳重渡沟,枯枝上生,2013 Ⅸ 20,郑焕娣、曾昭清、朱兆香8813,HMAS 290890 (ITS、LSU GenBank登录号:OK103797、OK103805)。
世界分布:中国、日本、牙买加。
讨论:该种曾被纳入Nectria,综合形态学特征和分子系统学证据,Salgado-Salazar et al. (2016)以其为模式种建立新属Tumenectria Salgado & Rossman,目前仅包括1个种。河南材料状态不佳,子囊壳数量很少,未观察到子囊和子囊孢子,其无性阶段特征符合Salgado-Salazar et al. (2016)的描述。中国菌株(8813)与日本菌株(CBS 100284)的ITS (478/478)和LSU (797/797)序列完全一致,而与牙买加的模式菌株(CBS 101909)分别相差5 bp (473/478)和0 bp (797/797)。

3 系统发育分析

为了清晰地显示5个中国新记录种的系统发育位置,选择丛赤壳科的7个种14个菌株的ITS和LSU序列,以Stachybotrys chartarum为外群,运用MP和BI方法分别构建系统发育树。结果显示,BI树和MP树的拓扑结构一致,最大简约分析产生的唯一进化树(图6)显示菌株HMAS 247850、247851、290889、247852和290890分别与Cosmospora khandalensisCosmospora viridescensNeocosmospora protoensiformisPseudocosmospora rogersoniiTumenectria laetidisca聚类在一起,从而支持了上述形态学研究的结果。
图6 基于ITS和LSU序列的MP树

粗体显示5个中国新记录种的系统发育位置,MPBP大于50% (左)、BIPP大于90% (右)标注于分支节点上

Fig. 6 Maximum parsimony phylogram reconstructed from the combined sequences of ITS and LSU.

the phylogenetic position of the five Nectriaceae species new to China. MPBP above 50% (left) showing and BIPP above 90% (right) are given respectively.

Full size|PPT slide

参考文献

[1]
An JJ, Wang CT, Liu GR, Yang XL, Zhang XX, Li J, 2012. Analysis of volatile aroma components of fresh and dry Lentinus edodes with gas chromatography-mass spectrometry (GC-MS). Science and Technology of Food Industry, 33(14): 68-71 (in Chinese)
[2]
Chen YF, Zhang Y, Deng YY, Wei ZC, Tang XJ, Liu G, Zhang MW, 2020. Optimization of extraction conditions of compounds of extruded brownrice aroma by HS-SPME. Food Research and Development, 41(12): 117-125 (in Chinese)
[3]
Cheng YP, Li XH, Liu SJ, Xiao H, Wang YZ, Gao N, 2022. Advances in pharmacology of Sanghuangporus. Journal of Guangdong Pharmaceutical University, 168(1): 137-142 (in Chinese)
[4]
Cui BK, Dai YC, Yang H, 2009. Notes on the medicinal fungus Inonotus hispidus. Edible Fungi of China, 28(4): 6-7 (in Chinese)
[5]
Dai YC, Cui BK, 2014. Progress on the species of medicinal fungus Inonotus sanghuang. Journal of Beijing Forestry University, 36(5): 1-7 (in Chinese)
[6]
Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J, 2021. Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema, 40(4): 770-805 (in Chinese)
[7]
Fu LZ, Lu N, Yan J, Wang WK, Song JL, Yuan WD, Zhou ZF, 2021. Analyses and evaluation of nutrition, active component and antioxidant activities of fruiting bodies of three species of Sanghuangporus. Mycosystema, 40(8): 2148-2158 (in Chinese)
[8]
Guo HW, Tian YG, Wang JX, Tian L, Liu LL, Li SD, Wei H, 2021. Analysis of volatile oil in leaves of Eupatorium japonicum Thunb. by GC-MS combined with retention index. Journal of Shenyang Pharmaceutical University, 38(7): 684-690 (in Chinese)
[9]
Li XL, Chen C, Qing Y, Huang WL, Yang YC, Zheng LY, 2015. Analysis of volatile aroma components in different species of truffle in Huidong county by GC-MS. Food Science, 36(18): 132-136 (in Chinese)
摘要
<p>The volatile aroma composition is an important indicator to evaluate the quality of truffle. In order to explore</br>the difference in volatile aroma composition among different species of truffle, the aroma components in truffle were</br>investigated and classified by headspace solid-phase microextraction (HS-SPME) combined with gas chromatographymass</br>spectrometry (GC-MS), and the key volatile aroma components were judged by the relative odor activity value. The</br>results showed that 24 aroma compounds were identified from 6 species of truffle, including alcohols, ketones, aldehydes</br>and alkene. Five flavor compounds including 1-octen-3-ol, phenylacetaldehyde and (E)-2-octenal were common to all</br>the truffle species investigated. The key volatile aroma components of Tuber pseudoexcavatum were 1-octen-3-ol and</br>phenylacetaldehyde; those of Tuber aestivum were 1-octen-3-ol, phenylacetaldehyde, (E)-2-octenal, benzaldehyde and</br>hexanal; those of Tuber indicum Cooke et Massee and Tuber huidongense was 1-octen-3-ol; those of Tuber excavatum were</br>1-octen-3-ol, phenylacetaldehyde, (E)-2-octenal, hexanal and 3-octanone; those of Tuber borchii were 1-octen-3-ol, (E)-2-</br>octenal, and 3-octanone.</p>
[10]
Liu DY, Zhou GH, Xu XL, 2008. “ROAV”method: a new method for determining key odor compounds of rugao ham. Food Science, 29(7): 370-374 (in Chinese)
[11]
Liu XY, Yang GL, Yu CM, 2016. Process development of functional compound edible fungus flavoring. China Condiment, 41(1): 121-123, 131 (in Chinese)
[12]
Nakamura S, Daishima S, 2005. Simultaneous determination of 22 volatile organic compounds, methyl- tert -butyl ether, 1,4-dioxane, 2-methylisoborneol and geosmin in water by headspace solid phase microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta, 548(1-2): 79-85
[13]
Sun BG, 2003. The technology of food flavoring. Chemical Industry Press, Beijing. 25-32 (in Chinese)
[14]
Tang JJ, Miao J, Cui YH, 2019. Analysis of volatile flavor compounds in Phellinus linteus at various cultivation modes. Food and Fermentation Industries, 45(14): 221-228 (in Chinese)
[15]
Wan HZ, Xiao XL, Chai GX, 2019. Analysis on the health care function of edible and medicinal fungi under the general health trend. Edible Fungi of China, 38(6): 34-37 (in Chinese)
[16]
Wu F, Zhou LW, Vlasák J, Dai YC, 2022. Global diversity and systematics of Hymenochaetaceae with poroid hymenophore. Fungal Diversity, 113: 1-192
[17]
Wu SH, Dai YC, 2020. Species clarification of the medicinal fungus sanghuang. Mycosystema, 39(5): 781-794 (in Chinese)
[18]
Yang Y, Chen XH, Dai YC, et al. (more than 20 authors), 2020. Sanghuang industry in China: current status, challenges and perspectives — The Qiandao Lake declaration for sanghuang industry development. Mycosystema, 42(4): 855-873 (in Chinese)
[19]
Yin CM, Fan XZ, Shi DF, Fan Z, Cheng W, Gao H, 2019. Flavor compounds analysis of 5 fresh mushrooms using HS-SPME-GC-MS and HPLC. Science and Technology of Food Industry, 40(3): 254-260 (in Chinese)
[20]
Yu XT, Pan HH, Xie YZ, 2013. Research and application progress on flavor substances of edible mushrooms. Edible Fungi of China, 32(3): 4-7 (in Chinese)
[21]
Zhao DY, Tang J, Ding XL, 2001. Isolation and identification of typical flavor components of potherb mustard pickles. Journal of Food Science and Biotechnology, 20(3): 291-298 (in Chinese)
[22]
安晶晶, 王成涛, 刘国荣, 杨雪莲, 张小溪, 李靖, 2012. 鲜香菇与干香菇挥发性风味成分的GC-MS分析. 食品工业科技, 33(14): 68-71
[23]
陈焱芳, 张雁, 邓媛元, 魏振承, 唐小俊, 刘光, 张名位, 2020. 挤压膨化糙米香气物质的顶空固相微萃取条件优化. 食品研究与开发, 41(12): 117-125
[24]
程玉鹏, 李欣虹, 刘思佳, 肖寒, 王语哲, 高宁, 2022. 桑黄的药理作用研究进展. 广东药科大学学报, 168(1): 137-142
[25]
崔宝凯, 戴玉成, 杨宏, 2009. 药用真菌粗毛纤孔菌概述. 中国食用菌, 28(4): 6-7
[26]
戴玉成, 崔宝凯, 2014. 药用真菌桑黄种类研究. 北京林业大学学报, 36(5): 1-7
[27]
戴玉成, 杨祝良, 崔宝凯, 吴刚, 袁海生, 周丽伟, 何双辉, 葛再伟, 吴芳, 魏玉莲, 员瑗, 司静, 2021. 中国森林大型真菌重要类群多样性和系统学研究. 菌物学报, 40(4): 770-805
[28]
付立忠, 陆娜, 闫静, 王伟科, 宋吉玲, 袁卫东, 周祖法, 2021. 三种桑黄属真菌人工栽培子实体营养、药效成分及抗氧化活性分析评价. 菌物学报, 40(8): 2148-2158
[29]
郭洪伟, 田云刚, 王建霞, 田兰, 刘玲玲, 李思迪, 魏华, 2021. GC-MS结合保留指数分析白头婆叶挥发油成分. 沈阳药科大学学报, 38(7): 684-690
[30]
李小林, 陈诚, 清源, 黄文丽, 杨远朝, 郑林用, 2015. 会东县不同品种块菌挥发性香气成分的GC-MS分析. 食品科学, 36(18): 132-136
挥发性香气成分是块菌品质的重要指标,为探究不同品种块菌挥发性香气成分的差异,采用顶空固相微萃取结合气相色谱-质谱联用对挥发性成分进行分析,并采用相对气味活度值判定主体挥发性香气成分。结果表明:6 种块菌共鉴定出24 种挥发性成分,主要包括醇类、酮类、醛类、烯类等,6 种块菌中共有的挥发性成分为1-辛烯-3-醇、苯乙醛、反-2-辛烯醛。假凹陷块菌的主体挥发性香气成分为1-辛烯-3-醇和苯乙醛;夏块菌的主体挥发性香气成分为1-辛烯-3-醇、苯乙醛、反-2-辛烯醛、苯甲醛和己醛;印度块菌和会东块菌的主体挥发性香气成分为1-辛烯-3-醇;凹陷块菌的主体挥发性香气成分为1-辛烯-3-醇、苯乙醛、反-2-辛烯醛、己醛和3-辛酮;波氏块菌的主体挥发性香气成分为1-辛烯-3-醇、反-2-辛烯醛和3-辛酮。
[31]
刘登勇, 周光宏, 徐幸莲, 2008. 确定食品关键风味化合物的一种新方法:“ROAV”法. 食品科学, 29(7): 370-374
本研究结合各种化合物的感觉阈值建立了一种新方法,对如皋火腿挥发性化合物的顶空固相微萃取-气相色谱-质谱鉴定结果进行有效处理,并用新定义的指标&quot;ROAV&quot;量化评价各组分对如皋火腿总体风味的贡献程度,进而确定关键风味化合物。结果显示,如皋火腿的关键风味化合物(ROAV&ge;1)有6种,按照贡献程度从大到小依次为3-甲基丁醛、二甲基三硫醚、1-辛烯-3-酮、二甲基二硫醚、1-辛烯-3-醇、己醛;同时,辛醛、庚醛和壬醛对总体风味也具有重要作用(0.1&le;ROAV&lt;1)。
[32]
刘晓艳, 杨国力, 于纯淼, 2016. 功能型复合食用菌调味品的工艺开发研究. 中国调味品, 41(1): 121-123,131
[33]
孙宝国, 2003. 食用调香术. 北京: 化学工业出版社. 25-32
[34]
汤晶晶, 缪婧, 崔月花, 2019. 不同培养模式下桑黄挥发性风味物质的检测和分析. 食品与发酵工业, 45(14): 221-228
[35]
万华喆, 肖晓玲, 柴广新, 2019. “大健康”趋势下食药用菌对人体保健功能探析. 中国食用菌, 38(6): 34-37
[36]
吴声华, 戴玉成, 2020. 药用真菌桑黄的种类解析. 菌物学报, 39(5): 781-794
[37]
杨焱, 陈晓华, 戴玉成, 等, 2020. 我国桑黄产业发展现状、问题及展望──桑黄产业发展千岛湖宣言. 菌物学报, 42(4): 855-873
[38]
殷朝敏, 范秀芝, 史德芳, 樊喆, 程薇, 高虹, 2019. HS-SPME-GC-MS结合HPLC分析5种食用菌鲜品中的风味成分. 食品工业科技, 40(3): 254-260
[39]
余雄涛, 潘鸿辉, 谢意珍, 2013. 食用菌风味物质的研究及应用进展. 中国食用菌, 32(3): 4-7
[40]
赵大云, 汤坚, 丁霄霖, 2001. 雪里蕻腌菜特征风味物质的分离和鉴定. 食品与生物技术学报, 20(3): 291-298

致谢

感谢吴洪丽研究员对本研究的支持和贡献,感谢彭西甜博士、丁安子老师、夏珍珍博士在实验方法上给予的建议和支持,感谢农业质量标准与检测技术研究所提供检测分析平台。

基金

国家自然科学青年基金(31600010)
国家蚕桑产业技术体系武汉试验站(CARS-18-SYZ11)
湖北省食用菌产业技术体系项目(HBHZDZB-2021-023)
PDF(1801 KB)

Accesses

Citation

Detail

段落导航
相关文章

/