
Application of liquid chromatography-mass spectrometry to the identification of three Ganoderma species
SUN Yifei, LIANG Jiandong, ZHOU Shuai, GUO Xiaoyu, CUI Baokai, ZHANG Jingsong, DAI Yucheng, FENG Na
Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240246.
Application of liquid chromatography-mass spectrometry to the identification of three Ganoderma species
Twenty-six home and abroad strains of Ganoderma were identified as Ganoderma lingzhi, Ganoderma sinense, and Ganoderma sessile through phylogenetic analyses based on ITS+tef1 sequence dataset. Ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was used to analyze mycelial triterpenoids of Ganoderma. The mass spectrometry analysis results indicated that in the mycelia of G. lingzhi, 10 common compounds, including ganoderic acid T and ganoderic acid S, were found. In the mycelia of G. sinense, 12 common compounds, including lanosta-7,9(11),24-trien-3β,15α,22β-triacetoxy-26-oic acid, were detected. In the mycelia of G. sessile, ganodermic acid Ja, lanosta-7,9(11),24-trien-3α-hydroxy- 26-oic acid, and 5 unknown compounds were identified. Similarity analysis was further conducted on the UV profiles of triterpenoids in G. lingzhi and G. sinense. The results showed that the similarity of samples from twelve strains of G. lingzhi to the reference profile was above 0.951, and the similarity of samples from ten strains of G. sinense to the reference profile was above 0.920, indicating high similarity among different strains in the same species. The results of the cluster analysis confirmed that using triterpenoids as indicators could correctly classified the twenty-six Ganoderma strains. The Ganoderma triterpenoid fingerprint profiles using LC-MS technology can serve as an auxiliary tool for Ganoderma identification.
Ganoderma / molecular biology identification / triterpenoids / liquid chromatography- mass spectrometry (LC-MS) / chemical taxonomy {{custom_keyword}} /
Fig. 1 Microscopic morphology and particle size distribution of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106. A, D: Aerial conidia; B, E: Blastospores; C, F: Submerged conidia. Bars=50 μm.图1 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子显微形态及粒径分布 A, D:气生分生孢子;B, E:芽生孢子;C, F:液生分生孢子. 标尺=50μm |
Fig. 4 MATH assay of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106. Data are means ± SD. Different lowercase letters indicate significant difference in one-way analysis of variance at α=0.05 level.图4 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子的碳氢吸附能力分析 数据代表平均值±标准差,不同字母表示在α=0.05水平上差异显著 |
Table 1 Contact angle and surface tension in suspension of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106表1 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子悬浮液的接触角与表面张力值 |
孢子类型 Spore type | 接触角 Contact angle | 表面张力 Surface tension |
---|---|---|
气生分生孢子 Aerial conidia | (82.25±1.85)° a | 81.37±1.79 c |
芽生孢子 Blastospores | (81.88±0.8)° a | 91.34±1.12 b |
液生分生孢子 Submerged conidia | (78.81±0.96)° b | 97.13±2.49 a |
注:数据代表平均值±标准差,不同字母表示在α=0.05水平上差异显著. 下同 | |
Note: Data are means ± SD. Different lowercase letters indicate significant difference in one-way analysis of variance at α=0.05 level. The same below. |
Fig. 7 The germination index-treatment time and UV-B irradiation energy-germination rate ExpDecl model fitting to three types of spores of Cordyceps javanica IF-1106.图7 爪哇虫草IF-1106 3种孢子热处理萌发指数-处理时间与UV-B紫外辐照能量-萌发率单指数衰弱模型拟合 |
Table 2 The germination index and treatment time fitting equation of three types of spores of Cordyceps javanica IF-1106表2 爪哇虫草IF-1106 3种孢子热处理萌发指数-处理时间拟合方程 |
孢子类型 Spore type | 萌发指数-处理时间拟合方程 Germination index-treatment time fitting equation | R2 | GT50 (h) |
---|---|---|---|
气生分生孢子 Aerial conidia | Ig =1/(1+e(-2.16+1.65t)) | 0.948 7 | 1.31±0.02 b |
芽生孢子 Blastospores | Ig =1/(1+e(-2.22+2.42t)) | 0.937 8 | 0.91±0.02 c |
液生分生孢子 Submerged conidia | Ig =1/(1+e(-2.76+1.94t)) | 0.955 1 | 1.41±0.01 a |
Table 3 ExpDecl model fitting equation of UV-B irradiation energy-germination rate of three types of spores of Cordyceps javanica IF-1106表3 爪哇虫草IF-1106 3种孢子的UV-B紫外辐照能量-萌发率单指数衰弱模型拟合方程 |
孢子类型 Spore type | 单指数衰弱模型拟合方程 ExpDecl model fitting equation | | GD50 (J) |
---|---|---|---|
气生分生孢子 Aerial conidia | y=-0.23+1.23e(-x/3.57) | 0.990 9 | 0.18±0.13 b |
芽生孢子 Blastospores | y=0.04+0.95e(-x/1.28) | 0.976 1 | 0.91±0.02 c |
液生分生孢子 Submerged conidia | y=-40.03+41.07e(-x/213.69) | 0.959 4 | 2.80±0.15 a |
[1] |
Chinese Pharmacopoeia Commission, 2020. Pharmacopoeia of the People’s Republic of China-Volume Ⅳ. 2020 edition. China Medical Science Press, Beijing. 1-64 (in Chinese)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
崔宝凯, 潘新华, 潘峰, 孙一翡, 邢佳慧, 戴玉成, 2023. 中国灵芝属真菌的多样性与资源. 菌物学报, 42(1): 170-178
灵芝属是大型真菌的一个重要类群,具有重要的经济价值、生态价值和文化价值。尽管国内外对灵芝属真菌的研究较多,但灵芝属真菌的分类一直存在诸多问题,我国过去报道的灵芝属真菌有114个分类单元,但其中很多的分类地位存在争议。本文基于凭证标本,确认我国目前发现的灵芝种类有40种,其中具有ITS分子序列的种类有39种,其他74个分类单元或为同物异名或为待定种。本文提供的中国39种灵芝的ITS序列可为今后准确鉴定灵芝的野生和栽培种类提供依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
冯娜, 岳亚文, 程池露, 杨梅, 汪旵, 张劲松, 2022. 灵芝菌丝体三萜及其药理活性的研究进展. 菌物学报, 41(9): 1341-1353
菌丝体作为灵芝生长发育过程中的一个特定生理阶段,会产生不同于子实体和孢子的特定结构的灵芝酸类三萜化合物。本文总结了灵芝菌丝体中已发现和鉴定的三萜化合物结构、生物活性及其构效关系的研究进展,以期为灵芝菌丝体三萜在生物合成、代谢调控等的基础研究及相关产品的开发应用提供科学参考。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
郭晓宇, 程池露, 滕李铭, 员瑗, 张劲松, 潘新华, 潘峰, 戴玉成, 冯娜, 2024. 松杉灵芝发酵菌丝体中的三萜化合物. 菌物学报, 43(7): 230364
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
国家药典委员会,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
林志彬, 2015. 灵芝的现代研究. 第4版. 北京: 北京大学医学出版社. 1-229
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
岳亚文, 周帅, 冯杰, 王金艳, 唐庆九, 刘艳芳, 张劲松, 冯娜, 韩伟, 2020. 一种无孢灵芝菌丝体的活性成分. 菌物学报, 39(1): 128-136
利用制备型高效液相、凝胶层析、制备型薄层色谱等方法对无孢灵芝龙芝2号的固体发酵菌丝体进行分离纯化,通过波谱分析,化合物分别鉴定为灵芝酸P(1),灵芝酸T1(2),灵芝酸Mk(3),灵芝酸S(4),灵芝酸T(5),ganodermanondiol(6),灵芝酸Me(7),5α, 8α-epidioxyergosta-6, 22-dien-3β-ol(8),灵芝酸R(9),lanosta-7, 9(11), 24-trien-3α-hydroxy-26-oic acid(10),ganodermenonol(11)。其中灵芝酸T1为首次发现的天然产物。体外细胞实验证实,11种化合物对肿瘤细胞L1210的增殖均有很强的抑制作用,其增殖抑制的IC<sub>50</sub>值均在39.69μmol/L以下。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |