Biological functions of the bZIP transcription factor FgMetR in Fusarium graminearum

MA Hao, ZHANG Limin, ZHAO Yanxiang, HUANG Jinguang

Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240279.

PDF(1165 KB)
PDF(1165 KB)
Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240279. DOI: 10.13346/j.mycosystema.240279
Research papers

Biological functions of the bZIP transcription factor FgMetR in Fusarium graminearum

Author information +
History +

Abstract

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most important fungal diseases of wheat, posing a serious threat to wheat production and food safety. bZIP transcription factors are core positive regulators of sulfur assimilation and involved in the regulation of fungal asexual reproduction and pathogenicity. In order to further reveal the biological function of the bZIP transcription factors in F. graminearum, in this study, the authors identified a bZIP transcription factor FgMetR in F. graminearum and obtained the deletion mutant ΔFgMetR. The effect of FgMetR deletion on various phenotype was evaluated. The results showed that the colony of ΔFgMetR appeared transparent on PDA plates and the mycelia were sparsely dispersed with few aerial hyphae. No red pigment was observed either on PDA plates or in PDB broth. The radial growth rate of colonies, mycelial height, and conidial production of ΔFgMetR were significantly reduced as compared with those of the wild-type strain. The growth defect phenotype of ΔFgMetR on minimal medium without any sulfur element can be partially restored by supplementing organic but not inorganic sulfur sources. ΔFgMetR mutant failed to form perithecia and ascospores on carrot culture medium. Deletion of FgMetR significantly reduced the pathogenicity of F. graminearum invading both wheat coleoptiles and heads. In addition, ΔFgMetR mutant was more sensitive to tebuconazole and prochloraz. The facts prove that bZIP transcription factor FgMetR is essential for the vegetative growth, pigmentation, asexual and sexual reproduction, pathogenicity and involvement in the regulation of sulfur assimilation and sensitivity to azole fungicides of F. graminearum.

Key words

Fusarium head blight / transcriptional regulation / sulfur assimilation / pathogenicity / azole fungicide

Cite this article

Download Citations
MA Hao, ZHANG Limin, ZHAO Yanxiang, HUANG Jinguang. Biological functions of the bZIP transcription factor FgMetR in Fusarium graminearum[J]. Mycosystema, 2025, 44(4): 240279 https://doi.org/10.13346/j.mycosystema.240279
蛹虫草Cordyceps militaris (L.) Fr.,又称“北虫草”,是一种独特而珍贵的食药用真菌,具有抗氧化、抗衰老、抗肿瘤、抗炎、保肝和免疫调节等多种药理活性(戴玉成和杨祝良2008;Wu et al. 2019;Ren et al. 2020),并已被我国原卫生部批准为新资源食品,具有重要的研究开发价值。近年来,蛹虫草的抗氧化活性已得到国内外学者的广泛验证和认可。研究表明,蛹虫草具有多种自由基清除能力(Yu et al. 2007),并且能够有效降低细胞内活性氧水平(叶章正等2012)。同时,蛹虫草及相关产物还能够提升抗氧化物酶活性,降低丙二醛(MDA)含量,起到抵御氧化应激损伤的作用(Liu et al. 2016;Zhang et al. 2019)。因此,蛹虫草已经成为天然抗氧化功效产物筛选的重要真菌资源,在食品、医药以及化妆品领域均受到广泛关注,并表现出较好的潜力。
随着社会整体生活水平的提高,皮肤防护问题逐渐成为人们关注的焦点。当皮肤受到环境污染、紫外线等不利刺激时,会产生大量活性氧(reactive oxygen species, ROS)从而使细胞内源性抗氧化系统失衡,引起氧化应激,进而诱发炎症、皮肤肿瘤和异常衰老等皮肤问题(Kang et al. 2014;Kammeyer & Luiten 2015;Kim et al. 2016)。因此,及时清除自由基,提高机体抗氧化能力成为预防和治疗细胞氧化应激的理想策略。近年来,天然提取物对皮肤氧化损伤的保护作用越来越受到研究人员的关注。Abate et al. (2020)研究发现灵芝提取物可诱导人永生化角质形成细胞(HaCaT)增殖,并增加周期蛋白依赖性激酶CDK2和CDK6的表达,保护HaCaT细胞免受H2O2诱导细胞毒性。丁亚男等(2024)通过HaCaT细胞氧化损伤模型研究油橄榄叶提取物抗氧化活性,发现其能够有效清除细胞内自由基,明显改善HaCaT细胞氧化应激状态。目前,有关蛹虫草活性的研究多集中于体外抗氧化和肝损伤保护等方面,对蛹虫草保护皮肤细胞氧化损伤作用的研究较少。
因此,本研究以蛹虫草水提物为研究对象,表征其主要活性成分,并以H2O2诱导氧化损伤的HaCaT细胞为模型,探究蛹虫草水提物抗氧化能力以及对皮肤细胞氧化损伤的保护作用,为其在功效化妆品方向的应用提供理论依据。

1 材料与方法

1.1 供试材料

1.1.1 试验材料

蛹虫草子实体,购自沈阳聚鑫生物有限公司,栽培基质为大米,并经中国海洋大学江晓路教授鉴定为蛹虫草。子实体60 ℃烘干至恒重,粉碎过60目筛,阴凉处密封保存备用。
人永生化角质形成细胞(HaCaT),购自南京科佰生物科技有限公司。

1.1.2 主要试剂

DMEM高糖培养基、血清、胰酶,普诺赛生命科技有限公司;1,1-二苯基-2-三硝基苯肼(DPPH)、2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS),Sigma公司;水杨酸、无水乙醇、甲醇、硫酸亚铁、30%过氧化氢均为分析纯,国药集团化学试剂有限公司;蛋白质定量(BCA)测试盒、活性氧(ROS)测试盒、总超氧化物歧化酶(T-SOD)测试盒、谷胱甘肽过氧化物酶(GSH-Px)测试盒、过氧化氢酶(CAT)测试盒、丙二醛(MDA)测试盒,南京建成生物科技公司。

1.1.3 主要仪器

Agilent 1260高效液相色谱仪(安捷伦公司);TECAN Infinite E Plex酶标仪(上海帝肯贸易有限公司);HF90型二氧化碳培养箱(力康仪器有限公司);HCB-900V型超净台(青岛海尔生物医疗有限公司);DXS-2型普通倒置显微镜(上海缔伦光学仪器有限公司)。

1.2 蛹虫草水提物的制备

称取一定量的蛹虫草粉末,按料液比1:10 (质量体积比)于沸水中浸提40 min后,4 000 r/min离心10 min取上清,重复两次,合并上清液,浓缩、冻干得蛹虫草水提物(Cordyceps militaris aqueous extract, CME)。

1.3 CME主要活性成分分析

1.3.1 多糖含量及单糖组成

多糖的提取:精密称取CME粉末1.0 g,用水溶解并定容至50 mL容量瓶中,向样品溶液中加入3倍体积95%乙醇,4 ℃静置12 h后,离心弃去上清,沉淀经除蛋白、60 ℃烘干即得蛹虫草多糖。
多糖含量测定:将得到的多糖样品加水定容到100 mL,根据GB/T 15672-2009以苯酚-硫酸法测定多糖含量,以葡萄糖浓度为横坐标,波长490 nm下吸光值为纵坐标,标准曲线回归方程为:y=15.909x+0.041 2,R2=0.999。CME中多糖含量按照公式(1)计算:
 多糖含量 (%)= 糖含量 /(10mg/mL)×100.
(1)
单糖组分分析:根据宗雯雯等(2018)的方法,精密称取多糖粉末10 mg,经三氟乙酸水解和PMP衍生后,取上清以0.22 µm滤膜过滤后进行HPLC分析。色谱条件:色谱柱为Agilent Eclipse XDB-C18柱,流动相为乙腈-50 mmol/L磷酸盐缓冲液(17:83,体积比) (pH 6.9),流速1.0 mL/min,检测波长245 nm,柱温25 ℃,进样量10 μL。

1.3.2 核苷类成分

参照朱丽娜等(2018)的方法,精密称取CME粉末0.5 g,加25 mL蒸馏水振荡15 min使粉末完全浸透,超声提取20 min。离心取上清,以0.22 µm滤膜过滤后进行HPLC分析。色谱条件:色谱柱Agilent Zorbax Extend-C18柱、流动相为甲醇-水梯度洗脱,流速0.5 mL/min,检测波长260 nm,柱温25 ℃,进样量10 μL。

1.3.3 其他活性成分

总多酚的测定参照李剑梅等(2023)的Folin- Ciocalteu法;类胡萝卜素的测定参照周翔宇等(2021)的方法。

1.4 CME抗氧化活性研究

参照吴梦思等(2024)的方法检测CME对DPPH自由基和ABTS自由基的清除效果,参照Meng et al. (2015)的方法检测CME对·OH自由基的清除效果。清除率按照公式(2)计算:
 清除率 (%)=[1(TT0)/C]×100 
(2)
T表示样品管的吸光值;T0表示样品本底的吸光值;C表示以蒸馏水代替样品溶液测得空白对照管的吸光值。

1.5 CME对HaCaT细胞氧化损伤的保护作用

1.5.1 细胞培养

用含10%胎牛血清、1%双抗的DMEM培养基培养HaCaT细胞,并置于37 ℃、5% CO2培养箱,备用。

1.5.2 CME对HaCaT细胞的毒性

以MTT比色法(金银萍等 2015)检测细胞活力。取对数生长期的细胞按5×103个/孔的密度接种于96孔板中,接种量100 μL,待细胞培养至融合度70%-80%后,加入不同浓度(0、10、25、50、100、200、400、600、1 000 μg/mL)的CME处理HaCaT细胞24 h。每孔加入20 μL MTT溶液,于培养箱中孵育4 h后弃液,每孔加入150 μL DMSO溶液,振荡10 min充分溶解后,用酶标仪测490 nm波长下吸光值,并以空白孔调零,每个浓度设6个平行。

1.5.3 HaCaT氧化损伤模型建立

选择对数生长期的细胞按5×103个/孔的密度接种于96孔板中,接种量100 μL,待细胞培养至融合度70%-80%后,加入含不同浓度(0、100、200、400、600、800、1 000 μmol/L) H2O2溶液的DMEM培养基处理HaCaT细胞4 h,按1.5.2的方法测定细胞活性。

1.5.4 CME对H2O2损伤HaCaT细胞的影响

取对数生长期的细胞按5×103个/孔的密度接种于96孔板中,接种量100 μL,待细胞培养至融合度70%-80%后,将细胞分为对照组、模型组、阳性组和样品组。样品组分别加入不同浓度的CME,阳性组加入200 μmol/L 抗坏血酸(VC)为阳性对照,孵育24 h后,除对照组外,各组均加入H2O2孵育4 h,按1.5.2的方法测定细胞活性。

1.5.5 细胞内活性氧(ROS)水平测定

取对数生长期的细胞按1.2×106个/孔的密度接种于6孔板中,接种量2.5 mL,并按1.5.4的方法进行细胞分组及培养。培养完成后以PBS清洗细胞,按照ROS检测试剂盒说明书操作,使用多功能酶标仪在525 nm发射波长(488 nm激发波长)下检测荧光DCF强度。

1.5.6 细胞内SOD、GSH-Px、CAT和MDA含量的测定

取对数生长期的细胞按1.2×106个/孔的密度接种于6孔板中,接种量2.5 mL,并按1.5.4的方法进行细胞分组及培养。培养完成后收集细胞,并进行细胞裂解收集上清液,按照试剂盒说明书测定HaCaT中SOD、GSH-Px、CAT活力和MDA含量。

1.6 统计学分析

用Graphpad软件对结果进行统计分析,测定结果数据均用x¯±s表示,组间比较采用单因素方差分析(P<0.05差异具有统计学意义)。

2 结果与分析

2.1 CME中主要活性成分分析

蛹虫草的主要活性成分与冬虫夏草较为接近,目前被公认的包括虫草多糖、腺苷、虫草素、多酚、类胡萝卜素等活性成分。本研究通过分光光度法对CME的主要活性成分含量进行了测定(表1),并采用高效液相色谱法对核苷类成分及单糖组分进行了初步分析。
Table 1 Content of main active components in CME

表1 CME中主要活性成分含量

成分
Components
含量
Content (mg/g)
多糖 Polysaccharide 509.47±14.73
尿苷Uridine 1.21±0.10
鸟苷Guanosine 0.66±0.03
腺苷Adenosine 1.47±0.11
虫草素 Cordycepin 2.66±0.15
N6-(2-羟乙基)腺苷
N6-(2-hydroxyethtl)-adenosine
2.15±0.09
总多酚 Total polyphenols 9.21±0.37
类胡萝卜素 Carotenoid 0.95±0.04

2.1.1 多糖含量和单糖组成分析

多糖是已报道的蛹虫草抗氧化活性的主要来源(Shweta et al. 2023)。CME中多糖含量达509.47 mg/g (表1),说明CME活性成分以多糖为主,可预估其有良好的抗氧化活性,与芦叶等(2024)研究结果一致。进一步分析其单糖组成发现(图1),CME的多糖样品主要由甘露糖、半乳糖醛酸、葡萄糖、半乳糖和阿拉伯糖组成,物质的量比为4.58:1.65:5.16:5.23:1.0 (表2)。其中,以甘露糖、葡萄糖和半乳糖3种单糖含量最为突出,与朱丽娜等(2021)的报道一致。甘露糖、葡萄糖和半乳糖作为生物体重要的能量来源,与蛹虫草抗氧化、肝脏保护等功能密切相关(Zhang et al. 2020),Lan et al. (2024)从蛹虫草中分离出一种主要由甘露糖、葡萄糖和半乳糖组成的多糖CM-1,发现其能有效清除自由基,并对氧化应激具有显著的保护作用。由此可推测甘露糖、葡萄糖和半乳糖可共同作用发挥CME的抗氧化能力。
Fig. 1 Determination of monosaccharide composition by HPLC. A: Mixed reference substance; B: Tested samples. 1: Man; 2: Rha; 3: Glc-UA; 4: Gal-UA; 5: Lactose (internal standard); 6: Glc; 7: Gal: 8: Xyl; 9: Ara; 10: Fuc.

图1 HPLC检测单糖组成 A:混合对照品;B:供试品. 1:甘露糖;2:鼠李糖;3:葡萄糖醛酸;4:半乳糖醛酸;5:乳糖内标;6:葡萄糖;7:半乳糖;8:木糖;9:阿拉伯糖;10:岩藻糖

Full size|PPT slide

Table 2 Monosaccharide composition of Cordyceps militaris polysaccharide

表2 蛹虫草多糖的单糖组成

样品
Sample
甘露糖
Man
半乳糖醛酸
Gal-UA
葡萄糖
Glc
半乳糖
Gal
阿拉伯糖
Ara
含量
Content (mol%)
25.73 9.26 29.01 29.39 5.62

2.1.2 核苷类成分分析

核苷类化合物是蛹虫草有效成分的重要组成部分,目前已成为评价虫草类制品质量控制的重要指标(薛亚甫等 2016),虫草素和N6-(2-羟乙基)腺苷是已报道的蛹虫草中的特有成分(李赫宇等 2018),对蛹虫草及其提取物的质量控制有重要意义。HPLC分析结果显示(图2),CME中主要核苷类成分为尿苷、鸟苷、腺苷、虫草素和N6-(2-羟乙基)腺苷,与李赫宇等(2018)的检测结果一致。其核苷类成分总量为8.15 mg/g,其中,虫草素是CME中含量最高的核苷类成分,为2.66 mg/g,N6-(2-羟乙基)腺苷的含量为2.15 mg/g,仅次于虫草素(表1)。
Fig. 2 Determination of nucleosides by HPLC. A: Mixed reference substance; B: Test sample. 1: Cytidine; 2: Uridine; 3: Guanosine; 4: Thymidine; 5: Adenosine; 6: Cordycepin; 7: N6-(2-hydroxyethtl)- adenosine.

图2 HPLC检测核苷类成分 A:混合对照品;B:供试品. 1:胞苷;2:尿苷;3:鸟苷;4:胸苷;5:腺苷;6:虫草素;7:N6-(2-羟乙基)腺苷

Full size|PPT slide

2.1.3 其他活性成分

除多糖和核苷类成分外,蛹虫草子实体中还含有其他化学成分,如多酚和类胡萝卜素。用比色法测定CME中多酚和类胡萝卜素含量,分别为9.21 mg/g和0.95 mg/g (表1)。

2.2 CME抗氧化活性评价

本研究通过检测CME对DPPH自由基、ABTS自由基和·OH自由基的清除作用来评价其抗氧化能力(图3)。随着CME浓度的增大,3种自由基的清除率均逐渐增强,且呈明显的量效关系。VC作为一种自由基清除剂,在相同的质量浓度下表现出较强的清除能力,当CME浓度为2.5 mg/mL时对3种自由基的清除效果均接近最佳。CME在浓度为1.5 mg/mL时对DPPH自由基的清除率也已超过90%,接近VC的作用效果(图3A),其对DPPH自由基的IC50值为0.63 mg/mL。与对DPPH自由基的清除能力相比,CME对ABTS和·OH自由基的清除效果相对较弱,在浓度为2.5 mg/mL时,ABTS和·OH自由基清除率仅为41.64%和39.29%,而当浓度增大到7.5 mg/mL时,清除率均接近90% (图3B, 3C),说明CME对ABTS和·OH自由基也有较强的清除作用,其IC50值分别为2.97 mg/mL和3.24 mg/mL。
Fig. 3 Scavenging effects of CME on radicals. A: DPPH radical scavenging activities; B: ABTS radical scavenging activities; C: ·OH radical scavenging activities.

图3 CME对自由基的清除作用 A:DPPH自由基清除率;B:ABTS自由基清除率;C:羟基自由基清除率

Full size|PPT slide

2.3 CME对HaCaT细胞氧化损伤的保护作用

2.3.1 对HaCaT细胞活力的影响

采用MTT法对不同浓度(10、25、50、100、200、400、600、1 000 μg/mL) CME作用下的HaCaT细胞存活率进行检测(图4)。随着药物浓度的增加,HaCaT细胞存活力逐渐降低,当质量浓度为50 μg/mL时,细胞存活率为86.27%,当浓度大于50 μg/mL时,细胞活力明显下降,均小于80%。当细胞活力高于80%时可认为样品对细胞未有明显毒性(朱恒杏等 2024),因此选择10、25、50 μg/mL这3个浓度为安全作用浓度进行后续实验。
Fig. 4 Effects of different concentrations of CME on the viabilities of HaCaT cells.

图4 不同浓度CME对HaCaT细胞活力的影响

Full size|PPT slide

2.3.2 H2O2诱导氧化损伤模型建立

H2O2作为最重要的活性氧类物质,容易在细胞核组织中扩散,诱导细胞发生氧化应激,已成为国内外研究各类细胞氧化损伤的重要工具(Rachitha et al. 2023)。实验结果显示(图5),HaCaT的细胞活力随H2O2浓度的升高而逐渐降低,当H2O2浓度为400 μmol/L时,HaCaT细胞活力降至对照组的59.81% (P<0.01),此浓度下细胞在受到氧化损伤的同时还保留了相对的活力,因此选择400 μmol/L作为H2O2氧化损伤模型的诱导浓度。
Fig. 5 Effects of different concentrations of H2O2 on the viabilities of HaCaT cells.

图5 不同浓度H2O2对HaCaT细胞活力的影响

Full size|PPT slide

2.3.3 CME对H2O2诱导HaCaT细胞活力的影响

MTT法检测CME对H2O2处理的氧化损伤HaCaT细胞的保护作用(图6)。400 μmol/L H2O2处理细胞后,HaCaT活力显著下降(P<0.01),降至对照组的55.39%;而经VC和CME预处理的HaCaT细胞活力较模型组明显提高,且与CME浓度呈正相关趋势,当CME浓度为50 μg/mL时,细胞存活率高达83.90% (P<0.01),较模型组提升了28.51%,与VC的作用效果相近,表明CME对H2O2诱导的HaCaT细胞损伤具有明显的保护作用。
Fig. 6 Effects of different concentrations of CME on the viabilities of HaCaT cells induced by H2O2. Compared with control group, ##P<0.01; Compared with model group, *P<0.05, **P<0.01. The same below.

图6 不同浓度CME对H2O2诱导HaCaT细胞活力的影响 与对照组相比,##P<0.01;与模型组相比,*P<0.05,**P<0.01,下同

Full size|PPT slide

2.3.4 CME对HaCaT内ROS水平的影响

活性氧(ROS)是细胞在代谢过程中产生的一系列活性氧簇(包括单线态氧、超氧阴离子和羟基自由基等),细胞受到氧化应激刺激后会产生过量的ROS,损伤细胞结构,包括蛋白质、脂质和DNA,从而导致皮肤受损进而造成老化和疾病等皮肤危害(夏世金等 2014)。因此,检测CME对HaCaT中ROS含量的影响可用来评估其防护氧化损伤的能力(图7),细胞经H2O2处理后,ROS相对含量明显升高(P<0.01),约为对照组的1.6倍,说明H2O2处理使HaCaT细胞受到严重的氧化应激损伤,导致了ROS的积累。CME和VC预处理均能显著降低H2O2诱导损伤后细胞内ROS水平(P<0.01),且CME浓度为50 μg/mL时,对ROS抑制率已达到44.46%,抑制效果强于VC。结果表明,CME能够以剂量依赖的方式有效清除H2O2刺激而产生的ROS,从而减缓ROS过多导致的氧化损伤。
Fig. 7 Effects of different concentrations of CME on ROS levels in HaCaT cells.

图7 不同浓度CME对HaCaT细胞内ROS水平的影响

Full size|PPT slide

2.3.5 CME对HaCaT内氧化应激因子水平的影响

细胞有一个内源性抗氧化系统,可以通过产生超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)等抗氧化酶来平衡ROS,抵御脂质过氧化(LPO)、蛋白质氧化、DNA损伤等有害作用对细胞造成的伤害。因此在氧化应激引起细胞损伤的研究中,SOD、GSH-Px、CAT等抗氧化酶以及MDA等LPO产物常被用作潜在的生物标志物(Naji et al. 2017;Zhang et al. 2018)。
H2O2损伤细胞后,模型组SOD、GSH-Px和CAT活力均显著降低(P<0.01),分别降至对照组的67.77%、76.59%和68.49% (图8)。CME和VC保护作用下这些抗氧化酶活力均明显上升,特别是当CME浓度为50 μg/mL时,细胞内SOD、GSH-Px和CAT水平分别较模型组显著升高28.91%、22.97%和21.48% (P<0.01),与VC保护效果相近。脂质过氧化试验表明,HaCaT发生氧化应激会导致细胞脂质损伤加剧,使细胞内MDA含量显著升高(P<0.01)。与模型组相比,50 μg/mL CME以及VC预处理使脂质过氧化程度分别降低29.86%和32.01% (P<0.01),已恢复至接近正常水平。以上结果表明CME可以通过增加细胞抗氧化酶的活力和阻碍过氧化物的产生来清除自由基,有效地保护HaCaT细胞免受氧化应激损伤。
Fig. 8 Effects of different concentrations of CME on MDA contents (A) and the activities of SOD (B), GSH-Px (C), CAT (D) in HaCaT cells.

图8 不同浓度CME对HaCaT细胞内MDA含量(A)和SOD (B)、GSH-Px (C)、CAT (D)活力的影响

Full size|PPT slide

3 讨论

近年来,应用天然产物来干预氧化应激已经成为皮肤氧化损伤保护的重要研究方向,蛹虫草作为一种药用价值极高的菌物资源,因其广泛的生理活性而受到特别的关注(Ren et al. 2020;何华奇等 2023)。本研究对蛹虫草水提物的主要活性成分进行表征,探究其抗氧化能力以及对HaCaT细胞氧化损伤的保护作用。
蛹虫草是多糖、多酚、腺苷、虫草素等活性物质的丰富来源。本研究结果表明,CME中多糖(509.47 mg/g)和总多酚(9.21 mg/g)含量显著。总多酚含量与药用菌多酚1.65-19.79 mg/g范围相近(Robaszkiewicz et al. 2010;Choi et al. 2020),而多糖含量明显高于Thi Nguyen et al. (2022)的报道。此外,CME还含有多种核苷类成分,以腺苷(1.47 mg/g)、虫草素(2.66 mg/g)和N6-(2-羟乙基)腺苷(2.15 mg/g)含量最为突出。这些活性产物极大地促进了CME的抗氧化活性。据报道,多糖和酚类化合物可有效清除各种自由基(Barros et al. 2008;Liu et al. 2016),腺苷能够增强机体抗氧化酶活力(李兵等 2016),而虫草素具有抑制氧化应激和炎症反应等活性(刘立柱等 2022),对皮肤具有一定的保护和改善作用。此外,其他可能存在于CME中的化学成分,如类胡萝卜素、麦角硫因和硒,也被证实可明显提高蛹虫草的抗氧化性能(左锦辉等 2018;Shweta et al. 2023),这些活性成分可能会共同作用对CME的抗氧化活性产生协同效果。因此,推测CME具有很好的抗氧化能力及氧化应激损伤保护作用,在护肤品领域将有巨大的应用潜力。
CME对DPPH自由基有较强的清除作用,IC50值为0.63 mg/mL,隋昕怡等(2024)提取的蛹虫草多糖清除DPPH自由基IC50值为0.80 mg/mL,与之相比,CME对DPPH自由基清除效果更好;与张曦文等(2017)报道的蛹虫草子实体水提物对DPPH自由基IC50为0.757 mg/mL相比也有一定的优势,表明CME具有良好的化学抗氧化活性。在此基础上,我们以H2O2诱导HaCaT细胞损伤为模型,探究CME对皮肤氧化损伤的保护作用。结果表明,CME在10、25、50 μg/mL下对HaCaT细胞无明显毒副作用,同时能够提高H2O2诱导损伤后的HaCaT细胞存活率并呈剂量依赖性地减弱细胞内ROS水平,与Park et al. (2014)的研究结果一致。H2O2是生物体内最常见的活性氧分子,过量H2O2刺激皮肤会打破ROS生成和抗氧化酶活性之间的平衡,引起细胞氧化应激并诱导损伤(Masaki 2010)。而抗氧化在细胞水平发挥作用的重要机制之一就是增强抗氧化酶活性,减少脂质代谢产物生成,提高细胞氧化防御体系(郭玉文等 2016)。本研究发现,CME使H2O2诱导的HaCaT细胞中抗氧化酶SOD、GSH-Px和CAT水平提高了15%-30%,使MDA抑制率达29.86%,这表明CME在细胞内可通过提高抗氧化酶的活力和降低脂质氧化水平来清除ROS,从而保护HaCaT细胞免受H2O2诱导的氧化损伤(Dong et al. 2021)。
本研究通过自由基清除实验和细胞实验证实CME具有较好的抗氧化能力,并对H2O2诱导的HaCaT细胞氧化损伤具有保护作用,表明其具有成为天然抗氧化剂应用于化妆品等领域的潜力,为蛹虫草提取物的开发应用提供科学依据。

作者贡献

孙彦庆:查阅文献、初稿撰写;张京良:数据收集与分析管理;朱宗敏:图表制作、软件;江晓路:提供实验材料、文章审核;尚丽丽:验证、实际调查研究;宗雯雯:论文构思、实验设计实施与编辑写作。

利益冲突

作者声明,该研究不存在任何潜在利益冲突的商业或财务关系。

References

[1]
Audenaert K, Vanheule A, Höfte M, Haesaert G, 2013. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins, 6(1): 1-19
The mycotoxin deoxynivalenol (DON), produced by several Fusarium spp., acts as a virulence factor and is essential for symptom development after initial wheat infection. Accumulating evidence shows that the production of this secondary metabolite can be triggered by diverse environmental and cellular signals, implying that it might have additional roles during the life cycle of the fungus. Here, we review data that position DON in the saprophytic fitness of Fusarium, in defense and in the primary C and N metabolism of the plant and the fungus. We combine the available information in speculative models on the role of DON throughout the interaction with the host, providing working hypotheses that await experimental validation. We also highlight the possible impact of control measures in the field on DON production and summarize the influence of abiotic factors during processing and storage of food and feed matrices. Altogether, we can conclude that DON is a very important compound for Fusarium to cope with a changing environment and to assure its growth, survival, and production of toxic metabolites in diverse situations.
[2]
Brzywczy J, Kacprzak MM, Paszewski A, 2011. Novel mutations reveal two important regions in Aspergillus nidulans transcriptional activator MetR. Fungal Genetics and Biology, 48(2): 104-112
Expression of the sulfur assimilation pathway in Aspergillus nidulans is under control of sulfur metabolite repression, which is composed of scon genes encoding subunits of ubiquitin ligase and the metR gene coding for a transcriptional activator. In this paper we report three dominant suppressors of methionine requirement isolated from a metB3 diploid strain. All three mutations lead to the substitution of phenylalanine 48 by serine or leucine in the conserved N-terminal region of the MetR protein. Strains carrying the dominant suppressor mutations exhibit increased activities of homocysteine synthase and sulfur assimilation enzymes as well as elevated levels of the corresponding transcripts. These changes are observed even under conditions of methionine repression, which suggests that the mutated MetR protein may be resistant to inactivation or degradation mediated by sulfur metabolite repression. We also found that a mutant impaired in sulfite reductase activity, known until now as sG8, has a frameshift which changes 41 C-terminal amino acids. Therefore, it is now designated metR18. This mutant has elevated levels of MetR-regulated transcripts and of activities of sulfur assimilation enzymes (except sulfite reductase), which can be repressed to the wild type level by exogenous methionine. Thus, metR18 and the three dominant suppressors represent new types of mutations affecting different parts of the A. nidulans MetR protein.Copyright © 2010 Elsevier Inc. All rights reserved.
[3]
Chen A, Islam T, 2022. An integrated pest management program for managing Fusarium head blight disease in cereals. Journal of Integrative Agriculture, 21(12): 3434-3444
[4]
Chen L, Ma Y, Zhao J, Geng X, Chen W, Ding S, Li H, Li H, 2020. The bZIP transcription factor FpAda 1 is essential for fungal growth and conidiation in Fusarium pseudograminearum. Current Genetics, 66(3): 507-515
[5]
Chen Y, Kistler HC, Ma Z, 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annual Review of Phytopathology, 57: 15-39
Fusarium head blight (FHB) of small grain cereals caused by and other species is an economically important plant disease worldwide. infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
[6]
Chen Y, Zhang Y, Xu D, Zhang Z, Li B, Tian S, 2023. PeAP1-mediated oxidative stress response plays an important role in the growth and pathogenicity of Penicillium expansum. Microbiology Spectrum, 11(5): e0380822
[7]
Fernandes L, Rodrigues-Pousada C, Struhl K, 1997. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Molecular and Cellular Biology, 17(12): 6982-6993
Saccharomyces cerevisiae contains eight members of a novel and fungus-specific family of bZIP proteins that is defined by four atypical residues on the DNA-binding surface. Two of these proteins, Yap1 and Yap2, are transcriptional activators involved in pleiotropic drug resistance. Although initially described as AP-1 factors, at least four Yap proteins bind most efficiently to TTACTAA, a sequence that differs at position +/-2 from the optimal AP-1 site (TGACTCA); further, a Yap-like derivative of the AP-1 factor Gcn4 (A239Q S242F) binds efficiently to the Yap recognition sequence. Molecular modeling suggests that the Yap-specific residues make novel contacts and cause physical constraints at the +/-2 position that may account for the distinct DNA-binding specificities of Yap and AP-1 proteins. To various extents, Yap1, Yap2, Yap3, and Yap5 activate transcription from a promoter containing a Yap recognition site. Yap-dependent transcription is abolished in strains containing high levels of protein kinase A; in contrast, Gcn4 transcriptional activity is stimulated by protein kinase A. Interestingly, Yap1 transcriptional activity is stimulated by hydrogen peroxide, whereas Yap2 activity is stimulated by aminotriazole and cadmium. In addition, unlike other yap mutations tested, yap4 (cin5) mutations affect chromosome stability, and they suppress the cold-sensitive phenotype of yap1 mutant strains. Thus, members of the Yap family carry out overlapping but distinct biological functions.
[8]
Fu J, Wu J, Jiang J, Wang Z, Ma Z, 2013. Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum. Fungal Biology, 117(1): 13-21
[9]
Gai Y, Li L, Ma H, Riely BK, Liu B, Li H, 2021. Critical role of MetR/MetB/MetC/MetX in cysteine and methionine metabolism, fungal development, and virulence of Alternaria alternata. Applied and Environmental Microbiology, 87(4): e01911-e01920
[10]
John E, Singh KB, Oliver RP, Tan KC, 2022. Transcription factor lineages in plant-pathogenic fungi, connecting diversity with fungal virulence. Fungal Genetics and Biology, 161: 103712
[11]
Kim JE, Nam H, Park J, Choi GJ, Lee YW, Son H, 2020. Characterization of the CCAAT-binding transcription factor complex in the plant pathogenic fungus Fusarium graminearum. Scientific Reports, 10(1): 4898
[12]
Kong S, Park SY, Lee YH, 2015. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environmental Microbiology, 17(4): 1425-1443
[13]
Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M, 2010. Dissection of combinatorial control by the Met 4 transcriptional complex. Molecular Biology of the Cell, 21(3): 456-469
[14]
Leplat J, Friberg H, Abid M, Steinberg C, 2013. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agronomy for Sustainable Development, 33(1): 97-111
[15]
Liu LG, Ding ZJ, Li MH, Wu CH, Xie XJ, Peng J, Zhang X, 2023. Functional analysis of cystathionine gamma-synthase in Fusarium oxysporum f.sp. cubense. Mycosystema, 42(7): 1575-1587 (in Chinese)
[16]
Liu N, Wu S, Dawood DH, Tang G, Zhang C, Liang J, Chen Y, Ma Z, 2019. The b‐ZIP transcription factor FgTfmI is required for the fungicide phenamacril tolerance and pathogenecity in Fusarium graminearum. Pest Management Science, 75(12): 3312-3322
Fusarium head blight (FHB) is a devastating disease of cereal crops worldwide mainly caused by Fusarium graminearum. Due to the unavailability of FHB-resistant wheat cultivars, chemical fungicide application is currently the most effective approach for controlling FHB now. In the last few years, a novel cyanoacrylate fungicide, phenamacril, has been widely used in China for FHB disease management. In previous studies, we identified that myosin I (FgMyo1) is the target of phenamacril and is essential for mycotoxin deoxynivalenol (DON) biosynthesis and fungal growth. However, the regulation of FgMYO1 gene expression is still largely unknown.In this study, we identified a b-ZIP transcription factor, FgTfmI, which regulates the mRNA expression of FgMYO1 upon phenamacril treatment. The FgTfmI directly binds to the promoter region of FgMYO1, and is required for the upregulation of FgMYO1 in response to phenamacril treatment. The deletion mutant of FgTFMI (ΔFgTfmI) displayed a slight growth defect, while it showed hypersensitivity to phenamacril, but not to other tested fungicides. FgTfmI also contributed to DON biosynthesis and the infection process in planta.The transcription factor FgTfmI plays an important role in regulating transcription of the genes involved in phenamacril tolerance, DON biosynthesis and virulence in F. graminearum. © 2019 Society of Chemical Industry.© 2019 Society of Chemical Industry.
[17]
Liu Z, Jian Y, Chen Y, Kistler HC, He P, Ma Z, Yin Y, 2019. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nature Communications, 10(1): 1228
[18]
McMullen M, Jones R, Gallenberg D, 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 81(12): 1340-1348
[19]
Mountain HA, Bystrom AS, Korch C, 1993. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Molecular Microbiology, 7(2): 215-228
A met4 mutant of Saccharomyces cerevisiae was unable to transcribe a number of genes encoding enzymes of the methionine biosynthetic pathway. The sequence of the cloned MET4 gene allowed the previously sequenced flanking LEU4 and POL1 genes to be linked to MET4 into a 10,327 bp contiguous region of chromosome XIV. From the sequence and mapping of the transcriptional start points, MET4 is predicted to encode a protein of 634 amino acids (as opposed to 666 amino acids published by others) with a leucine zipper domain at the C-terminus, preceded by both acidic and basic regions. Thus, MET4 belongs to the family of basic leucine zipper trans-activator proteins. Disruption of MET4 resulted in methionine auxotrophy with no other phenotype. Transcriptional studies showed that MET4 was regulated by the general amino acid control and hence by another bZIP protein encoded by GCN4. GCN4 binding sequences are present between the divergently transcribed MET4 and LEU4 genes. Over-expression of MET4 resulted in leaky expression from the otherwise tightly regulated MET3 promoter under its control. The presence of consensus sequences for other potential regulatory elements in the MET4 promoter suggests a complex regulation of this gene.
[20]
Natorff R, Sienko M, Brzywczy J, Paszewski A, 2003. The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Molecular Microbiology, 49(4): 1081-1094
The identification, isolation and characterization of a new Aspergillus nidulans positive-acting gene metR, which encodes a transcriptional activator of sulphur metabolism, is reported. metR mutants are tight auxotrophs requiring methionine or homocysteine for growth. Mutations in the metR gene are epistatic to mutations in the negative-acting sulphur regulatory scon genes. The metR coding sequence is interrupted by a single intron of 492 bp which is unusually long for fungi. Aspergillus nidulans METR is a member of bZIP family of DNA-binding proteins. The bZIP domains of METR and the Neurospora crassa CYS3 transcriptional activator of sulphur genes are highly similar. Although Neurospora cys-3 gene does not substitute for the metR function, a chimeric metR gene with a cys-3 bZIP domain is able to transform the DeltametR mutant to methionine prototrophy. This indicates that METR recognizes the same regulatory sequence as CYS3. The metR gene is not essential, as deletion mutants are viable and have similar phenotype as point mutants. In contrast to the Neurospora cys-3, transcription of the metR gene was found to be regulated neither by METR protein nor by sulphur source. Transcription of metR gene is derepressed in the sconB2 mutant. Transcription of genes encoding sulphate permease, homocysteine synthase, cysteine synthase, ATP-sulphurylase, and sulphur controller--sconB is strongly regulated by the metR gene product and depends on the character of the metR mutation and sulphur supplementation.
[21]
Paietta JV, 2008. DNA-binding specificity of the CYS 3 transcription factor of Neurospora crassa defined by binding-site selection. Fungal Genetics and Biology, 45(8): 1166-1171
The CYS3 transcription factor is a basic region-leucine zipper (bZIP) DNA-binding protein that is essential for the expression of a coordinately regulated group of genes involved in the acquisition and utilization of sulfur in Neurospora crassa. An approach of using binding-site selection from random-sequence oligonucleotides was used to define CYS3-binding specificity. The derived consensus-binding site of ATGGCGCCAT defines a symmetrical sequence (half-site A T G/t G/a C/t) that resembles that of other bZIP proteins such as CREB and C/EBP. By comparison, CYS3 shows a greater range of binding to a central core of varied Pur-Pyr-Pur-Pyr sequences than CREB as determined by gel shift assays. The derived CYS3 consensus binding sequence was further validated by demonstrating in vivo sulfur regulation using a heterologous promoter construct. The CYS3-binding site data will be useful for the genome-wide study of sulfur-regulated genes in N. crassa, which has served as a model fungal sulfur control system.
[22]
Park J, Han JW, Lee N, Kim S, Choi S, Lee H, Kim J, Seo Y, Choi GJ, Lee Y, Kim H, Son H, 2024. Sulfur metabolism-mediated fungal glutathione biosynthesis is essential for oxidative stress resistance and pathogenicity in the plant pathogenic fungus Fusarium graminearum. mBio, 15(1): e0240123
[23]
Pilsyk S, Natorff R, Sienko M, Skoneczny M, Paszewski A, Brzywczy J, 2015. The Aspergillus nidulans MetZ gene encodes a transcription factor involved in regulation of sulfur metabolism in this fungus and other eurotiales. Current Genetics, 61(2): 115-125
[24]
Pinton P, Nougayrede JP, Del RJ, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP, 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology, 237(1): 41-48
'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.
[25]
Prandini A, Sigolo S, Filippi L, Battilani P, Piva G, 2009. Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat. Food and Chemical Toxicology, 47(5): 927-931
Mould growth and mycotoxin production are related to plant stress caused by environmental factors such as: extreme weather; insect damage; inadequate storage conditions and incorrect fertilization; these predispose plants to mycotoxin contamination in the field. Fusarium species infect wheat during the flowering period. In addition to losses of yield, these fungi can also synthesize toxic components (mycotoxins) in suitable environmental conditions, thus threatening animal and human health. Given the severe consequences and the fact that mycotoxins affect production throughout the world, the ability to predict Fusarium head blight (FHB) and deoxynivalenol (DON) and other mycotoxin contamination is important to reduce the year-to-year risk for producers. Owing to these dangerous consequences in Argentina, Belgium, Canada, Italy, the United States and in Europe, computer models, based on weather variables (temperature, rainfall and moisture level), have been developed to predict the occurrence of FHB and DON contamination in wheat.
[26]
Proctor RH, Hohn TM, Mccormick SP, 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe Interactions, 8(4): 593-601
The production of trichothecene mycotoxins by some plant pathogenic species of Fusarium is thought to contribute to their virulence. Gibberella zeae (F. graminearum) is an important cereal pathogen that produces the trichothecene deoxynivalenol. To determine if trichothecene production contributes to the virulence of G. zeae, we generated trichothecene-deficient mutants of the fungus by gene disruption. The disrupted gene, Tri5, encodes the enzyme trichodiene synthase, which catalyzes the first step in trichothecene biosynthesis. To disrupt Tri5, G. zeae was transformed with a plasmid carrying a doubly truncated copy of the Tri5 coding region interrupted by a hygromycin B resistance gene. Tri5- transformants were selected by screening for the inability to produce trichothecenes and by Southern blot analysis. Tri5- strains exhibited reduced virulence on seedlings of Wheaton wheat and common winter rye, but wild-type virulence on seedlings of Golden Bantam maize. On Caldwell and Marshall wheat and Porter oat seedlings, Tri5- strains were inconsistent in causing less disease than their wild-type progenitor strain. Head blight developed more slowly on Wheaton when inoculated with Tri5- mutants than when inoculated with wild-type strains. These results suggest that trichothecene production contributes to the virulence of G. zeae on some hosts.
[27]
Reiter F, Wienerroither S, Stark A, 2017. Combinatorial function of transcription factors and cofactors. Current Opinion in Genetics & Development, 43: 73-81
[28]
Shin J, Bui DC, Kim S, Jung SY, Nam HJ, Lim JY, Choi GJ, Lee YW, Kim JE, Son H, 2020. The novel bZIP transcription factor Fpo 1 negatively regulates perithecial development by modulating carbon metabolism in the ascomycete fungus Fusarium graminearum. Environmental Microbiology, 22(7): 2596-2612
[29]
Su NY, Ouni I, Papagiannis CV, Kaiser P, 2008. A dominant suppressor mutation of the Met30 cell cycle defect suggests regulation of the Saccharomyces cerevisiae Met4-Cbf1 transcription complex by Met32. Journal of Biological Chemistry, 283(17): 11615-11624
[30]
Tsukada J, Yoshida Y, Kominato Y, Auron PE, 2011. The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine, 54(1): 6-19
The C/EBP family of proteins represents an important group of bZIP transcription factors that are key to the regulation of essential functions such as cell cycle, hematopoiesis, skeletal development, and host immune responses. They are also intimately associated with tumorigenesis and viral disease. These proteins are regulated at multiple levels, including gene induction, alternative translational initiation, post-translational modification, and protein-protein interaction. This review attempts to integrate recent reports with more than 20 years of previous effort focused on this fascinating collection of regulators.Copyright © 2010 Elsevier Ltd. All rights reserved.
[31]
Wang X, Zha W, Liang L, Fasoyin OE, Wu L, Wang S, 2020. The bZIP transcription factor AflRsmA regulates aflatoxin B 1 biosynthesis, oxidative stress response and sclerotium formation in Aspergillus flavus. Toxins, 12(4): 271
[32]
Yu Z, Gao J, Igbalajobi O, Skoneczny M, Sienko M, Maciejewska AM, Brzywczy J, Fischer R, 2021. The sulfur metabolism regulator MetR is a global regulator controlling phytochrome-dependent light responses in Aspergillus nidulans. Science Bulletin, 66(6): 592-602
[33]
Zhang X, Cao S, Li W, Sun H, Deng Y, Zhang A, Chen H, 2020. Functional characterization of calcineurin- responsive transcription factors Fg01341 and Fg 01350 in Fusarium graminearum. Frontiers in Microbiology, 11: 597998
[34]
Zhao Q, Pei H, Zhou X, Zhao K, Yu M, Han G, Fan J, Tao F, 2022. Systematic characterization of bZIP transcription factors required for development and aflatoxin generation by high-throughput gene knockout in Aspergillus flavus. Journal of Fungi, 8(4): 356
[35]
Zhao Y, Sun H, Li J, Ju C, Huang J, 2022. The transcription factor FgAtrR regulates asexual and sexual development, virulence, and DON production and contributes to intrinsic resistance to azole fungicides in Fusarium graminearum. Biology, 11(2): 326
[36]
刘礼广, 丁兆建, 李梦涵, 吴春花, 谢欣捷, 彭军, 张欣, 2023. 尖孢镰孢菌古巴专化型胱硫醚γ-合成酶的功能分析. 菌物学报, 42(7): 1575-1587
甲硫氨酸在真菌、细菌和植物的生物学过程中起着重要作用。禾谷镰刀菌Fusarium graminearum的FgMETB基因编码一个胱硫醚γ-合成酶,是甲硫氨酸合成所必需的。本研究利用同源重组的方法,在尖孢镰刀菌古巴专化型4号生理小种Fusarium oxysporum f. sp. cubense race 4 (Foc4)获得了FgMETB同源基因FoMETB的敲除突变体菌株;与野生型菌株相比,突变体菌株 ΔFoMETB 在以SO<sub>4</sub><sup>2-</sup>为唯一硫源的基本培养基(minimal medium)上不能生长。1 mmol/L甲硫氨酸的添加恢复了突变体菌株ΔFoMETB的生长,但半胱氨酸的添加不能恢复该缺失突变体的生长,说明FoMETB的敲除阻遏了Foc4半胱氨酸转化甲硫氨酸的通路。此外,ΔFoMETB的气生菌丝和菌丝干重明显减少、分枝增多、产孢量显著降低、疏水性缺失和对巴西蕉组培苗的致病性显著减弱。由此表明,FoMETB参与调控尖孢镰刀菌古巴专化型的生理特性和致病性,甲硫氨酸合成途径的关键合酶FoMETB有望成为新的抗真菌药物靶标。

Funding

National Key Research and Development Program of China(2023YFD2303200)
National Key Research and Development Program of China(2022YFD1400104)
Shandong Provincial Natural Science Foundation(ZR2022QC152)
PDF(1165 KB)

Accesses

Citation

Detail

Sections
Recommended

/