Mechanism of histidine kinases in responses to carvacrol stress in Neurospora crassa

CHEN Pengxu, LAN Ziyi, XI Juan, CHEN Yingying, ZHENG Weifa, ZHAO Yanxia

Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240268.

PDF(827 KB)
PDF(827 KB)
Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240268. DOI: 10.13346/j.mycosystema.240268
Research papers

Mechanism of histidine kinases in responses to carvacrol stress in Neurospora crassa

Author information +
History +

Abstract

The role of histidine kinases (HKs) in response to carvacrol stimulation in Neurospora crassa was investigated by comparing the morphological changes, the formation of growth-inhibition zone, total superoxide dismutase (T-SOD) and catalase (CAT) activities, as well as carotenoid content between different hk-deficient mutants and the wild-type N. crassa under carvacrol stress. hk-deficient strains, with the exception of Δdcc1, exhibited a zone of growth-inhibition and increased malondialdehyde (MDA) synthesis under carvacrol stress. Analysis of T-SOD and CAT activities revealed that the deletion of hcp1 and sln1 resulted in inhibition of T-SOD activity, while the deletion of os1, phy2, and hk1 led to reduction of CAT activity. Carvacrol stress stimulated T-SOD activity in the wild-type strain and Δhcp1, Δsln1, Δdcc1, and Δhk16 mutants. However, it did not induce CAT activity in the strains Δhcp1, Δnik2, Δphy2, Δluxq, Δdcc1, and Δhk16. Carotenoids are the main components within N. crassa and have antioxidant properties. It was observed that the deletion of hk9, os1, sln1, phy1, phy2, luxq, hk1, and dcc1 resulted in inhibition of carotenoid synthesis, but the carvacrol stress promoted the synthesis of carotenoids in Δsln1, Δluxq, and Δhk16 mutants. In summary, N. crassa responded to carvacrol stress by regulating the activities of T-SOD and CAT and the synthesis of carotenoids through HKs which sense the signal from carvacrol.

Key words

histidine kinase / carvacrol / carotenoids / malondialdehyde / superoxide dismutase

Cite this article

Download Citations
CHEN Pengxu, LAN Ziyi, XI Juan, CHEN Yingying, ZHENG Weifa, ZHAO Yanxia. Mechanism of histidine kinases in responses to carvacrol stress in Neurospora crassa[J]. Mycosystema, 2025, 44(4): 240268 https://doi.org/10.13346/j.mycosystema.240268
蛹虫草Cordyceps militaris (L.) Fr.,又称“北虫草”,是一种独特而珍贵的食药用真菌,具有抗氧化、抗衰老、抗肿瘤、抗炎、保肝和免疫调节等多种药理活性(戴玉成和杨祝良2008;Wu et al. 2019;Ren et al. 2020),并已被我国原卫生部批准为新资源食品,具有重要的研究开发价值。近年来,蛹虫草的抗氧化活性已得到国内外学者的广泛验证和认可。研究表明,蛹虫草具有多种自由基清除能力(Yu et al. 2007),并且能够有效降低细胞内活性氧水平(叶章正等2012)。同时,蛹虫草及相关产物还能够提升抗氧化物酶活性,降低丙二醛(MDA)含量,起到抵御氧化应激损伤的作用(Liu et al. 2016;Zhang et al. 2019)。因此,蛹虫草已经成为天然抗氧化功效产物筛选的重要真菌资源,在食品、医药以及化妆品领域均受到广泛关注,并表现出较好的潜力。
随着社会整体生活水平的提高,皮肤防护问题逐渐成为人们关注的焦点。当皮肤受到环境污染、紫外线等不利刺激时,会产生大量活性氧(reactive oxygen species, ROS)从而使细胞内源性抗氧化系统失衡,引起氧化应激,进而诱发炎症、皮肤肿瘤和异常衰老等皮肤问题(Kang et al. 2014;Kammeyer & Luiten 2015;Kim et al. 2016)。因此,及时清除自由基,提高机体抗氧化能力成为预防和治疗细胞氧化应激的理想策略。近年来,天然提取物对皮肤氧化损伤的保护作用越来越受到研究人员的关注。Abate et al. (2020)研究发现灵芝提取物可诱导人永生化角质形成细胞(HaCaT)增殖,并增加周期蛋白依赖性激酶CDK2和CDK6的表达,保护HaCaT细胞免受H2O2诱导细胞毒性。丁亚男等(2024)通过HaCaT细胞氧化损伤模型研究油橄榄叶提取物抗氧化活性,发现其能够有效清除细胞内自由基,明显改善HaCaT细胞氧化应激状态。目前,有关蛹虫草活性的研究多集中于体外抗氧化和肝损伤保护等方面,对蛹虫草保护皮肤细胞氧化损伤作用的研究较少。
因此,本研究以蛹虫草水提物为研究对象,表征其主要活性成分,并以H2O2诱导氧化损伤的HaCaT细胞为模型,探究蛹虫草水提物抗氧化能力以及对皮肤细胞氧化损伤的保护作用,为其在功效化妆品方向的应用提供理论依据。

1 材料与方法

1.1 供试材料

1.1.1 试验材料

蛹虫草子实体,购自沈阳聚鑫生物有限公司,栽培基质为大米,并经中国海洋大学江晓路教授鉴定为蛹虫草。子实体60 ℃烘干至恒重,粉碎过60目筛,阴凉处密封保存备用。
人永生化角质形成细胞(HaCaT),购自南京科佰生物科技有限公司。

1.1.2 主要试剂

DMEM高糖培养基、血清、胰酶,普诺赛生命科技有限公司;1,1-二苯基-2-三硝基苯肼(DPPH)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS),Sigma公司;水杨酸、无水乙醇、甲醇、硫酸亚铁、30%过氧化氢均为分析纯,国药集团化学试剂有限公司;蛋白质定量(BCA)测试盒、活性氧(ROS)测试盒、总超氧化物歧化酶(T-SOD)测试盒、谷胱甘肽过氧化物酶(GSH-Px)测试盒、过氧化氢酶(CAT)测试盒、丙二醛(MDA)测试盒,南京建成生物科技公司。

1.1.3 主要仪器

Agilent 1260高效液相色谱仪(安捷伦公司);TECAN Infinite E Plex酶标仪(上海帝肯贸易有限公司);HF90型二氧化碳培养箱(力康仪器有限公司);HCB-900V型超净台(青岛海尔生物医疗有限公司);DXS-2型普通倒置显微镜(上海缔伦光学仪器有限公司)。

1.2 蛹虫草水提物的制备

称取一定量的蛹虫草粉末,按料液比1:10 (质量体积比)于沸水中浸提40 min后,4 000 r/min离心10 min取上清,重复两次,合并上清液,浓缩、冻干得蛹虫草水提物(Cordyceps militaris aqueous extract, CME)。

1.3 CME主要活性成分分析

1.3.1 多糖含量及单糖组成

多糖的提取:精密称取CME粉末1.0 g,用水溶解并定容至50 mL容量瓶中,向样品溶液中加入3倍体积95%乙醇,4 ℃静置12 h后,离心弃去上清,沉淀经除蛋白、60 ℃烘干即得蛹虫草多糖。
多糖含量测定:将得到的多糖样品加水定容到100 mL,根据GB/T 15672-2009以苯酚-硫酸法测定多糖含量,以葡萄糖浓度为横坐标,波长490 nm下吸光值为纵坐标,标准曲线回归方程为:y=15.909x+0.041 2,R2=0.999。CME中多糖含量按照公式(1)计算:
 多糖含量 (%)= 糖含量 /(10mg/mL)×100.
(1)
单糖组分分析:根据宗雯雯等(2018)的方法,精密称取多糖粉末10 mg,经三氟乙酸水解和PMP衍生后,取上清以0.22 µm滤膜过滤后进行HPLC分析。色谱条件:色谱柱为Agilent Eclipse XDB-C18柱,流动相为乙腈-50 mmol/L磷酸盐缓冲液(17:83,体积比) (pH 6.9),流速1.0 mL/min,检测波长245 nm,柱温25 ℃,进样量10 μL。

1.3.2 核苷类成分

参照朱丽娜等(2018)的方法,精密称取CME粉末0.5 g,加25 mL蒸馏水振荡15 min使粉末完全浸透,超声提取20 min。离心取上清,以0.22 µm滤膜过滤后进行HPLC分析。色谱条件:色谱柱Agilent Zorbax Extend-C18柱、流动相为甲醇-水梯度洗脱,流速0.5 mL/min,检测波长260 nm,柱温25 ℃,进样量10 μL。

1.3.3 其他活性成分

总多酚的测定参照李剑梅等(2023)的Folin- Ciocalteu法;类胡萝卜素的测定参照周翔宇等(2021)的方法。

1.4 CME抗氧化活性研究

参照吴梦思等(2024)的方法检测CME对DPPH自由基和ABTS自由基的清除效果,参照Meng et al. (2015)的方法检测CME对·OH自由基的清除效果。清除率按照公式(2)计算:
 清除率 (%)=[1(TT0)/C]×100 
(2)
T表示样品管的吸光值;T0表示样品本底的吸光值;C表示以蒸馏水代替样品溶液测得空白对照管的吸光值。

1.5 CME对HaCaT细胞氧化损伤的保护作用

1.5.1 细胞培养

用含10%胎牛血清、1%双抗的DMEM培养基培养HaCaT细胞,并置于37 ℃、5% CO2培养箱,备用。

1.5.2 CME对HaCaT细胞的毒性

以MTT比色法(金银萍等 2015)检测细胞活力。取对数生长期的细胞按5×103个/孔的密度接种于96孔板中,接种量100 μL,待细胞培养至融合度70%-80%后,加入不同浓度(0、10、25、50、100、200、400、600、1 000 μg/mL)的CME处理HaCaT细胞24 h。每孔加入20 μL MTT溶液,于培养箱中孵育4 h后弃液,每孔加入150 μL DMSO溶液,振荡10 min充分溶解后,用酶标仪测490 nm波长下吸光值,并以空白孔调零,每个浓度设6个平行。

1.5.3 HaCaT氧化损伤模型建立

选择对数生长期的细胞按5×103个/孔的密度接种于96孔板中,接种量100 μL,待细胞培养至融合度70%-80%后,加入含不同浓度(0、100、200、400、600、800、1 000 μmol/L) H2O2溶液的DMEM培养基处理HaCaT细胞4 h,按1.5.2的方法测定细胞活性。

1.5.4 CME对H2O2损伤HaCaT细胞的影响

取对数生长期的细胞按5×103个/孔的密度接种于96孔板中,接种量100 μL,待细胞培养至融合度70%-80%后,将细胞分为对照组、模型组、阳性组和样品组。样品组分别加入不同浓度的CME,阳性组加入200 μmol/L 抗坏血酸(VC)为阳性对照,孵育24 h后,除对照组外,各组均加入H2O2孵育4 h,按1.5.2的方法测定细胞活性。

1.5.5 细胞内活性氧(ROS)水平测定

取对数生长期的细胞按1.2×106个/孔的密度接种于6孔板中,接种量2.5 mL,并按1.5.4的方法进行细胞分组及培养。培养完成后以PBS清洗细胞,按照ROS检测试剂盒说明书操作,使用多功能酶标仪在525 nm发射波长(488 nm激发波长)下检测荧光DCF强度。

1.5.6 细胞内SOD、GSH-Px、CAT和MDA含量的测定

取对数生长期的细胞按1.2×106个/孔的密度接种于6孔板中,接种量2.5 mL,并按1.5.4的方法进行细胞分组及培养。培养完成后收集细胞,并进行细胞裂解收集上清液,按照试剂盒说明书测定HaCaT中SOD、GSH-Px、CAT活力和MDA含量。

1.6 统计学分析

用Graphpad软件对结果进行统计分析,测定结果数据均用x¯±s表示,组间比较采用单因素方差分析(P<0.05差异具有统计学意义)。

2 结果与分析

2.1 CME中主要活性成分分析

蛹虫草的主要活性成分与冬虫夏草较为接近,目前被公认的包括虫草多糖、腺苷、虫草素、多酚、类胡萝卜素等活性成分。本研究通过分光光度法对CME的主要活性成分含量进行了测定(表1),并采用高效液相色谱法对核苷类成分及单糖组分进行了初步分析。
Table 1 Content of main active components in CME

表1 CME中主要活性成分含量

成分
Components
含量
Content (mg/g)
多糖 Polysaccharide 509.47±14.73
尿苷Uridine 1.21±0.10
鸟苷Guanosine 0.66±0.03
腺苷Adenosine 1.47±0.11
虫草素 Cordycepin 2.66±0.15
N6-(2-羟乙基)腺苷
N6-(2-hydroxyethtl)-adenosine
2.15±0.09
总多酚 Total polyphenols 9.21±0.37
类胡萝卜素 Carotenoid 0.95±0.04

2.1.1 多糖含量和单糖组成分析

多糖是已报道的蛹虫草抗氧化活性的主要来源(Shweta et al. 2023)。CME中多糖含量达509.47 mg/g (表1),说明CME活性成分以多糖为主,可预估其有良好的抗氧化活性,与芦叶等(2024)研究结果一致。进一步分析其单糖组成发现(图1),CME的多糖样品主要由甘露糖、半乳糖醛酸、葡萄糖、半乳糖和阿拉伯糖组成,物质的量比为4.58:1.65:5.16:5.23:1.0 (表2)。其中,以甘露糖、葡萄糖和半乳糖3种单糖含量最为突出,与朱丽娜等(2021)的报道一致。甘露糖、葡萄糖和半乳糖作为生物体重要的能量来源,与蛹虫草抗氧化、肝脏保护等功能密切相关(Zhang et al. 2020),Lan et al. (2024)从蛹虫草中分离出一种主要由甘露糖、葡萄糖和半乳糖组成的多糖CM-1,发现其能有效清除自由基,并对氧化应激具有显著的保护作用。由此可推测甘露糖、葡萄糖和半乳糖可共同作用发挥CME的抗氧化能力。
Fig. 1 Determination of monosaccharide composition by HPLC. A: Mixed reference substance; B: Tested samples. 1: Man; 2: Rha; 3: Glc-UA; 4: Gal-UA; 5: Lactose (internal standard); 6: Glc; 7: Gal: 8: Xyl; 9: Ara; 10: Fuc.

图1 HPLC检测单糖组成 A:混合对照品;B:供试品. 1:甘露糖;2:鼠李糖;3:葡萄糖醛酸;4:半乳糖醛酸;5:乳糖内标;6:葡萄糖;7:半乳糖;8:木糖;9:阿拉伯糖;10:岩藻糖

Full size|PPT slide

Table 2 Monosaccharide composition of Cordyceps militaris polysaccharide

表2 蛹虫草多糖的单糖组成

样品
Sample
甘露糖
Man
半乳糖醛酸
Gal-UA
葡萄糖
Glc
半乳糖
Gal
阿拉伯糖
Ara
含量
Content (mol%)
25.73 9.26 29.01 29.39 5.62

2.1.2 核苷类成分分析

核苷类化合物是蛹虫草有效成分的重要组成部分,目前已成为评价虫草类制品质量控制的重要指标(薛亚甫等 2016),虫草素和N6-(2-羟乙基)腺苷是已报道的蛹虫草中的特有成分(李赫宇等 2018),对蛹虫草及其提取物的质量控制有重要意义。HPLC分析结果显示(图2),CME中主要核苷类成分为尿苷、鸟苷、腺苷、虫草素和N6-(2-羟乙基)腺苷,与李赫宇等(2018)的检测结果一致。其核苷类成分总量为8.15 mg/g,其中,虫草素是CME中含量最高的核苷类成分,为2.66 mg/g,N6-(2-羟乙基)腺苷的含量为2.15 mg/g,仅次于虫草素(表1)。
Fig. 2 Determination of nucleosides by HPLC. A: Mixed reference substance; B: Test sample. 1: Cytidine; 2: Uridine; 3: Guanosine; 4: Thymidine; 5: Adenosine; 6: Cordycepin; 7: N6-(2-hydroxyethtl)- adenosine.

图2 HPLC检测核苷类成分 A:混合对照品;B:供试品. 1:胞苷;2:尿苷;3:鸟苷;4:胸苷;5:腺苷;6:虫草素;7:N6-(2-羟乙基)腺苷

Full size|PPT slide

2.1.3 其他活性成分

除多糖和核苷类成分外,蛹虫草子实体中还含有其他化学成分,如多酚和类胡萝卜素。用比色法测定CME中多酚和类胡萝卜素含量,分别为9.21 mg/g和0.95 mg/g (表1)。

2.2 CME抗氧化活性评价

本研究通过检测CME对DPPH自由基、ABTS自由基和·OH自由基的清除作用来评价其抗氧化能力(图3)。随着CME浓度的增大,3种自由基的清除率均逐渐增强,且呈明显的量效关系。VC作为一种自由基清除剂,在相同的质量浓度下表现出较强的清除能力,当CME浓度为2.5 mg/mL时对3种自由基的清除效果均接近最佳。CME在浓度为1.5 mg/mL时对DPPH自由基的清除率也已超过90%,接近VC的作用效果(图3A),其对DPPH自由基的IC50值为0.63 mg/mL。与对DPPH自由基的清除能力相比,CME对ABTS和·OH自由基的清除效果相对较弱,在浓度为2.5 mg/mL时,ABTS和·OH自由基清除率仅为41.64%和39.29%,而当浓度增大到7.5 mg/mL时,清除率均接近90% (图3B, 3C),说明CME对ABTS和·OH自由基也有较强的清除作用,其IC50值分别为2.97 mg/mL和3.24 mg/mL。
Fig. 3 Scavenging effects of CME on radicals. A: DPPH radical scavenging activities; B: ABTS radical scavenging activities; C: ·OH radical scavenging activities.

图3 CME对自由基的清除作用 A:DPPH自由基清除率;B:ABTS自由基清除率;C:羟基自由基清除率

Full size|PPT slide

2.3 CME对HaCaT细胞氧化损伤的保护作用

2.3.1 对HaCaT细胞活力的影响

采用MTT法对不同浓度(10、25、50、100、200、400、600、1 000 μg/mL) CME作用下的HaCaT细胞存活率进行检测(图4)。随着药物浓度的增加,HaCaT细胞存活力逐渐降低,当质量浓度为50 μg/mL时,细胞存活率为86.27%,当浓度大于50 μg/mL时,细胞活力明显下降,均小于80%。当细胞活力高于80%时可认为样品对细胞未有明显毒性(朱恒杏等 2024),因此选择10、25、50 μg/mL这3个浓度为安全作用浓度进行后续实验。
Fig. 4 Effects of different concentrations of CME on the viabilities of HaCaT cells.

图4 不同浓度CME对HaCaT细胞活力的影响

Full size|PPT slide

2.3.2 H2O2诱导氧化损伤模型建立

H2O2作为最重要的活性氧类物质,容易在细胞核组织中扩散,诱导细胞发生氧化应激,已成为国内外研究各类细胞氧化损伤的重要工具(Rachitha et al. 2023)。实验结果显示(图5),HaCaT的细胞活力随H2O2浓度的升高而逐渐降低,当H2O2浓度为400 μmol/L时,HaCaT细胞活力降至对照组的59.81% (P<0.01),此浓度下细胞在受到氧化损伤的同时还保留了相对的活力,因此选择400 μmol/L作为H2O2氧化损伤模型的诱导浓度。
Fig. 5 Effects of different concentrations of H2O2 on the viabilities of HaCaT cells.

图5 不同浓度H2O2对HaCaT细胞活力的影响

Full size|PPT slide

2.3.3 CME对H2O2诱导HaCaT细胞活力的影响

MTT法检测CME对H2O2处理的氧化损伤HaCaT细胞的保护作用(图6)。400 μmol/L H2O2处理细胞后,HaCaT活力显著下降(P<0.01),降至对照组的55.39%;而经VC和CME预处理的HaCaT细胞活力较模型组明显提高,且与CME浓度呈正相关趋势,当CME浓度为50 μg/mL时,细胞存活率高达83.90% (P<0.01),较模型组提升了28.51%,与VC的作用效果相近,表明CME对H2O2诱导的HaCaT细胞损伤具有明显的保护作用。
Fig. 6 Effects of different concentrations of CME on the viabilities of HaCaT cells induced by H2O2. Compared with control group, ##P<0.01; Compared with model group, *P<0.05, **P<0.01. The same below.

图6 不同浓度CME对H2O2诱导HaCaT细胞活力的影响 与对照组相比,##P<0.01;与模型组相比,*P<0.05,**P<0.01,下同

Full size|PPT slide

2.3.4 CME对HaCaT内ROS水平的影响

活性氧(ROS)是细胞在代谢过程中产生的一系列活性氧簇(包括单线态氧、超氧阴离子和羟基自由基等),细胞受到氧化应激刺激后会产生过量的ROS,损伤细胞结构,包括蛋白质、脂质和DNA,从而导致皮肤受损进而造成老化和疾病等皮肤危害(夏世金等 2014)。因此,检测CME对HaCaT中ROS含量的影响可用来评估其防护氧化损伤的能力(图7),细胞经H2O2处理后,ROS相对含量明显升高(P<0.01),约为对照组的1.6倍,说明H2O2处理使HaCaT细胞受到严重的氧化应激损伤,导致了ROS的积累。CME和VC预处理均能显著降低H2O2诱导损伤后细胞内ROS水平(P<0.01),且CME浓度为50 μg/mL时,对ROS抑制率已达到44.46%,抑制效果强于VC。结果表明,CME能够以剂量依赖的方式有效清除H2O2刺激而产生的ROS,从而减缓ROS过多导致的氧化损伤。
Fig. 7 Effects of different concentrations of CME on ROS levels in HaCaT cells.

图7 不同浓度CME对HaCaT细胞内ROS水平的影响

Full size|PPT slide

2.3.5 CME对HaCaT内氧化应激因子水平的影响

细胞有一个内源性抗氧化系统,可以通过产生超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)等抗氧化酶来平衡ROS,抵御脂质过氧化(LPO)、蛋白质氧化、DNA损伤等有害作用对细胞造成的伤害。因此在氧化应激引起细胞损伤的研究中,SOD、GSH-Px、CAT等抗氧化酶以及MDA等LPO产物常被用作潜在的生物标志物(Naji et al. 2017;Zhang et al. 2018)。
H2O2损伤细胞后,模型组SOD、GSH-Px和CAT活力均显著降低(P<0.01),分别降至对照组的67.77%、76.59%和68.49% (图8)。CME和VC保护作用下这些抗氧化酶活力均明显上升,特别是当CME浓度为50 μg/mL时,细胞内SOD、GSH-Px和CAT水平分别较模型组显著升高28.91%、22.97%和21.48% (P<0.01),与VC保护效果相近。脂质过氧化试验表明,HaCaT发生氧化应激会导致细胞脂质损伤加剧,使细胞内MDA含量显著升高(P<0.01)。与模型组相比,50 μg/mL CME以及VC预处理使脂质过氧化程度分别降低29.86%和32.01% (P<0.01),已恢复至接近正常水平。以上结果表明CME可以通过增加细胞抗氧化酶的活力和阻碍过氧化物的产生来清除自由基,有效地保护HaCaT细胞免受氧化应激损伤。
Fig. 8 Effects of different concentrations of CME on MDA contents (A) and the activities of SOD (B), GSH-Px (C), CAT (D) in HaCaT cells.

图8 不同浓度CME对HaCaT细胞内MDA含量(A)和SOD (B)、GSH-Px (C)、CAT (D)活力的影响

Full size|PPT slide

3 讨论

近年来,应用天然产物来干预氧化应激已经成为皮肤氧化损伤保护的重要研究方向,蛹虫草作为一种药用价值极高的菌物资源,因其广泛的生理活性而受到特别的关注(Ren et al. 2020;何华奇等 2023)。本研究对蛹虫草水提物的主要活性成分进行表征,探究其抗氧化能力以及对HaCaT细胞氧化损伤的保护作用。
蛹虫草是多糖、多酚、腺苷、虫草素等活性物质的丰富来源。本研究结果表明,CME中多糖(509.47 mg/g)和总多酚(9.21 mg/g)含量显著。总多酚含量与药用菌多酚1.65-19.79 mg/g范围相近(Robaszkiewicz et al. 2010;Choi et al. 2020),而多糖含量明显高于Thi Nguyen et al. (2022)的报道。此外,CME还含有多种核苷类成分,以腺苷(1.47 mg/g)、虫草素(2.66 mg/g)和N6-(2-羟乙基)腺苷(2.15 mg/g)含量最为突出。这些活性产物极大地促进了CME的抗氧化活性。据报道,多糖和酚类化合物可有效清除各种自由基(Barros et al. 2008;Liu et al. 2016),腺苷能够增强机体抗氧化酶活力(李兵等 2016),而虫草素具有抑制氧化应激和炎症反应等活性(刘立柱等 2022),对皮肤具有一定的保护和改善作用。此外,其他可能存在于CME中的化学成分,如类胡萝卜素、麦角硫因和硒,也被证实可明显提高蛹虫草的抗氧化性能(左锦辉等 2018;Shweta et al. 2023),这些活性成分可能会共同作用对CME的抗氧化活性产生协同效果。因此,推测CME具有很好的抗氧化能力及氧化应激损伤保护作用,在护肤品领域将有巨大的应用潜力。
CME对DPPH自由基有较强的清除作用,IC50值为0.63 mg/mL,隋昕怡等(2024)提取的蛹虫草多糖清除DPPH自由基IC50值为0.80 mg/mL,与之相比,CME对DPPH自由基清除效果更好;与张曦文等(2017)报道的蛹虫草子实体水提物对DPPH自由基IC50为0.757 mg/mL相比也有一定的优势,表明CME具有良好的化学抗氧化活性。在此基础上,我们以H2O2诱导HaCaT细胞损伤为模型,探究CME对皮肤氧化损伤的保护作用。结果表明,CME在10、25、50 μg/mL下对HaCaT细胞无明显毒副作用,同时能够提高H2O2诱导损伤后的HaCaT细胞存活率并呈剂量依赖性地减弱细胞内ROS水平,与Park et al. (2014)的研究结果一致。H2O2是生物体内最常见的活性氧分子,过量H2O2刺激皮肤会打破ROS生成和抗氧化酶活性之间的平衡,引起细胞氧化应激并诱导损伤(Masaki 2010)。而抗氧化在细胞水平发挥作用的重要机制之一就是增强抗氧化酶活性,减少脂质代谢产物生成,提高细胞氧化防御体系(郭玉文等 2016)。本研究发现,CME使H2O2诱导的HaCaT细胞中抗氧化酶SOD、GSH-Px和CAT水平提高了15%-30%,使MDA抑制率达29.86%,这表明CME在细胞内可通过提高抗氧化酶的活力和降低脂质氧化水平来清除ROS,从而保护HaCaT细胞免受H2O2诱导的氧化损伤(Dong et al. 2021)。
本研究通过自由基清除实验和细胞实验证实CME具有较好的抗氧化能力,并对H2O2诱导的HaCaT细胞氧化损伤具有保护作用,表明其具有成为天然抗氧化剂应用于化妆品等领域的潜力,为蛹虫草提取物的开发应用提供科学依据。

作者贡献

孙彦庆:查阅文献、初稿撰写;张京良:数据收集与分析管理;朱宗敏:图表制作、软件;江晓路:提供实验材料、文章审核;尚丽丽:验证、实际调查研究;宗雯雯:论文构思、实验设计实施与编辑写作。

利益冲突

作者声明,该研究不存在任何潜在利益冲突的商业或财务关系。

References

[1]
Al-Tawalbeh D, Alkhawaldeh Y, Abu Sawan H, Al-Mamoori F, Al-Samydai A, Mayyas A, 2024. Assessment of carvacrol-antibiotic combinations’ antimicrobial activity against methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 14: 1349550
[2]
Bem AE, Velikova N, Pellicer MT, Baarlen Pv, Marina A, Wells JM, 2015. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chemical Biology, 10(1): 213-224
Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In this review, we discuss the biological importance of TCSs and bacterial HKs for the discovery of novel antibacterials, as well as published TCS and HK inhibitors that can be used as a starting point for structure-based approaches to develop novel antibacterials.
[3]
Bleul L, Francois P, Wolz C, 2021. Two-component systems of S. aureus: signaling and sensing mechanisms. Genes, 13(1): 34
[4]
Cabrera IE, Oza Y, Carrillo AJ, Collier LA, Wright SJ, Li L, Borkovich KA, 2022. Regulator of G protein signaling proteins control growth, development and cellulase production in Neurospora crassa. Journal of Fungi, 8(10): 1076
[5]
Cai E, Sun S, Deng Y, Huang P, Sun X, Wang Y, Chang C, Jiang Z, 2021. Histidine kinase Sln1 and cAMP/PKA signaling pathways antagonistically regulate Sporisorium scitamineum mating and virulence via transcription factor Prf1. Journal of Fungi, 7(8): 610
[6]
Calcáneo-Hernández G, Landeros-Jaime F, Cervantes-Chávez JA, Mendoza-Mendoza A, Esquivel-Naranjo EU, 2023. Osmotic stress responses, cell wall integrity, and conidiation are regulated by a histidine kinase sensor in Trichoderma atroviride. Journal of Fungi, 9(9): 939
[7]
Chaillot J, Tebbji F, Remmal A, Boone C, Brown GW, Bellaoui M, Sellam A, 2015. The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrobial Agents and Chemotherapy, 59(8): 4584-4592
The monoterpene carvacrol, the major component of oregano and thyme oils, is known to exert potent antifungal activity against the pathogenic yeast Candida albicans. This monoterpene has been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, its mechanism of action remains elusive. Here, we used integrative chemogenomic approaches, including genome-scale chemical-genetic and transcriptional profiling, to uncover the mechanism of action of carvacrol associated with its antifungal property. Our results clearly demonstrated that fungal cells require the unfolded protein response (UPR) signaling pathway to resist carvacrol. The mutants most sensitive to carvacrol in our genome-wide competitive fitness assay in the yeast Saccharomyces cerevisiae expressed mutations of the transcription factor Hac1 and the endonuclease Ire1, which is required for Hac1 activation by removing a nonconventional intron from the 3' region of HAC1 mRNA. Confocal fluorescence live-cell imaging revealed that carvacrol affects the morphology and the integrity of the endoplasmic reticulum (ER). Transcriptional profiling of pathogenic yeast C. albicans cells treated with carvacrol demonstrated a bona fide UPR transcriptional signature. Ire1 activity detected by the splicing of HAC1 mRNA in C. albicans was activated by carvacrol. Furthermore, carvacrol was found to potentiate antifungal activity of the echinocandin antifungal caspofungin and UPR inducers dithiothreitol and tunicamycin against C. albicans. This comprehensive chemogenomic investigation demonstrated that carvacrol exerts its antifungal activity by altering ER integrity, leading to ER stress and the activation of the UPR to restore protein-folding homeostasis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
[8]
Cui X, Zhu QJ, Hou R, Wan Q, 2022. Antibacterial activity and mechanism of eugenol, carvacrol and thymol against Fusarium graminearum. Food Science, 43(23): 10-18 (in Chinese)
[9]
Duan W, Zhu X, Zhang S, Lv Y, Zhai H, Wei S, Ma P, Hu Y, 2024. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. International Journal of Food Microbiology, 410: 110514
[10]
Fincheira P, Jofré I, Espinoza J, Levío-Raimán M, Tortella G, Oliveira HC, Diez MC, Quiroz A, Rubilar O, 2023. The efficient activity of plant essential oils for inhibiting Botrytis cinerea and Penicillium expansum: mechanistic insights into antifungal activity. Microbiological Research, 277: 127486
[11]
Fleißner A, Oostlander AG, Well L, 2022. Highly conserved, but highly specific: somatic cell-cell fusion in filamentous fungi. Current Opinion in Cell Biology, 79: 102140
[12]
Heckler C, Sant’anna V, Brandelli A, Malheiros PS, 2021. Combined effect of carvacrol, thymol and nisin against Staphylococcus aureus and Salmonella enteritidis. Anais da Academia Brasileira de Ciencias, 93 (Suppl. 4): e20210550
[13]
Hornero-Méndez D, Limón MC, Avalos J, 2018. HPLC analysis of carotenoids in neurosporaxanthin-producing fungi. Methods in Molecular Biology, 1852: 269-281
The ascomycetous fungi Fusarium fujikuroi and Neurospora crassa are widely used as research models in the study of secondary metabolism and photobiology, respectively. Both fungi exhibit a similar carotenoid pathway, for which all the genes and enzymes have been identified. Under standard laboratory conditions, either F. fujikuroi or N. crassa accumulate a mixture of neurosporaxanthin, a carboxylic apocarotenoid acid, and several of its carotene precursors. We formerly described methods for the identification and quantification of neurosporaxanthin. However, the differences in polarity between this acidic xanthophyll and neutral carotenes make their global analysis cumbersome. Here we propose a simple HPLC methodology for the efficient separation of neurosporaxanthin and earlier pathway intermediates in a single HPLC run. This method should be useful to check the abundance of neurosporaxanthin under different experimental conditions and to evaluate the relative proportions of their different carotene precursors. To assess the validity of the method, we have compared the carotenoid profiles in samples of mycelia of F. fujikuroi and conidia of N. crassa, in both cases obtained from surface cultures of a wild strain of each species.
[14]
Ishii E, Eguchi Y, 2021. Diversity in sensing and signaling of bacterial sensor histidine kinases. Biomolecules, 11(10): 1524
[15]
Khan ST, Khan M, Ahmad J, Wahab R, Abd-Elkader OH, Musarrat J, Alkhathlan HZ, Al-Kedhairy AA, 2017. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express, 7(1): 49
[16]
Lu T, Wang X, Chen P, Xi J, Yang H, Zheng W, Zhao Y, 2024. Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta. Current Genetics, 70(1): 16
[17]
Maktabi S, Rashnavadi R, Tabandeh MR, Sourestani MM, 2024. Effective inhibition of listeria monocytogenes biofilm formation by Satureja rechingeri essential oil: mechanisms and implications. Current Microbiology, 81(3): 77
[18]
Moghadasi F, Roudbarmohammadi S, Amanloo S, Nikoomanesh F, Roudbary M, 2024. Evaluation of antifungal activity of natural compounds on growth and aflatoxin B 1 production of Aspergillus parasiticus and Aspergillus flavus. Molecular Biology Reports, 51(1): 53
[19]
Niu LY, Sun XC, Liu JF, Wu ZH, Bai YH, Zhang ZJ, 2024. Physiological characteristics and transcriptome analysis of Saccharomyces cerevisiae under carvacrol stress. Food Science, 45(9): 75-83 (in Chinese)
[20]
Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M, 2015. P2CS: updates of the prokaryotic two-component systems database. Nucleic Acids Research, 43(Database issue): D536-D541
[21]
Rajeev L, Garber ME, Mukhopadhyay A, 2020. Tools to map target genes of bacterial two-component system response regulators. Environmental Microbiology Reports, 12(3): 267-276
Studies on bacterial physiology are incomplete without knowledge of the signalling and regulatory systems that a bacterium uses to sense and respond to its environment. Two-component systems (TCSs) are among the most prevalent bacterial signalling systems, and they control essential and secondary physiological processes; however, even in model organisms, we lack a complete understanding of the signals sensed, the phosphotransfer partners and the functions regulated by these systems. In this review, we discuss several tools to map the genes targeted by transcriptionally acting TCSs. Many of these tools have been used for studying individual TCSs across diverse species, but systematic approaches to delineate entire signalling networks have been very few. Since genome sequences and high-throughput technologies are now readily available, the methods presented here can be applied to characterize the entire DNA-binding TCS signalling network in any bacterial species and are especially useful for non-model environmental bacteria.© 2020 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.
[22]
Sun M, Lu T, Chen P, Wang X, Yang H, Zhou R, Zheng W, Zhao Y, 2023. The sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) coordinately regulate the response of Neurospora crassa to the springtail Sinella curviseta (Collembola: Entomobryidae) attack. Applied and Environmental Microbiology, 89(11): e0101823
[23]
Sun W, Yuan YH, Yu YG, 2024. Evaluation of antimicrobial activity of carvacrol against Bacillus cereus. Food and Fermentation Industry, 50(18): 141-147 (in Chinese)
[24]
Tópor A, Veras FF, Cacciatore FA, Silveira RD, da Silva Malheiros P, Welke JE, 2024. Carvacrol nanocapsules as a new antifungal strategy: characterization and evaluation against fungi important for grape quality and to control the synthesis of ochratoxins. International Journal of Food Microbiology, 416: 110659
[25]
van Hoek ML, Hoang KV, Gunn JS, 2019. Two-component systems in Francisella species. Frontiers in Cellular and Infection Microbiology, 9: 198
[26]
Wang JL, Zhang JF, Ma JX, Liu L, Shen T, Tian YQ, 2022. Antibacterial activity and mechanism of carvacrol and eugenol against Fusarium rot. Microbiology China, 49(5): 1638-1650 (in Chinese)
[27]
Wen Q, Zhao HY, Shao YH, Hu YR, Qi YC, Wang FQ, Shen JW, 2023. Content determination and factors influencing production of γ-aminobutyric acid content in fruiting bodies of main edible fungi in China. Mycosystema, 42(1): 231-243 (in Chinese)
Abstract

γ-aminobutyric acid (GABA) is a functional non-protein amino acid and plays critical roles in maintaining human health. To explore the GABA levels in edible fungi and the factors influencing GABA production, the extraction and derivatization conditions for GABA in edible fungi were firstly optimized, and the HPLC with pre-column derivatization by FMOC-Cl was established for determine GABA content. GABA content in 20 kinds of main edible fungi in China were determined using the optimized method, and effects of the content and species of nitrogen in culture substrate and the cultivation time on GABA content in edible fungi were further explored. The optimum solid-to-liquid ratio, time and temperature for extracting GABA from edible fungi were 1:100, 1 h and 65 °C, respectively. GABA content in 20 edible fungi were 0.20-3.02 mg/g DW, showing significantly interspecific difference. The highest GABA content (3.02 mg/g DW) was found in Tremella aurantialba, and GABA content in Lentinula edodes, Tremella fuciformis, Flammulina filiformis, and Agaricus bisporus was also relatively high, being 1-2 mg/g DW, respectively. GABA accumulation was significantly promoted by increasing the nitrogen content in culture substrate, and the promotion effect of adding urea was obviously better than that of adding wheat bran. GABA accumulation was also influenced by cultivation time. GABA content in the second and third fruiting flush was markedly higher than that in the first fruiting flush. Our results indicate that GABA content in edible fungi is not only closely related to the variety but also affected by the content and species of nitrogen in culture substrate and the cultivation time.

[28]
Xie Y, Li J, Ding Y, Shao X, Sun Y, Xie F, Liu S, Tang S, Deng X, 2022. An atlas of bacterial two-component systems reveals function and plasticity in signal transduction. Cell Reports, 41(3): 111502
[29]
Yan Y, Zou L, Wei H, Yang M, Yang Y, Li X, Xia H, 2024. A typical two-component system, AtcR/AtcK, simultaneously regulates the biosynthesis of multiple secondary metabolites in Streptomyces bingchenggensis. Applied and Environmental Microbiology, 90: e0130023
[30]
Zhao K, Xu JP, 2023. Analyses of genetic diversity reveal major forces impacting a local population of the gourmet mushroom Cantharellus enelensis. Mycosystema, 42(6): 1240-1257 (in Chinese)
[31]
Zhao Y, Lee MK, Lim J, Moon H, Park HS, Zheng W, Yu JH, 2021. The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans. The Journal of Microbiological, 59(8): 746-752
[32]
崔醒, 朱秋劲, 侯瑞, 万婧, 2022. 丁香酚、香芹酚和百里香酚对禾谷镰刀菌的抑菌活性及机制. 食品科学, 43(23): 10-18
[33]
牛力源, 孙晓诚, 刘静飞, 吴梓好, 白艳红, 张志坚, 2024. 香芹酚胁迫下酿酒酵母的生理特性和转录组分析. 食品科学, 45(9): 75-83
[34]
孙伟, 袁玉华, 余以刚, 2024. 香芹酚对蜡样芽孢杆菌的抑菌作用评价. 食品与发酵工业, 50(18): 141-147
香芹酚是一种存在于精油中的天然化合物,对多种微生物具有抗菌作用。该研究旨在研究香芹酚对蜡样芽孢杆菌的抑菌作用及其在白腐乳后发酵过程中的应用。研究中测定了香芹酚对2种蜡样芽孢杆菌的最小抑菌浓度(minimum inhibitory concentration, MIC)和最小杀菌浓度(minimum bactericidal concentration, MBC),分别为0.312 5 mg/mL和0.625 0 mg/mL,第24 h的抑菌率分别为94.06%和94.07%。同时考察了香芹酚对菌落形成、孢子萌发、分子泄露和细胞形态的影响,并通过在白腐乳后发酵阶段添加香芹酚来评估其应用效果。结果显示,在最小抑菌浓度下,香芹酚显著降低了孢子的萌发率,并导致蜡样芽孢杆菌细胞形态的改变和细胞膜的破坏,引起核酸、蛋白质和酶的泄露。此外,香芹酚处理组的白腐乳菌落总数、蜡样芽孢杆菌数和孢子数分别减少了84.62%、47.37%和93.15%。因此,香芹酚有望作为一种有效的抑菌剂,用于控制腐乳中的蜡样芽孢杆菌。
[35]
王江来, 张锦锋, 马金秀, 刘璐, 沈彤, 田永强, 2022. 香芹酚和丁香酚对腐皮镰刀菌的抑菌活性及抑菌机理. 微生物学通报, 49(5): 1638-1650
[36]
文晴, 赵浩洋, 邵艳红, 胡延如, 戚元成, 王风芹, 申进文, 2023. 中国主要食用菌子实体γ-氨基丁酸含量测定及产量影响因素. 菌物学报, 42(1): 231-243
γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种功能性非蛋白氨基酸,在维持人体健康方面发挥着重要作用。为探明食用菌子实体的GABA含量水平和影响食用菌GABA产量的因素,本研究通过对食用菌GABA提取和衍生条件优化,建立了食用菌GABA检测的9-芴甲氧羰酰氯(FMOC-Cl)柱前衍生HPLC法;利用该方法测定了20种中国主要食用菌子实体的GABA含量,并进一步探究了培养料氮源含量和种类、栽培时间对GABA含量的影响。食用菌GABA提取的最佳料液比、时间和温度分别为1:100、1 h和65 ℃。20种食用菌子实体的GABA含量在0.20-3.02 mg/g DW,存在显著种间差异,其中黄白银耳GABA含量最高(3.02 mg/g DW),香菇、银耳、金针菇、双孢蘑菇的GABA含量也较高,为1-2 mg/g DW。增加培养料含氮量可显著促进GABA积累,且添加尿素的促进效果明显优于添加麦麸。栽培时间也可影响子实体GABA产量,第二茬和三茬子实体的GABA含量显著高于第一茬子实体。综上可知,食用菌GABA含量不仅与品种密切相关,而且受到培养料中氮源含量和种类、栽培时间的影响。
[37]
赵宽, 徐建平, 2023. 纽芬兰鸡油菌群体遗传多样性的主要影响因素分析. 菌物学报, 42(6): 1240-1257
纽芬兰鸡油菌是北美东部一种深受欢迎的美味食用菌。火烧山,位于加拿大格罗莫恩国家公园中心、三面环水,该地纽芬兰鸡油菌的持续出菇时间至少可追溯至20世纪60年代且未见于周边地区。研究该持续存在的孤立种群,对于资源保护和开发具有重要意义。本研究在火烧山共采集纽芬兰鸡油菌子实体109个,包括间距100 m以上的6个局域群体共81个个体以及5 d后随机采集的28个个体。基于微卫星标记的基因分型结果显示,3个位点上分别有3、5和2个等位基因,而每个局域群体的各位点均被1到2个等位基因主导;共有多位点基因型29个。每个局域群体和总样本中的基因型频率总体上符合哈迪-温伯格平衡。虽然总样本中存在显著的遗传分化,但克隆校正后未检测到差异。比较间隔5 d的两次取样,等位基因和基因型频率存在微小差异。此外,与纽芬兰岛另外两地(分别相距约200 km和600 km)和安大略省哈密尔顿市一地(约2 000 km外)共3个地区群体样本进行了比较。结果表明,突变、有性生殖、基因流、选择和遗传漂变都对纽芬兰鸡油菌种群的遗传多样性产生了影响。

Funding

National Natural Science Foundation of China(31971564)
2024 Graduate Research and Practice Innovation Program Project of Jiangsu Normal University(2024XKT1512)
PDF(827 KB)

Accesses

Citation

Detail

Sections
Recommended

/