
四种桑黄类真菌挥发性风味成分分析
Analyses of volatile flavor components in four sanghuang fungi
风味是影响消费者对产品接纳度的主要因素之一。为探究不同桑黄类真菌挥发性化合物的差异,使用顶空固相微萃取和气相色谱-质谱联用技术对2株桑树桑黄Sanghuangporus sanghuang、3株瓦尼桑黄Sanghuangporus vaninii、1株忍冬桑黄Sanghuangporus lonicericola和1株粗毛纤孔菌Inonotus hispidus的挥发性风味成分进行了分析,并结合相对气味活度值(relative odor activity values, ROAV)分析不同组分对整体风味的贡献。CAR/PDMS、DVB/CAR/PDMS两种萃取头从7个供试菌株中检测出62种挥发性成分,其中相同成分有31种,表明使用多种类型萃取头能提高提取效果。整体而言,CAR/PDMS萃取头提取菌株SH77、SH86、SH91中挥发性成分效果更好,DVB/CAR/PDMS萃取头提取菌株SH48、SH89、SH92、SH93中的挥发性成分效果更好。各菌株主体挥发性成分有较大差异,同种菌株挥发性成分组成更相近,己醛是共有的主体挥发性成分。桑树桑黄SH89和SH93共有的主体挥发性成分(ROAV≥1)有萘、壬醛、己醛和2-十一酮,瓦尼桑黄SH48、SH91和SH92的主体挥发性成分是己醛,忍冬桑黄SH77的主体挥发性成分有壬醛、葵醛等。粗毛纤孔菌SH86的主体挥发性成分有庚醛、1-庚醇等。不同栽培时间SH91挥发性物质比较结果显示,50 d的SH91较为浓郁,100 d的最淡。本研究可为以后桑黄类真菌品种改良以及产品的开发利用提供参考。
Flavor is one of the main factor affecting the acceptance of consumers to food. To investigate the difference in volatile compounds of different sanghuang fungi, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the volatile compounds from two Sanghuangporus sanghuang strains, three S. vaninii strains, one S. lonicericola strain, and one Inonotus hispidus strain. The contribution of the different components to the overall flavour was analysed in relation to relative odor activity value (ROAV). Sixty-two volatile compounds were detected from seven tested strains by CAR/PDMS and DVB/CAR/PDMS extraction heads, including 31 common components, indicating that using multiple types of extraction heads could improve the extraction effect. Overall, the CAR/PDMS extraction head was more effective in extracting volatiles from S. lonicericola SH77, I. hispidus SH86, and S. vaninii SH91, and the DVB/CAR/PDMS extraction head was more effective in extracting volatiles from S. vaninii SH48, S. sanghuang SH89, S. vaninii SH92, and S. sanghuang SH93. The main volatiles of seven strains differed considerably, and the volatile components of the same species of sanghuang fungi are more or less similar. The main volatile component shared by seven strains was hexanal. The main volatile components (ROAV≥1) shared by S. sanghuang strains SH89 and SH93 are naphthalene, nonanal, hexanal, and 2-undecanone, while the main volatile components of S. vaninii strains SH48, SH91, and SH92 are hexanal, and the main volatile components of S. lonicericola SH77 are nonanal, decanal, etc. The main volatile components of I. hispidus SH86 are heptanal, 1-heptanol, etc. Comparison of the volatile substances of S. vaninii SH91 in three different cultivation time showed that the volatiles were comparatively dense in 50 days and the lightest in 100 days. This study provides reference for further improvement of sanghuang cultivars in the development and utilization of the fungal products.
桑树桑黄 / 瓦尼桑黄 / 忍冬桑黄 / 粗毛纤孔菌 / 顶空固相微萃取 / 气相色谱质谱 / 挥发性成分 / 相对气味活度值 {{custom_keyword}} /
Sanghuangporus sanghuang / S. vaninii / S. lonicericola / Inonotus hispidus / headspace solid-phase microextraction / gas chromatography-mass spectrometry / volatile compounds / relative odor activity value {{custom_keyword}} /
图3 剑孢新赤壳 (HMAS 290889)A-C:自然基物上的子囊壳;D,E:25 ℃培养7 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-I:子囊及子囊孢子;J-L:子囊孢子;M,N:分生孢子梗和小型分生孢子;O:小型分生孢子;P-S:大型分生孢子. 标尺:A-C=1 mm;F=50 μm;G-S=10 μm Fig. 3 Neocosmospora protoensiformis (HMAS 290889). A-C: Ascomata on natural substratum; D, E: Colonies after 7 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-I: Asci with ascospores; J-L: Ascospores; M, N: Conidiophores and microconidia; O: Microconidia; P-S: Macroconidia. Bars: A-C=1 mm; F=50 μm; G-S=10 μm. |
图5 瘤顶赤壳 (HMAS 290890)A-C:自然基物上的子囊壳;D,E:25 ℃培养14 d的菌落形态 (D:PDA;E:SNA);F:子囊壳纵切面结构;G-K:分生孢子梗和分生孢子;L:厚垣孢子. 标尺:A-C=1 mm;F=50 μm;G-L=10 μm Fig. 5 Tumenectria laetidisca (HMAS 290890). A-C: Ascomata on natural substratum; D, E: Colonies after 14 d at 25 °C (D: PDA; E: SNA); F: Median section of an ascoma; G-K: Conidiophores and conidia; L: Chlamydospores. Bars: A-C=1 mm; F=50 μm; G-L=10 μm. |
图6 基于ITS和LSU序列的MP树粗体显示5个中国新记录种的系统发育位置,MPBP大于50% (左)、BIPP大于90% (右)标注于分支节点上 Fig. 6 Maximum parsimony phylogram reconstructed from the combined sequences of ITS and LSU. the phylogenetic position of the five Nectriaceae species new to China. MPBP above 50% (left) showing and BIPP above 90% (right) are given respectively. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
<p>The volatile aroma composition is an important indicator to evaluate the quality of truffle. In order to explore</br>the difference in volatile aroma composition among different species of truffle, the aroma components in truffle were</br>investigated and classified by headspace solid-phase microextraction (HS-SPME) combined with gas chromatographymass</br>spectrometry (GC-MS), and the key volatile aroma components were judged by the relative odor activity value. The</br>results showed that 24 aroma compounds were identified from 6 species of truffle, including alcohols, ketones, aldehydes</br>and alkene. Five flavor compounds including 1-octen-3-ol, phenylacetaldehyde and (E)-2-octenal were common to all</br>the truffle species investigated. The key volatile aroma components of Tuber pseudoexcavatum were 1-octen-3-ol and</br>phenylacetaldehyde; those of Tuber aestivum were 1-octen-3-ol, phenylacetaldehyde, (E)-2-octenal, benzaldehyde and</br>hexanal; those of Tuber indicum Cooke et Massee and Tuber huidongense was 1-octen-3-ol; those of Tuber excavatum were</br>1-octen-3-ol, phenylacetaldehyde, (E)-2-octenal, hexanal and 3-octanone; those of Tuber borchii were 1-octen-3-ol, (E)-2-</br>octenal, and 3-octanone.</p>
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
安晶晶, 王成涛, 刘国荣, 杨雪莲, 张小溪, 李靖, 2012. 鲜香菇与干香菇挥发性风味成分的GC-MS分析. 食品工业科技, 33(14): 68-71
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
陈焱芳, 张雁, 邓媛元, 魏振承, 唐小俊, 刘光, 张名位, 2020. 挤压膨化糙米香气物质的顶空固相微萃取条件优化. 食品研究与开发, 41(12): 117-125
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
程玉鹏, 李欣虹, 刘思佳, 肖寒, 王语哲, 高宁, 2022. 桑黄的药理作用研究进展. 广东药科大学学报, 168(1): 137-142
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
崔宝凯, 戴玉成, 杨宏, 2009. 药用真菌粗毛纤孔菌概述. 中国食用菌, 28(4): 6-7
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
戴玉成, 崔宝凯, 2014. 药用真菌桑黄种类研究. 北京林业大学学报, 36(5): 1-7
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
戴玉成, 杨祝良, 崔宝凯, 吴刚, 袁海生, 周丽伟, 何双辉, 葛再伟, 吴芳, 魏玉莲, 员瑗, 司静, 2021. 中国森林大型真菌重要类群多样性和系统学研究. 菌物学报, 40(4): 770-805
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
付立忠, 陆娜, 闫静, 王伟科, 宋吉玲, 袁卫东, 周祖法, 2021. 三种桑黄属真菌人工栽培子实体营养、药效成分及抗氧化活性分析评价. 菌物学报, 40(8): 2148-2158
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
郭洪伟, 田云刚, 王建霞, 田兰, 刘玲玲, 李思迪, 魏华, 2021. GC-MS结合保留指数分析白头婆叶挥发油成分. 沈阳药科大学学报, 38(7): 684-690
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
李小林, 陈诚, 清源, 黄文丽, 杨远朝, 郑林用, 2015. 会东县不同品种块菌挥发性香气成分的GC-MS分析. 食品科学, 36(18): 132-136
挥发性香气成分是块菌品质的重要指标,为探究不同品种块菌挥发性香气成分的差异,采用顶空固相微萃取结合气相色谱-质谱联用对挥发性成分进行分析,并采用相对气味活度值判定主体挥发性香气成分。结果表明:6 种块菌共鉴定出24 种挥发性成分,主要包括醇类、酮类、醛类、烯类等,6 种块菌中共有的挥发性成分为1-辛烯-3-醇、苯乙醛、反-2-辛烯醛。假凹陷块菌的主体挥发性香气成分为1-辛烯-3-醇和苯乙醛;夏块菌的主体挥发性香气成分为1-辛烯-3-醇、苯乙醛、反-2-辛烯醛、苯甲醛和己醛;印度块菌和会东块菌的主体挥发性香气成分为1-辛烯-3-醇;凹陷块菌的主体挥发性香气成分为1-辛烯-3-醇、苯乙醛、反-2-辛烯醛、己醛和3-辛酮;波氏块菌的主体挥发性香气成分为1-辛烯-3-醇、反-2-辛烯醛和3-辛酮。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
刘登勇, 周光宏, 徐幸莲, 2008. 确定食品关键风味化合物的一种新方法:“ROAV”法. 食品科学, 29(7): 370-374
本研究结合各种化合物的感觉阈值建立了一种新方法,对如皋火腿挥发性化合物的顶空固相微萃取-气相色谱-质谱鉴定结果进行有效处理,并用新定义的指标"ROAV"量化评价各组分对如皋火腿总体风味的贡献程度,进而确定关键风味化合物。结果显示,如皋火腿的关键风味化合物(ROAV≥1)有6种,按照贡献程度从大到小依次为3-甲基丁醛、二甲基三硫醚、1-辛烯-3-酮、二甲基二硫醚、1-辛烯-3-醇、己醛;同时,辛醛、庚醛和壬醛对总体风味也具有重要作用(0.1≤ROAV<1)。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
刘晓艳, 杨国力, 于纯淼, 2016. 功能型复合食用菌调味品的工艺开发研究. 中国调味品, 41(1): 121-123,131
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
孙宝国, 2003. 食用调香术. 北京: 化学工业出版社. 25-32
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
汤晶晶, 缪婧, 崔月花, 2019. 不同培养模式下桑黄挥发性风味物质的检测和分析. 食品与发酵工业, 45(14): 221-228
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
万华喆, 肖晓玲, 柴广新, 2019. “大健康”趋势下食药用菌对人体保健功能探析. 中国食用菌, 38(6): 34-37
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
吴声华, 戴玉成, 2020. 药用真菌桑黄的种类解析. 菌物学报, 39(5): 781-794
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
杨焱, 陈晓华, 戴玉成, 等, 2020. 我国桑黄产业发展现状、问题及展望──桑黄产业发展千岛湖宣言. 菌物学报, 42(4): 855-873
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
殷朝敏, 范秀芝, 史德芳, 樊喆, 程薇, 高虹, 2019. HS-SPME-GC-MS结合HPLC分析5种食用菌鲜品中的风味成分. 食品工业科技, 40(3): 254-260
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
余雄涛, 潘鸿辉, 谢意珍, 2013. 食用菌风味物质的研究及应用进展. 中国食用菌, 32(3): 4-7
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
赵大云, 汤坚, 丁霄霖, 2001. 雪里蕻腌菜特征风味物质的分离和鉴定. 食品与生物技术学报, 20(3): 291-298
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
感谢吴洪丽研究员对本研究的支持和贡献,感谢彭西甜博士、丁安子老师、夏珍珍博士在实验方法上给予的建议和支持,感谢农业质量标准与检测技术研究所提供检测分析平台。
/
〈 |
|
〉 |