Surface characteristics and stress tolerance of submerged conidia, blastospores and aerial conidia of biocontrol fungus Cordyceps javanica IF-1106

GAO Meiyu, LI Junmei, LI Yihua, XIANG Huiming, MA Ruiyan, ZHOU Wenwen

Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240288.

PDF(1422 KB)
PDF(1422 KB)
Mycosystema ›› 2025, Vol. 44 ›› Issue (4) : 240288. DOI: 10.13346/j.mycosystema.240288
Research papers

Surface characteristics and stress tolerance of submerged conidia, blastospores and aerial conidia of biocontrol fungus Cordyceps javanica IF-1106

Author information +
History +

Abstract

Cordyceps javanica is an entomopathogenic fungus with biocontrol potential in control of many important pests belonging to Homoptera, Hemiptera, Lepidoptera, Thysanoptera and Coleoptera. Submerged conidia and blastospores can be obtained by liquid fermentation of C. javanica, and aerial conidia can be obtained by solid culture. The differences in morphology, size and surface ultrastructure of the three kinds of spores of C. javanica IF-1106 were compared. It is clear that aerial conidia, submerged conidia and blastospores have different morphology, and the average sizes are 4.45, 4.17 and 7.67 μm, respectively. A similar structure, the scar at one end of three kinds of spores, was observed by scanning electron microscope. The surface of the aerial conidia was rough and appeared to be covered with a layer of small rods. The surface of blastospores is smooth with obvious cracks, and sometimes segmented. The surface of the submerged conidia is smooth with a few thin cracks, and some of them have structures like bud scars. Image of transmission electron microscopy showed that the cell wall thickness and outer layer structure of the three kinds of spores were significantly different. The hydrophobicity of three kinds of spores of C. javanica IF-1106 was determined by the test of microbial adhesion to hydrocarbons (MATH) and the results showed the hydrophobicity ranked as aerial conidia > blastospore > submerged conidia. When pH ranging from 3.0 to 9.0, the Zeta potential of aerial conidia varied from +2.68 mV to -18.44 mV, that of blastospores ranged from +5.16 mV to -5.51 mV, and that of submerged conidia changed from +0.39 mV to -18.09 mV. The isoelectric points of the three kinds of spores were in acidic range and all spores were negatively charged in neutral condition. The germination rate and stress tolerance of the three kinds of spores were compared. It was found that blastospores germinated fastest but were least stress-tolerant; the aerial conidia were more stress-tolerant but slowest germinated, while germination rate of submerged conidia was close to that of blastospores and the stress-tolerance was the best, showing good potential for utilization and development. These results provide a theoretical basis for the application of C. javanica IF-1106 in production.

Key words

Cordyceps javanica / aerial conidia / submerged conidia / blastospore / surface characteristics / stress tolerance

Cite this article

Download Citations
GAO Meiyu, LI Junmei, LI Yihua, XIANG Huiming, MA Ruiyan, ZHOU Wenwen. Surface characteristics and stress tolerance of submerged conidia, blastospores and aerial conidia of biocontrol fungus Cordyceps javanica IF-1106[J]. Mycosystema, 2025, 44(4): 240288 https://doi.org/10.13346/j.mycosystema.240288
爪哇虫草Cordyceps javanica (Bally) Kepler et al.,原名为爪哇棒束孢Isaria javanica,隶属于子囊菌门Ascomycota、粪壳菌纲Sordariomycetes、肉座菌目Hypocreales、虫草菌科Cordycipitaceae,是一种重要的昆虫病原真菌(Kepler et al. 2017),能防治同翅目、半翅目、鳞翅目、缨翅目、鞘翅目等多种重要害虫(王迪 2023)。生防真菌对害虫的侵染方式是孢子先通过主动弹射或者依靠气流、水流等运动被动附着在寄主体壁,萌发长出芽管,进而形成侵染机构,穿透寄主体壁进入寄主血腔,消耗血腔内的营养导致寄主死亡(Vega et al. 1999)。
生防真菌在固体培养基上萌发,继而营养菌丝生长,菌丝上分化出瓶状的分生孢子梗,有单细胞繁殖体着生其上称为气生分生孢子(aerial conidia)。气生分生孢子一般壁厚,大小较均匀,首尾相接排成长链(梁宗琦 2013)。因为其生产工艺简单,耐逆性好,是生防真菌制剂最常用的活性成分(Mascarin et al. 2019);生防真菌在营养丰富的液体中培养时,尤其在有机氮源存在条件下,先进行营养菌丝体的生长,后通过菌丝出芽或菌丝缢缩的方式产生单细胞繁殖体,称为芽生孢子(blastospore) (Fargues et al. 2002)。芽生孢子实质上是短菌丝,壁薄,大小差异很大且形状多变,呈长杆状,一般耐逆性较差,不耐储藏(Pereira & Roberts 1990),只有少数生防真菌制剂采用芽生孢子作为活性成分(Iwanicki et al. 2020);液生分生孢子(submerged conidia)在营养较贫瘠的液体培养基中产生,形成方式多样,如Beauveria bassiana的液生分生孢子形成方式有3种,第一种为芽生孢子直接形成产孢细胞产生液生分生孢子;第二种方式是在菌丝上直接产生液生分生孢子,或者在菌丝上产生短孢子梗,顶生一个液生分生孢子;第三种方式为在菌丝上产生分生孢子梗,分生孢子梗上长出小梗,小梗上着生液生分生孢子(宋漳 2005)。液生分生孢子大多呈卵圆形或梭形,细胞壁光滑,且耐逆性不如气生分生孢子强(宋文婧 2011)。目前,少有液生分生孢子制成生防真菌制剂的报道(Iwanicki et al. 2023)。
真菌不同类型的孢子在形态、表面超微结构、疏水性及黏附性方面有差异。如Bidochka et al. (1995)研究表明,在Botrytis bassiana的气生分生孢子和液生分生孢子细胞壁最外层的小棒层中存在一种疏水蛋白使其呈现疏水性。B. bassiana的气生分生孢子易与疏水性表面结合,对极性表面的粘附力很差;而芽生孢子表面具有亲水性,可以快速和亲水表面结合;液生分生孢子的疏水性介于气生分生孢子和芽生孢子之间,既可以和疏水表面结合,也能和亲水表面以及弱极性表面结合(Holder & Keyhani 2005;Holder et al. 2007)。不同类型的孢子由于大小、表面电荷、双电层的厚度有差异,在不同pH条件下Zeta电位值变化范围也不同,当pH值为3-9时,B. bassiana气生分生孢子的Zeta电位分布范围为+22 mV至-30 mV,液生分生孢子的电位分布范围为+10 mV至-13 mV,而芽生孢子的Zeta电位变化为+4 mV至-4 mV (Holder et al. 2007),Zeta电位绝对值越大,孢子越能稳定的分散。此外,同一真菌不同类型的孢子的杀虫活性也有差异,如B. bassiana ESALQ3760菌株的液生分生孢子与气生分生孢子和芽生孢子相比,能更快地杀死棉铃象甲成虫(Iwanicki et al. 2023);而B. bassiana芽生孢子对亚洲飞蝗的LT50略高于液生分生孢子和气生分生孢子(Hegedus et al. 1992)。综上所述,不同类型的孢子表面特性、耐逆性和毒力方面均有显著差异,且液生分生孢子在量产和应用方面都有一定的潜力,但关于爪哇虫草液生分生孢子的生产和特性分析鲜有报道。
本文通过控制发酵条件诱导爪哇虫草IF-1106产生液生分生孢子,比较其与气生分生孢子、芽生孢子在形貌、表面特性和耐逆性方面的差异。统计3种孢子的粒度分布,并通过扫描电镜和透射电镜对其表面形貌和切面进行观察;其次,采用MATH方法测定不同类型孢子的疏水性;再次,测定3种孢子在不同pH条件下的Zeta电位变化;最后,测定3种孢子的萌发速率、耐热和耐紫外特性,以论证爪哇虫草孢子作为生防制剂活性成分的潜力,为开发新型的生防制剂提供依据。

1 材料与方法

1.1 菌株来源及保藏条件

爪哇虫草 Cordyceps javanica IF-1106,保藏于中国普通微生物菌种保藏管理中心,保藏编号:CGMCC No.7514。以磁珠菌种保藏管保存于-20 ℃。

1.2 孢子悬浮液制备

将保藏的菌株取出活化后接种在PDA培养基上,于25 ℃培养10 d备用。在无菌条件下,在产孢良好的PDA平板中加入适量0.1% (体积比)的Tween-80水溶液,用刮板轻刮收集气生分生孢子,过滤除掉菌丝和培养基残物,得到气生分生孢子悬浮液,取一部分悬浮液于5 000 r/min离心10 min得到气生分生孢子沉淀。另取一部分悬浮液,调整孢子悬浮液浓度为1×107个/mL作为液体培养的接种液。以5% (体积比)的接种量将气生分生孢子悬浮液接种至液生分生孢子培养基(蔗糖30 g/L、NaNO3 8.0 g/L、KH2PO4 1.0 g/L、MgSO4·7H2O 0.5 g/L、FeSO4·7H2O 6.32 mg/L、ZnSO4·7H2O 1.1 mg/L、CuSO4·5H2O 0.23 mg/L、MnCl2·4H2O 3.5 mg/L) (Gestel 1983)中,25 ℃、160 r/min培养4 d。取适量发酵液于5 000 r/min离心10 min得到液生分生孢子沉淀。以10% (体积比)的接种量将气生分生孢子悬浮液接种至芽生孢子培养基(蔗糖40 g/L、酵母粉10 g/L、KH2PO4 5.0 g/L)中,25 ℃、160 r/min培养32 h,取适量发酵液于5 000 r/min离心10 min得到芽生孢子沉淀。

1.3 扫描电镜和透射电镜样品预处理

1.2中获得的气生分生孢子、芽生孢子和液生分生孢子沉淀加入戊二醛,室温固定2 h。固定好的样品用0.1 mol/L PB (pH 7.4)漂洗 3次,每次15 min。漂洗后的孢子依次经过30%→50%→70%→80%→90%→95%→100%→100%乙醇漂洗,每次15 min。再用乙酸异戊酯脱水处理15 min。之后将孢子放入临界点干燥仪(Quorum, K850)内进行干燥。干燥后将孢子紧贴于导电碳膜双面胶上,放入MC1000 (Hitachi)离子溅射仪样品台上喷金30 s左右。用SU8100 (Hitachi)扫描电子显微镜观察采图。
3种孢子沉淀用戊二醛于4 ℃固定2-4 h后,用0.1 mol/L PB (pH 7.4)漂洗3次,每次15 min。漂洗后的孢子依次经过50%→70%→ 80%→90%→95%→100%→100%乙醇,100%丙酮-100%丙酮进行脱水,每次15 min。采用丙酮∶812包埋剂(1:1)渗透2-4 h,采用丙酮∶812包埋剂(2:1)渗透过夜,最后用纯812包埋剂渗透5-8 h。将渗透好的样品插入包埋板中,加入纯812包埋剂,在37 ℃烤箱中过夜。在60 ℃烤箱聚合48 h进行包埋。使用Leica UC7超薄切片机制作60-80 nm超薄切片。采用铀铅双染色(2%醋酸铀饱和乙醇溶液和枸橼酸铅),切片染色15 min,在室温下干燥一夜。用HT7800 (日立)透射电子显微镜观察,采集图像分析。

1.4 孢子粒径测定

1.2中获得的气生分生孢子、芽生孢子和液生分生孢子沉淀,加入适量无菌水,制备成孢子悬浮液,调整孢子浓度为1×107个/mL。在显微镜下观察3种孢子悬浮液,采集图像,用Nano Measurer软件(吕汉强等2022)分析统计图像中孢子的粒径,每种类型选择300个孢子进行粒径测定和统计。

1.5 孢子疏水性测定

1.5.1 孢子碳氢吸附能力(MATH)测定

碳氢吸附能力测定参考Holder et al. (2007)的方法。将1.2中得到的气生分生孢子、芽生孢子和液生分生孢子洗涤到PUM缓冲液中(K2HPO4 22.2 g/L、KH2PO4 7.26 g/L、尿素1.8 g/L、MgSO4·7H2O 0.2 g/L,pH 7.1),制备成悬浮液。将悬浮液调节至A470 (在波长470 nm下的吸光度)为1.2,取4.5 mL置于试管中,添加1.5 mL十六烷,涡旋3次,每次持续30 s。在室温下放置15 min,小心去除十六烷相,将试管冷却至4 ℃,去除残留的固化十六烷,放置至室温,使用分光光度计测定3种孢子悬浮液在470 nm处的吸光度A470,疏水指数=(1.2-A470)/1.2。每个处理设置3个重复,试验结果取平均值。

1.5.2 孢子悬浮液接触角测定

1.2中得到的气生分生孢子、芽生孢子和液生分生孢子用无菌水稀释到1×107个/mL,制备成孢子悬浮液,使用JC2000D1接触角仪测定3种孢子悬浮液的接触角。每种孢子悬浮液设置3个重复,每个重复取10滴进行测定,试验结果取平均值。

1.5.3 Zeta电位测定

1.2得到的气生分生孢子、芽生孢子和液生分生孢子用无菌水稀释到1×107个/mL,用HCl和NaOH调节孢子悬浮液的pH分别为3、4、5、6、7、8、9,使用JS94H型微电泳仪测定孢子Zeta电位。每种孢子悬浮液设置3个重复,每个pH测定6次,试验结果取平均值。

1.6 孢子耐逆性测定

1.2得到的气生分生孢子、芽生孢子和液生分生孢子用萌发液(2%葡萄糖、1%蛋白胨)稀释到1×107个/mL。采用水浴加热法将配制好的3种孢子悬浮液于45 ℃分别处理1、1.5、2、2.5、3 h,置于25 ℃下培养,观察孢子萌发情况,芽管长度超过孢子直径一半视为萌发,统计孢子萌发率(李义华 2022)。每个处理重复 3次,每次观察3个视野,试验结果取平均值。以未经热处理的孢子萌发率为对照。
取孢子悬浮液置于无菌培养皿中,于紫外交联仪辐照箱中进行UV-B (波长312 nm)照射,设置辐照能量分别为1、2、3、4、5 J/cm2。将辐照后的孢子悬浮液移至离心管中,在25 ℃、160 r/min恒温摇床中培养6 h,观察孢子萌发情况,芽管长度超过孢子直径一半视为萌发,统计孢子萌发率(张月容 2022)。每个处理设置3个重复,每次观察3个视野,试验结果取平均值。以未经辐照处理的孢子萌发率为对照。

1.7 数据处理和分析

所有统计分析均使用SPSS 26.0 (IBM)软件进行。采用单因素方差分析(one-way ANOVA)进行差异显著性分析(P<0.05)。
采用Origin 2022软件对热处理后孢子的萌发率数据进行拟合。孢子的萌发指数(Ig)-处理时间(t)以模型Ig=1/[1+exp(a+bt)]进行拟合,求出Ig为0.5时所对应的处理时间,即计算得到GT50值,作为孢子耐热性的评价指标。其中,萌发指数(Ig)为经热处理的孢子与未经热处理的孢子萌发率之比;b为孢子萌发率随热处理时间的下降速率;GT50Ig为0.5时,GT50=-a/b。
采用Origin 2022软件对紫外辐照处理后孢子的萌发率数据进行拟合。对紫外辐照能量梯度-菌株孢子萌发率曲线进行单指数衰弱曲线方程(ExpDec1)非线性拟合分析。单指数衰弱模型Expdec1模型方程式为:y=B+Aexp(-x/C),其中自变量x为辐照剂量(J/cm2),y为萌发率(%),A、B和C为拟合常量,GD50表示y为50%时所对应的紫外辐照能量,GD50越大代表孢子在试验条件下对UV-B的紫外耐受性越好。

2 结果与分析

2.1 爪哇虫草IF-1106 3种孢子形态观察和粒径分析

3种孢子在形态和大小上显著不同(图1A,1B,1C),气生分生孢子粒径范围为2.35-8.65 μm,粒径为4.1-4.8 μm的气生分生孢子数目最多,占比为32.69%,平均粒径为4.45 μm (图1D)。芽生孢子的粒径范围为4.47-18.87 μm,35.76%的芽生孢子粒径在6.8-8.2 μm区间内,平均粒径为7.67 μm (图1E)。液生分生孢子的粒径在2.43-10.23 μm范围内,37.31%的液生分生孢子粒径集中在3.8-4.7 μm,平均粒径为4.17 μm (图1F),粒径大小顺序为芽生孢子>气生分生孢子>液生分生孢子,气生分生孢子和液生分生孢子的粒径分布较均匀,而芽生孢子的粒径变化较大。
Fig. 1 Microscopic morphology and particle size distribution of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106. A, D: Aerial conidia; B, E: Blastospores; C, F: Submerged conidia. Bars=50 μm.

图1 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子显微形态及粒径分布 A, D:气生分生孢子;B, E:芽生孢子;C, F:液生分生孢子. 标尺=50μm

Full size|PPT slide

为了更清晰地观察3种孢子的表观形貌,采用扫描电镜对3种孢子进行观察(图2A-2C)。气生分生孢子呈梭形,梭形两端的形状不一致,一端具有平面,疑为产痕。气生分生孢子较干瘪,表面粗糙,似有磨绒物质覆盖,类似于疏水小棒层(Bidochka et al. 1995)。表面未观察到裂痕,推测其细胞壁柔韧性好,在固定和脱水干燥的制样过程中不会开裂。
Fig. 2 Morphology of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106 observed by SEM. A-C: Aerial conidia; D-F: Blastospores; G-I: Submerged conidia.

图2 扫描电镜观察爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子的形态 A-C:气生分生孢子;D-F:芽生孢子;G-I:液生分生孢子

Full size|PPT slide

芽生孢子呈棒状或柱状,有些无分节,有些分为两节。芽生孢子的两端形状也不一致,一端呈平面,疑似为产痕。芽生孢子细胞壁表面较光滑,均具有明显裂痕,推测细胞壁在脱水过程中失去水分而发生龟裂。
液生分生孢子呈卵形,个体较小,且卵形孢子的两端也呈现不同的形态,一端仍保留其他类型的孢子均具备的类似产痕的结构。未观察到孢子的分节现象,但有些孢子表面有数个圆垫形结构分布,似酵母细胞出芽后留下的芽痕。液生分生孢子细胞壁表面更为光滑,少数出现细小的裂纹,推测液生分生孢子细胞壁的柔韧性优于芽生孢子,在同样的脱水操作中细胞壁未出现明显龟裂。
通过透射电镜观察孢子切面状态,可见细胞内有细胞核、线粒体、脂肪粒,内质网、液泡等细胞器(图3),其中芽生孢子细胞内还普遍出现不规则云团状物质。需要特别注意的是,3种孢子的细胞壁厚度有显著差异,其中气生分生孢子的细胞壁较厚,芽生孢子的细胞壁最薄。还可以发现,不同类型的孢子细胞壁外层的绒毛层形态有明显差异,气生分生孢子细胞壁外层是较厚的绒毛层,而芽生孢子和液生分生孢子细胞壁外层的绒毛层较短,芽生孢子的绒毛层短而疏,液生分生孢子的绒毛层短而密,这与通过扫描电镜观察到的液生分生孢子表面更光滑的现象相一致。
Fig. 3 Transection morphology of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106 observed by TEM. A-D: Aerial conidia; E-H: Blastospores; I-L: Submerged conidia.

图3 透射电镜观察爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子的切面形态 A-D:气生分生孢子;E-H:芽生孢子;I-L:液生分生孢子

Full size|PPT slide

2.2 爪哇虫草3种孢子的疏水性测定

孢子的细胞壁表面分布有亲水和疏水结构,不同类型的孢子亲疏水结构的比例不同,孢子总体呈现出的亲疏水性也有差别。碳氢吸附能力(MATH)测试结果显示气生分生孢子疏水指数为0.84,液生分生孢子的疏水指数最小,为0.59,而芽生孢子的疏水性介于两者之间,疏水指数为0.78 (图4)。可见3种孢子的疏水性顺序为气生分生孢子>芽生孢子>液生分生孢子。
Fig. 4 MATH assay of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106. Data are means ± SD. Different lowercase letters indicate significant difference in one-way analysis of variance at α=0.05 level.

图4 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子的碳氢吸附能力分析 数据代表平均值±标准差,不同字母表示在α=0.05水平上差异显著

Full size|PPT slide

测定气生分生孢子、芽生孢子和液生分生孢子悬浮液接触角与表面张力(表1),气生分生孢子接触角最大,而表面张力值最小,可能是因为气生分生孢子可以聚集在水和空气的界面,降低了水溶液表面张力。芽生孢子和液生分生孢子则更多地分布在水溶液中,芽生孢子表面活性居中,液生分生孢子的表面活性最低。这与碳氢吸附能力(MATH)测定的试验结果一致。
Table 1 Contact angle and surface tension in suspension of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106

表1 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子悬浮液的接触角与表面张力值

孢子类型
Spore type
接触角
Contact angle
表面张力
Surface tension
气生分生孢子
Aerial conidia
(82.25±1.85)° a 81.37±1.79 c
芽生孢子
Blastospores
(81.88±0.8)° a 91.34±1.12 b
液生分生孢子
Submerged conidia
(78.81±0.96)° b 97.13±2.49 a
注:数据代表平均值±标准差,不同字母表示在α=0.05水平上差异显著. 下同
Note: Data are means ± SD. Different lowercase letters indicate significant difference in one-way analysis of variance at α=0.05 level. The same below.

2.3 爪哇虫草不同孢子的Zeta电位测定

通过对比爪哇虫草气生分生孢子、芽生孢子和液生分生孢子在pH 3-9范围内的Zeta电位值(图5)发现,气生分生孢子在pH为3时表现出最高的正Zeta电位(+2.68±0.73) mV,但在pH 为4时迅速变为负电位(-1.46±0.27) mV,在pH为9时达到最大负电位值,为(-18.44±1.05) mV, 拟合方程为y=-0.03x3+0.62x2-7.36x+20.04,R2= 0.982 4,等电点pH为3.63。芽生孢子在低pH时表现出正电位,pH最小时电位值达到最大,为(+5.16±0.37) mV,在pH为6时转变为负电位值[(-2.69±0.9) mV],在pH为9时电位值达到(-5.51±1.67) mV,拟合方程为y=-0.04x3+0.75x2- 6.28x+18.07,R2=0.865 3,等电点pH为5.32。液生分生孢子在pH最小时电位值接近零电势[(+0.39±1.13) mV],而在pH为4时,电位值迅速变为负值[(-7.74±0.46) mV],并在pH最高时电位值达到最高负值(-18.09±0.86) mV,拟合方程为y=-0.2 x3+4 x2-26.97 x+49.7,R2=0.935。在pH=3.0时,3种孢子表面均带正电荷,且所带电荷芽生孢子>气生分生孢子>液生分生孢子。随着pH的升高,3种孢子所带正电荷逐渐减少,pH继续升高,则3种孢子表面均带上负电荷。气生分生孢子和液生分生孢子在pH不同条件下Zeta电位的变化趋势相似,芽生孢子在pH 3.0-9.0时,表面电荷变化较小,说明其在水溶液中更容易聚集。液生分生孢子和气生分生孢子在碱性条件下,pH越高Zeta电位越高则说明其在水溶液中越能稳定地分散。
Fig. 5 Zeta potential of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106 under different pH.

图5 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子在不同pH下的Zeta电位变化

Full size|PPT slide

2.4 爪哇虫草3种孢子的萌发速率、耐热性和耐紫外辐射特性分析

3 种孢子的萌发速率各异(图6),芽生孢子最先萌发,5 h左右开始萌发,9 h萌发率已达90%以上,在10 h萌发率达到100%;气生分生孢子的萌发速度最慢,在7 h左右才观察到萌发,10 h时仅有10%左右的孢子萌发,随后萌发率迅速提高,14 h萌发率达到100%;而液生分生孢子的萌发速率介于两者之间,在6 h时开始萌发,在10 h时萌发率达到90%以上,在11 h后孢子全部萌发。
Fig. 6 Germination rate of aerial conidia, blastospores and submerged conidia of Cordyceps javanica IF-1106.

图6 爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子的萌发速率

Full size|PPT slide

对3种孢子进行热处理,随着热处理的时间增加,3种孢子的萌发指数逐步下降(图7),从下降的斜率可以明显看出液生分生孢子和气生分生孢子的耐热性优于芽生孢子。拟合数据(表2)也显示孢子热处理后半数萌发所对应的热处理时间,即GT50有显著差异,说明爪哇虫草的气生分生孢子、芽生孢子和液生分生孢子的耐热性有明显差异,液生分生孢子的耐热性最好,GT50为1.41 h,而芽生孢子的耐热性最差,GT50为0.91 h。
Fig. 7 The germination index-treatment time and UV-B irradiation energy-germination rate ExpDecl model fitting to three types of spores of Cordyceps javanica IF-1106.

图7 爪哇虫草IF-1106 3种孢子热处理萌发指数-处理时间与UV-B紫外辐照能量-萌发率单指数衰弱模型拟合

Full size|PPT slide

Table 2 The germination index and treatment time fitting equation of three types of spores of Cordyceps javanica IF-1106

表2 爪哇虫草IF-1106 3种孢子热处理萌发指数-处理时间拟合方程

孢子类型
Spore type
萌发指数-处理时间拟合方程
Germination index-treatment time fitting equation
R2 GT50 (h)
气生分生孢子 Aerial conidia Ig =1/(1+e(-2.16+1.65t)) 0.948 7 1.31±0.02 b
芽生孢子 Blastospores Ig =1/(1+e(-2.22+2.42t)) 0.937 8 0.91±0.02 c
液生分生孢子 Submerged conidia Ig =1/(1+e(-2.76+1.94t)) 0.955 1 1.41±0.01 a
Table 3 ExpDecl model fitting equation of UV-B irradiation energy-germination rate of three types of spores of Cordyceps javanica IF-1106

表3 爪哇虫草IF-1106 3种孢子的UV-B紫外辐照能量-萌发率单指数衰弱模型拟合方程

孢子类型
Spore type
单指数衰弱模型拟合方程
ExpDecl model fitting equation
R2
GD50 (J)
气生分生孢子 Aerial conidia y=-0.23+1.23e(-x/3.57) 0.990 9 0.18±0.13 b
芽生孢子 Blastospores y=0.04+0.95e(-x/1.28) 0.976 1 0.91±0.02 c
液生分生孢子 Submerged conidia y=-40.03+41.07e(-x/213.69) 0.959 4 2.80±0.15 a
爪哇虫草IF-1106气生分生孢子、芽生孢子和液生分生孢子的耐紫外辐射特性也有显著差异,液生分生孢子的耐紫外能力显著高于芽生孢子和气生分生孢子,GD50为2.80 J。综上所述,液生分生孢子萌发速率比气生分生孢子快,接近芽生孢子,且耐热性和耐紫外辐射特性均优于芽生孢子和气生分生孢子。

3 讨论与结论

真菌孢子表面的物理化学性质对其应用具有重要影响。如Candida strains孢子表面疏水性可以有效增加其毒力;Aspergillus分生孢子的疏水小棒层可以促进真菌孢子在宿主细胞表面的黏附,抵抗宿主的免疫反应(Paris et al. 2003;Hazen 2004;Singleton et al. 2005)。真菌孢子表面亲水性和疏水性是由其结构决定的,疏水性的昆虫病原真菌,如Nomuraea rileyiMetarhizium anisopliaePaecilomyces fumosoroseus,都有小棒层,而亲水性的真菌,如Hirsutella thompsoniiVerticillium lecanii,无小棒层,但在孢子成熟过程中会产生外层黏液(Boucias & Pendland 1991)。在本研究中,使用SEM和TEM观察了爪哇虫草IF-1106 3种孢子的表面形态差异。其中气生分生孢子细胞壁表面有类似小棒层的超微结构,其疏水性最强;而液生分生孢子和芽生孢子表面光滑,无明显的小棒层,其疏水性较弱;这与报道的规律相一致,如Trichoderma harzianum气生分生孢子具有疏水性,液生分生孢子具有亲水性(Munoz et al. 1995)。由此可见,培养条件不仅影响孢子形态也影响孢子表面超微结构,进而决定了其物理化学性质。孢子的疏水性影响真菌孢子与其他物质的键合特性。如Cryptosporidium oocytes亲水性的芽生孢子对亲水性的玻璃表面黏附性更强(Drozd & Schwartzbrod 1996)。而爪哇虫草IF-1106不同的类型孢子具有不同的表面特性,这些特性可能会在不同的环境条件下呈现出一定的选择性优势,此问题仍有待探索。
Zeta电位(Zeta potential)是表征胶体分散系稳定性的重要指标。Zeta电位是对颗粒之间相互排斥或吸引的强度的度量。分子或分散粒子越小且Zeta电位的绝对值越高,体系越稳定。反之,Zeta电位的绝对值越低,粒子越容易凝结或凝聚。不同类型的孢子表面化学基团不同,故所带电荷也有不同;另一方面,环境pH影响孢子表面基团的解离状态从而影响孢子表面电荷。B. bassiana气生分生孢子在中性pH条件下表面带负电荷(Holder & Keyhani 2005)。Zeta电位随着pH的增加而降低,这是因为随着pH的增加,孢子悬浮液中的电解质浓度改变,溶液中的OH-离子浓度增加,从而改变孢子的Zeta电位(张梦等2017);同一真菌不同类型的孢子表面电荷存在差异,B. bassiana液生分生孢子的表面电荷介于气生分生孢子和芽生孢子之间(Holder et al. 2007)。爪哇虫草IF-1106不同类型的孢子表面结构不同,在相同pH条件下的Zeta电位也不同;当pH变化范围相同时,不同类型孢子表面电荷变化差异很大,也说明了不同孢子表面基团存在明显差异,这与Holder et al. (2007)的研究结果相似,气生分生孢子和液生分生孢子更容易受到外界离子环境的影响,Zeta电位变化更显著,可能是因为其表面基团丰富,容易结合溶液中的OH-离子。
昆虫病原真菌的快速萌发是高效防治害虫的关键,且在田间使用真菌制剂时紫外线辐射、高温和低湿因素将影响昆虫病原真菌生长,真菌应具有一定的耐逆能力以抵抗环境的不利因素(Fernandes et al. 2015)。Thomas et al. (1987)的研究结果表明B. bassiana的芽生孢子8 h即可萌发,液生分生孢子16 h萌发,而气生分生孢子24 h才萌发。这与本研究结果相似,爪哇虫草IF-1106芽生孢子的萌发最快,气生分生孢子最慢,而液生分生孢子的萌发速度介于两者之间。爪哇虫草IF-1106液生分生孢子和气生分生孢子对紫外照射和热胁迫具有良好的耐受性,Bernardo et al. (2020)的研究也发现Metarhizium的气生分生孢子比芽生孢子更耐热和UV-B胁迫。
本研究对爪哇虫草的气生分生孢子、芽生孢子和液生分生孢子的形状大小、表面形貌、切面形态以及疏水性和表面电荷进行对比。气生分生孢子大小较均匀,细胞壁外层具有绒毛层,疏水性强,萌发速率最慢,但对紫外和热胁迫具有良好的耐受性;芽生孢子粒径大,表面较光滑,疏水性介于气生分生孢子和液生分生孢子之间,虽然萌发速率最快,但细胞壁表面脆性强,且对耐紫外照射和热胁迫的性能差。而液生分生孢子粒径与气生分生孢子类似,大小较均匀,细胞壁光滑,在3种孢子中亲水性最强,萌发速率接近芽生孢子,但耐紫外和热胁迫的能力最强,具有开发潜力。这些研究结果为爪哇虫草生防制剂的研究提供了依据。

作者贡献

高美瑜:论文构思及撰写、试验及数据整理;李俊梅:试验及数据处理;李义华:数据分析、验证;相会明:提供实验材料;马瑞燕:提供实验平台、数据审核、提供实验平台;周稳稳:论文构思及撰写、实验指导、数据审核。

利益冲突

作者声明,该研究不存在任何潜在利益冲突的商业或财务关系。

References

[1]
Bernardo CDC, Pereira-Junior RA, Luz C, Mascarin GM, Fernandes EKK, 2020. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Fungal Biology, 124(8): 714-722
We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.Copyright © 2020 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
[2]
Bidochka MJ, St Leger RJ, Joshi L, Roberts DW, 1995. An inner cell wall protein (cwp1) from conidia of the entomopathogenic fungus Beauveria bassiana. Microbiology, 141(5): 1075-1080
[3]
Boucias DG, Pendland JC, 1991. Attachment of mycopathogens to cuticle: the initial event of mycoses in arthropod hosts. The fungal spore and disease initiation in plants and animals. Springer US, Boston, MA.101-127
[4]
Drozd C, Schwartzbrod J, 1996. Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum. Applied and Environmental Microbiology, 62(4): 1227-1232
Microbial adhesion to hydrocarbons and microelectrophoresis were investigated in order to characterize the surface properties of Cryptosporidium parvum. Oocysts exhibited low removal rates by octane (only 20% on average), suggesting that the Cryptosporidium sp. does not demonstrate marked hydrophobic properties. A zeta potential close to -25 mV at pH 6 to 6.5 in deionized water was observed for the parasite. Measurements of hydrophobicity and zeta potential were performed as a function of pH and ionic strength or conductivity. Hydrophobicity maxima were observed at extreme pH values, with 40% of adhesion of oocysts to octane. It also appeared that ionic strength (estimated by conductivity) could influence the hydrophobic properties of oocysts. Cryptosporidium oocysts showed a pH-dependent surface charge, with zeta potentials becoming less negative as pH was reduced, starting at -35 mV for alkaline pH and reaching 0 at isoelectric points for pH 2.5. On the other hand, variation of surface charge with respect to conductivity of the suspension tested in this work was quite small. The knowledge of hydrophobic properties and surface charge of the parasite provides information useful in, for example, the choice of various flocculation treatments, membrane filters, and cleaning agents in connection with oocyst recovery.
[5]
Fargues J, Smits N, Vidal C, Vey A, Vega F, Mercadier G, Quimby P, 2002. Effect of liquid culture media on morphology, growth, propagule production, and pathogenic activity of the Hyphomycete, Metarhizium flavoviride. Mycopathologia, 154(3): 127-138
Two isolates of Metarhizium spp. were studied for propagule production, because of their pathogenic activity towards locusts and grasshoppers (Mf189 = M. flavoviride (or M. anisopliae var. acridum) strain IMI 330189, and Mf324 = M. flavoviride strain ARSEF324). Both isolates were grown in seven different liquid media, which have been developed for mass production of various Hyphomycetes, considered as candidates for microbial control of noxious insects. Shake-flask experiments were carried out at 28 degress C in the dark. Production was quantified for 72 h and the effects of the tested media were evaluated on propagule concentration, morphology and pathogenicity. Based on preliminary experiments, all tested media were supplemented with 0.4% Tween 80 to avoid the formation of pellets and to produce unicellular propagules. Submerged propagule yields were higher with Mf189 than with Mf324 in all seven media. While high concentrations of propagules (1.4 to 2.4 x 10(8) propagules ml(-1) for MF189 and 1.4 to 8.3 x 10(7) propagules ml(-1) for Mf324) were produced in four media (Adamek, Catroux, Jackson, and Jenkins-Prior media), production of propagules was lower in the three other media (Goral, Kondryatiev, and Paris media). Both isolates produced oblong blastospore-like propagules, except in Kondryatiev medium in which they provided ovoid propagules. In this case, Mf189 submerged propagules looked like aerial conidia, but scanning observations did not demonstrate a typical conidiogenesis via phialides. In Kondryatiev medium, Mf324 submerged propagules were significantly smaller than aerial conidia. Infection potential of submerged propagules was assayed on Schistocerca gregaria. Second-instar larvae fed for 48 h on fresh wheat previously contaminated by a spraying suspension of each inoculum titrated at 10(7) propagules ml(-1). All seven media produced submerged propagules that were highly infectious for S. gregaria larvae. Shake flask culture assays permitted us to select three low-costmedia, Adamek, Jenkins-Prior, and Catroux for improving scale-up of liquid fermentation focused on mass-production of Metarhizium propagules for mycoinsecticides devoted to locust control.
[6]
Fernandes EK, Rangel DEN, Braga GUL, Roberts DW, 2015. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 61(3): 427-440
Ultraviolet radiation from sunlight is probably the most detrimental environmental factor affecting the viability of entomopathogenic fungi applied to solar-exposed sites (e.g., leaves) for pest control. Most entomopathogenic fungi are sensitive to UV radiation, but there is great inter- and intraspecies variability in susceptibility to UV. This variability may reflect natural adaptations of isolates to their different environmental conditions. Selecting strains with outstanding natural tolerance to UV is considered as an important step to identify promising biological control agents. However, reports on tolerance among the isolates used to date must be analyzed carefully due to considerable variations in the methods used to garner the data. The current review presents tables listing many studies in which different methods were applied to check natural and enhanced tolerance to UV stress of numerous entomopathogenic fungi, including several well-known isolates of these fungi. The assessment of UV tolerance is usually conducted with conidia using dose-response methods, wherein the UV dose is calculated simply by multiplying the total irradiance by the period (time) of exposure. Although irradiation from lamps seldom presents an environmentally realistic spectral distribution, laboratory tests circumvent the uncontrollable circumstances associated with field assays. Most attempts to increase field persistence of microbial agents have included formulating conidia with UV protectants; however, in many cases, field efficacy of formulated fungi is still not fully adequate for dependable pest control.
[7]
Gestel JFEV, 1983. Microcycle conidiation in Penicillium italicum. Experimental Mycology, 7(3): 287-291
[8]
Hazen KC, 2004. Relationship between expression of cell surface hydrophobicity protein 1 (Csh1p) and surface hydrophobicity properties of Candida dubliniensis. Current Microbiology, 48(6): 447-451
[9]
Hegedus DD, Bidochka MJ, Miranpuri GS, Khachatourians GG, 1992. A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Applied Microbiology & Biotechnology, 36(6): 785-789
[10]
Holder DJ, Keyhani NO, 2005. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Applied and Environmental Microbiology, 71(9): 5260-5266
The entomopathogenic fungus Beauveria bassiana produces at least three distinct single-cell propagules, aerial conidia, vegetative cells termed blastospores, and submerged conidia, which can be isolated from agar plates, from rich broth liquid cultures, and under nutrient limitation conditions in submerged cultures, respectively. Fluorescently labeled fungal cells were used to quantify the kinetics of adhesion of these cell types to surfaces having various hydrophobic or hydrophilic properties. Aerial conidia adhered poorly to weakly polar surfaces and rapidly to both hydrophobic and hydrophilic surfaces but could be readily washed off the latter surfaces. In contrast, blastospores bound poorly to hydrophobic surfaces, forming small aggregates, bound rapidly to hydrophilic surfaces, and required a longer incubation time to bind to weakly polar surfaces than to hydrophilic surfaces. Submerged conidia displayed the broadest binding specificity, adhering to hydrophobic, weakly polar, and hydrophilic surfaces. The adhesion of the B. bassiana cell types also differed in sensitivity to glycosidase and protease treatments, pH, and addition of various carbohydrate competitors and detergents. The outer cell wall layer of aerial conidia contained sodium dodecyl sulfate-insoluble, trifluoroacetic acid-soluble proteins (presumably hydrophobins) that were not present on either blastospores or submerged conidia. The variations in the cell surface properties leading to the different adhesion qualities of B. bassiana aerial conidia, blastospores, and submerged conidia could lead to rational design decisions for improving the efficacy and possibly the specificity of entomopathogenic fungi for host targets.
[11]
Holder DJ, Kirkland BH, Lewis MW, Keyhani NO, 2007. Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology, 153(10): 3448
[12]
Iwanicki NS, Lopes ECM, Lira ACD, Poletto TB, Fonceca LZ, Junior I, 2023. Comparative analysis of Beauveria bassiana submerged conidia with blastospores: yield, growth kinetics, and virulence. Biological Control, 185: 105314
[13]
Iwanicki NSA, Mascarin GM, Moreno SG, Eilenberg J, Delalibera JI, 2020. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertsii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis. World Journal of Microbiology and Biotechnology, 36(5): 71
[14]
Kepler RM, Luangsa-Ard JJ, Hywel-Jones NL, Quandt CA, Sung GH, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, Chen M, 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus, 8(2): 335-353
The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of and its many genera have received extensive study in the last two decades, however resolution of competing names in has not yet been addressed. Here we present a molecular phylogenetic investigation of that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, and and the rejection of eight generic names,,,, and. Two new generic names, and, and a new species,, are described. New combinations are also proposed in the genera and
[15]
Li YH, 2022. Effects of nutrients on the thermotolerance of Cordyceps fumosorosea and its mechanism. MS Thesis, Shanxi Agricultural University, Taigu. 1-73 (in Chinese)
[16]
Liang ZQ, 2013. Flora fungorum sinicorum. Vol. 43 Paecilomyces, Isaria, Taifanglania. Science Press, Beijing. 1-154 (in Chinese)
[17]
HQ, Hu FL, Yu AZ, Su XX, Wang YL, Yin W, Chai Q, 2022. Microstructure characteristics of soil aggregates of maize farmland under different utilization patterns of green manure in a desert oasis area. Chinese Journal of Eco-Agriculture, 30(6): 952-964 (in Chinese)
[18]
Mascarin GM, Lopes RB, Delalibera Jr I, Fernandes EKK, Luz C, Faria M, 2019. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 165(C): 46-53
[19]
Munoz GA, Agosin E, Cotoras M, Martin RS, Volpe D, 1995. Comparison of aerial and submerged spore properties for Trichoderma harzianum. FEMS Microbiology Letters, 125(1): 63-69
[20]
Paris S, Debeaupuis JP, Crameri R, Carey M, Charles F, Prevost MC, Scjmitt C, Philippe B, Latge JP, 2003. Conidial hydrophobins of Aspergillus fumigatus. Applied and Environmental Microbiology, 69(3): 1581-1588
[21]
Pereira RM, Roberts DW, 1990. Dry mycelium preparations of entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Journal of Invertebrate Pathology, 56(1): 39-46
[22]
Singleton DR, Fidel PL, Wozniak KL, Hazen KC, 2005. Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype a cells. FEMS Microbiology Letters, 244(2): 373-377
The CSH1 gene product is the first protein implicated to affect the phenotype of cell surface hydrophobicity in Candida albicans. Ablation of expression of CSH1 resulted in a 75% loss of the cell surface hydrophobicity (CSH) phenotype. When the C. albicans csh1 knockout derivative was cultured from frozen stocks, it had reacquired CSH levels similar to the parent strain and isogenic reintegrant in the absence of Csh1p re-expression through an unknown mechanism. Prior to reacquisition of CSH, the knockout was less adherent to fibronectin than the parent. Comparison of the csh1 knockout and CSH1 reintegrant in a hematogenous dissemination model allows analysis of Csh1p contribution to virulence using matched strains with similar levels of CSH. No statistical significance between the knockout and reintegrant was found in virulence based on median day of survival, although a reproducible delay in onset of lethal infection for the knockout was observed. A modest difference in mucosal colonization in a vaginal infection model was also observed between the knockout and reintegrant. The present study demonstrates that Csh1p contributes to virulence of C. albicans in mice, but other gene products also contribute to the CSH phenotype and virulence.
[23]
Song WJ, 2011. Morphogenesis of ten different entomogenous fungi in liquid culture. MS Thesis, Anhui Agricultural University, Hefei. 1-50 (in Chinese)
[24]
Song Z, 2005. Submerged culture of Beauveria bassiana and its virulence test on Dendrolimus punctatus. Chinese Journal of Applied and Environmental Biology, 11(1): 93-97 (in Chinese)
[25]
Thomas KC, Khachatourians GG, Ingledew WM, 1987. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology, 33(1): 12-20
[26]
Vega FE, Jackson MA, McGuire MR, 1999. Germination of conidia and blastospores of Paecilomyces fumosoroseus on the cuticle of the silverleaf whitefly, Bemisia argentifolii. Mycopathologia, 147(1): 33-35
[27]
Wang D, 2023. The infection mechanism of Cordyceps javanica IJ-tg19 strain on pea aphid Acyrthosiphon pisum. PhD Dissertation, Shanxi Agricultural University, Taigu. 1-108 (in Chinese)
[28]
Zhang M, Yu H, Wang XL, Song J, Wu FY, Pan XH, 2017. Research on Zeta potential of ultrafiltration membrane. Journal of Salt Science and Chemical Industry, 46(1): 9-11 (in Chinese)
[29]
Zhang YR, 2022. Study on fermentation conditions of Cordyceps fumosorosea IF-1106 based on mycelial growth, sporulation and UV resistance enhancement. MS Thesis, Shanxi Agricultural University, Taigu. 1-58 (in Chinese)
[30]
李义华, 2022. 营养成分对玫烟色虫草耐热性的影响及其机理初探. 山西农业大学硕士论文,太谷. 1-73
[31]
梁宗琦, 2013. 中国真菌志. 第四十三卷,拟青霉属棒束孢属戴氏霉属. 北京: 科学出版社. 1-154
[32]
吕汉强, 胡发龙, 于爱忠, 苏向向, 王玉珑, 殷文, 柴强, 2022. 荒漠绿洲区不同绿肥还田方式下玉米农田土壤团聚体微结构特征. 中国生态农业学报, 30(6): 952-964
[33]
宋文婧, 2011. 十种不同虫生真菌芽生孢子的形态发生过程和方式. 安徽农业大学硕士论文,合肥. 1-50
[34]
宋漳, 2005. 白僵菌分生孢子深层培养及其对马尾松毛虫的毒力. 应用与环境生物学报, 11(1): 93-97
[35]
王迪, 2023. 爪哇虫草IJ-tg19对豌豆蚜的侵染机制. 山西农业大学博士论文,太谷. 1-108
[36]
张梦, 于慧, 王旭亮, 宋杰, 吴非洋, 潘献辉, 2017. 超滤膜表面Zeta电位测试方法研究. 盐科学与化工, 46(1): 9-11
[37]
张月容, 2022. 基于菌丝生长、产孢及紫外耐逆性提升的玫烟色虫草发酵条件研究. 山西农业大学硕士论文,太谷. 1-58

Funding

Key Research and Development Program of Shanxi Province(202302140601011)
Special Fund for Science and Technology Innovation Teams of Shanxi Province(202304051001006)
Scientific Research Project of Professorial and Doctoral Workstation in Plant Protection, Jinzhong National Agricultural High Development Zone(JZNGQBSGZZ001)
PDF(1422 KB)

172

Accesses

0

Citation

Detail

Sections
Recommended

/