中文  |  English

菌物学报, 2021, 40(6): 1299-1316 doi: 10.13346/j.mycosystema.210077

综述

杜鹃花科植物菌根的研究进展

张艳华, 孙立夫,*

绍兴文理学院生命科学学院 浙江 绍兴 312000

Research advances on the mycorrhizas of Ericaceae plants

ZHANG Yan-Hua, SUN Li-Fu,*

School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, China

责任编辑: 王敏

收稿日期: 2021-02-5   接受日期: 2021-03-22   网络出版日期: 2021-06-22

基金资助: 国家自然科学基金.  31170469
浙江省自然科学基金.  LY19C030002

Corresponding authors: *E-mail: sunlifu@usx.edu.cn

Received: 2021-02-5   Accepted: 2021-03-22   Online: 2021-06-22

Fund supported: National Natural Science Foundation of China.  31170469
Natural Science Foundation of Zhejiang Province.  LY19C030002

摘要

杜鹃花科Ericaceae植物可与土壤真菌形成杜鹃花类菌根ericoid mycorrhizas(ERM)共生体,且广泛分布于全球不同的陆地生态系统,特别是在贫瘠、酸性等严酷的环境中占优势。杜鹃花科植物菌根类型多样,绝大多数宿主具有ERM,还有少量宿主具有其他类型的菌根结构,且常与暗隔内生菌(dark septate endophyte,DSE)并存;ERM的宿主植物除已知的杜鹃花科外,岩梅科Diapensiaceae植物也具有ERM结构;ERM真菌以子囊菌和担子菌为主,主要来自柔膜菌目Helotiales和蜡壳耳目Sebacinales;与杜鹃花科宿主形成ERM的真菌也常与壳斗科Fagaceae、松科Pinaceae等宿主植物形成外生菌根(ectomycorrhiza,ECM)结构;ERM对宿主植物在营养吸收、忍耐贫瘠环境、抵抗重金属污染等能力方面都有积极的促进作用,对环境变化的响应是多样的,生境和季节的变化对ERMF群落的组成和分布有着显著影响,资源比率变化可能改变ERM宿主与其他菌根或非菌根植物之间的竞争关系。本文回顾了近40多年来国内外有关ERM的研究进展,还对ERM研究的前景进行了展望,以期在理论和实践中对杜鹃花科及其菌根的研究能取得更丰硕的成果。

关键词: 杜鹃花科植物 ; 杜鹃花类菌根 ; 菌根真菌 ; 多样性

Abstract

Ericaceae plants and soil fungi often form ericoid mycorrhiza (ERM) symbiosis. ERM fungi are distributed widely over different global continental ecosystems, especially dominate in harsh environment with poor and acid soil. The mycorrhizal types of Ericaceae were diverse; apart from ERM, a few other types of mycorrhizae can be found in some ericaceous hosts, and often coexist with dark septate endophyte (DSE). Besides the well-known Ericaceae, ERM structure was also discovered in Diapensiaceae plants. ERM fungi mainly belonged to Ascomycetes and Basidiomycetes, and mostly Helotiales and Sebacinales. ERM fungi often formed ectomycorrhizal (ECM) structures on other hosts such as Fagaceae and Pinaceae. ERM not only helped their hosts on absorbing nutrients, increasing tolerant capacity in poor nutrient habitats, but also enhancing the resistance to heavy metal contamination. The community composition and distribution of ERM fungi showed significant variation with habitats and seasons. The variation of resource ratio might change the competitive relationship between ERM host and other mycorrhizal or non-mycorrhizal plants. In this paper, the advances of researches on ERM and their hosts over the past 40 years were reviewed. Prospect about ERM study was also previewed.

Keywords: Ericaceae ; ericoid mycorrhiza ; mycorrhizal fungi ; diversity

PDF (450KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张艳华, 孙立夫. 杜鹃花科植物菌根的研究进展. 菌物学报[J], 2021, 40(6): 1299-1316 doi:10.13346/j.mycosystema.210077

ZHANG Yan-Hua, SUN Li-Fu. Research advances on the mycorrhizas of Ericaceae plants. Mycosystema[J], 2021, 40(6): 1299-1316 doi:10.13346/j.mycosystema.210077

植物作为生产者是陆地生态系统的主体,可以与土壤真菌形成高度进化的互利共生体,即菌根(mycorrhiza),植物物种的生态位分化和扩展与菌根的共生有关(Gerz et al. 2018 ),形成菌根的真菌主要包括接合菌纲、子囊菌纲、担子菌纲及部分卵菌纲的成员,而宿主植物则包括了绝大多数的维管植物(Brundrett 1991)。目前已知至少有7种不同类型的菌根共生体,即丛枝菌根(arbuscular mycorrhizas,AM)、外生菌根(ectomycorrhizas,ECM)、内外生菌根(ectendomycorrhizas,EEM)、兰科菌根(orchid mycorrhizas,OM)、欧石南类菌根或杜鹃花类菌根(ericoid mycorrhizas,ERM)、浆果鹃类菌根(arbutoid mycorrhizas,ARM)和水晶兰类菌根(monotropoid mycorrhiza,MM)。与研究较多的AM和ECM相比,ERM的研究相对不多。而作为ERM主要宿主的杜鹃花科Ericaceae植物,种类多样,资源丰富,广泛分布于全球陆地生态系统,其中很多种类都可以作为先锋植物,定居在从酸性的沙土到湿润的粗腐殖质的基质上,都得益于它们有共生的菌根真菌(Perotto et al. 2002 )。杜鹃花科植物最主要的菌根类型是ERM,其菌根真菌简称为ERMF。本文对近40多年来,国内外有关杜鹃花科植物菌根的类型、真菌、宿主、功能等方面所展现出来的多样性进行了总结,为深入认识、了解进而利用这一类型的菌根提供参考。

1 杜鹃花科植物菌根类型的多样性

杜鹃花科有数千个物种且分布广泛,是否都能形成ERM的菌根结构呢?Gorman & Starrett(2003)用同一种公认的ERMF接种10个不同属的杜鹃花科植物,除了吊钟花属Enkianthus植物未被侵染以及草莓树属Arbutus unedo侵染后形成了AM外,其他8个属的植物都能被侵染并形成ERM结构,证明了Read(1996)认为的杜鹃花科植物大多数能形成ERM结构的论断,同时也认为杜鹃花科植物根部的菌根类型并不是单一的ERM,还可以形成AM、MM(Jansa & Vosatka 2000;Kamal & Varma 2008)、ECM(Read 1996)和被称为伪菌根或假菌根(pseudomycorrhizal)的暗隔内生菌(dark septate endophyte,DSE)(Currah et al. 1993a ;Cázareset al. 2005 ;Chaurasia et al. 2005 ;Tian et al. 2011 )。不同结构类型的菌根也可能共存于同一个植物的根系中,比较典型的情况是ERM和DSE常常同时出现(Cázareset al. 2005 ;Schulz 2006;Chambers et al. 2008 ;Tian et al. 2011 ;Vohník & Albrechtová 2011);也偶尔发现部分杜鹃花科植物根中AM和DSE并存的现象(Chaurasia et al. 2005 ;宁楚涵等 2018)。这些研究表明杜鹃花科植物的菌根类型具有一定的复杂性和多样性。菌根结构的形成不仅与宿主植物种类有关,也与真菌种类有关,同一种杜鹃花属Rhododendron植物与不同的真菌形成不同的菌根(Currahet al. 1993a ;Vohníket al. 2005 )。总体而言,ERM是杜鹃花科植物最主要且最常见的菌根类型。

不同宿主植物根中发现的ERM结构非常一致(Jansa & Vosatka 2000),正如Read 1996Peterson et al.(2004) 概括的那样,杜鹃花科植物都具有特别纤细的毛根(hair roots),是由1层膨大的表皮细胞、1-2层皮层细胞和纤细的中柱组成,通常每一毛根末梢区域的直径都小于100µm,在表皮细胞中常有菌丝卷(或称菌丝圈、菌丝节,coil)(Read 1996),在皮层细胞中也发现了子囊菌和担子菌的菌丝,但是它们的分布不同,子囊菌是在活的菌根细胞中占优势,而担子菌则主要出现在死的皮层细胞中(Duddridge & Read 1982),当然在Rhododendron菌根活细胞中也发现了担子菌的隔片(Allen et al. 2003 )。但未见有入侵中柱细胞的报道。

2 ERM宿主植物的多样性

Smith & Read(2008)认为ERM的宿主包括杜鹃花目Ericales杜鹃花科的多个亚科的植物,如杜鹃花亚科Ericoideae、岩须亚科Cassiopoideae、越橘亚科Vaccinioideae、澳石楠亚科Styphelioideae,且将原来Ericales的尖苞树科(或称掌脉石南科或澳石南科)Epacridaceae和岩高兰科Empetraceae的植物种类降级为族,这与此前发表的文献中有关ERM及其宿主植物提到的植物分类系统有了较大差异。为了尊重被引用文献和避免混淆,对需要引用的Epacridaceae和Empetraceae进行说明时前面都加上“原”字。在北半球,特别是在杜鹃花科的帚石南属Calluna、欧石南属Erica、杜鹃花属Rhododendron、越橘属(或乌饭树属)Vaccinium等植物中,ERM是普遍存在的(Jansa & Vosatka 2000);在南半球原Epacridaceae中的澳石南属Epacris、贝叶石南属Leucopogon、松石南属Astroloma、瑞香石南属Brachyloma和垂钉石南属Styphelia等植物的根中ERM也很常见(McLean & Lawrie 1996)。日本学者Okuda et al.(2011) 对岩梅目Diapensiales岩梅科Diapensiaceae的Schizocodon soldanelloides var. magnus菌根的结构和功能进行鉴定后认为也是ERM。Ericales和Diapensiales同属于五桠果亚纲Dilleniidae,具有很近的亲缘关系,因此,能够形成ERM的宿主植物范围比原来想象的要大。

3 ERM真菌的多样性

从目前的研究成果来看,能够形成ERM共生体的真菌主要是来自子囊菌纲和担子菌纲的成员,也有少量的接合菌纲(Chambers et al. 2008 )和无性型真菌的成员(Berch et al. 2002 ;Allen et al. 2003 ;Bougoure & Cairney 2005b)。这些真菌和宿主植物形成的共生关系,既有兼性的又有专性的。如在北半球的地中海森林中,从Erica arborea获得的优势菌根真菌(Bergeroet al. 2000 )与在南半球澳大利亚的Astroloma pinifolium中获得的内生菌(McLean et al. 1998 )极为相似,并且从两个半球不同宿主植物根中获得的内生菌,很多都可以在对方的根中形成ERM结构(Read 1996;Steinke et al. 1996 ;Liu et al. 1998 ;McLeanet al. 1998 ;Perotto et al. 2002 ),这表明能够共生于两个半球的不同植物类群间的真菌可能有很近的亲缘关系。从杜鹃花科植物根部分离最多而且也是最容易培养并形成ERM结构的主要是子囊菌纲中柔膜菌目Helotiales的Rhizoscyphus ericae和树粉苞属Oidiodendron等真菌(Usuki et al. 2003 ;Kamal & Varma 2008;Grelet et al. 2010 )。这两大类群在Diapensiaceae(Okuda et al. 2011 )和原Epacridaceae(Chambers et al. 2000 )植物根中也均有报道。Gorman & Starrett(2003)R.ericae接种到杜鹃花科的10属15种宿主植物根上,其中8属13种植物都被侵染并形成ERM,说明这种真菌在杜鹃花科植物中具有广泛的宿主选择范围,属于兼性互利共生的典范。但是,McLeanet al.(1999) 却认为从原Epacridaceae分离出的一些菌株并非杜鹃花科内ERMF的相同物种,不同植物物种中可能有专性的共生真菌种类。

真菌Rhizoscyphus ericae与之前发表的Hymenoscyphus ericaeCairney & Burke 1998)和Pezoloma ericaeMidgleyet al. 2017 )是同物异名(本文统一用R.ericae),是一种广谱型ERMF。研究发现R.ericae不仅有无性型的Scytalidium vacciniiEgger & Sigler 1993),而且R.ericae也不是一个单一真菌种类,而是一个聚集体(aggregate),其含有4个在遗传学上关系密切的分支,即Meliniomyces variabilisM.vraolstadiaeM.bicolorCadophora finlandica,其中发现M.vraolstadiae至今只能形成ECM而不能形成ERM,其他3种真菌均可以在不同宿主根中形成ECM和ERM(Greletet al. 2010 )。这表明R.ericae作为公认的ERM共生体中常见的真菌,它们形成何种菌根结构取决于宿主与真菌之间的相互识别和选择。

形成ERM的Oidiodendron spp.中以O.maius最为典型和常见,其宿主的选择范围也很广(Douglas et al. 1989 ;Berch et al. 2002 ;Piercey et al. 2002 ;Rice & Currah 2005;Vohníket al. 2005 ;Zhang et al. 2009 )。本属的其他种,如O.griseumCouture et al. 1983 ;Dalpé 1986;Xiao & Berch 1992)、O.rhodogenumO.cerealisDalpé 1986)、O.periconiodesCurrah et al. 1993b )和O.chlamydosporicumO.citrinumO.flavumO.scytaloidesDalpé 1991)等,在杜鹃花科植物根中也能形成ERM,但是不同植物的ERM中共生的Oidiodendron spp.的种类有一定差异,如从Rhododendron植物中分离出的多为O.maius,而从Vaccinium根系中分离出其他的Oidiodendron spp.菌株则较多。而且本属中也有无性型真菌Stephanosporium cerealisMonreal et al. 1999 ),与O.cerealisXiao 1994)属于同物异名。

除了子囊菌纲的Oidiodendron maiusRhizoscyphus ericae聚集体的成员外,担子菌纲的蜡壳耳目Sebacinales也是Ericacea宿主根中普遍存在的真菌类群(Bonfante-Fasolo 1980;Allen et al. 2003 ;Selosse et al. 2007 ;Setaro & Kron 2011),在ERM解剖结构研究中认为,珊瑚菌属Clavaria的某些菌种也许是ERMF(Petersonet al. 1980 ),此后,在Vaccinium sp.上发现C.oronoensis,证明了担子菌也能形成ERM(Straker 1996)。生长在北极生态系统的Cassiope tetragona(Ericaceae)宿主中占优势的是担子菌,不仅有Clavaria,还有CortinariusMycena等属的真菌(Lorberauet al. 2017 ),而且很多都是原来公认的腐生菌或ECM真菌,但是却能形成典型的ERM结构而非ECM结构。

另外,皮盘菌科Dermatcaceae部分真菌以及几种未知名真菌(Xiao 1994;Usuki et al. 2003 ;Bougoure & Cairney 2005a,2005b;Grelet et al. 2009 )和被称为variable white taxon(VWT)的真菌(Hambleton & Currah 1997;Piercey et al. 2002 ),以及属于Helotiales的DSE真菌,如瓶霉属Phialophoraspp.(Hambleton & Currah 1997;Grüniget al. 2008 )、Phialocephala fortiniiVohníket al. 2003 )在多种杜鹃花宿主的ERM根中也经常出现。

与同一宿主植物共生的ERMF也是多样的,Wurzburgeret al.(2011) 从生长于温带森林Rhododendron maximum的ERM中分离出来71种真菌,包括常见的Rhizoscyphus ericaeOidiodendron maius,来自Helotiales、刺盾炱目Chaetothyriales和Sebacinales的真菌,以及一些已知的ECM真菌和腐生菌。Zhanget al.(2016) 通过高通量测序获得在中国亚热带森林中Vaccinium carlesii的根部真菌组成,也证明在有ERM结构的宿主毛根中还有大量的其他类型真菌的存在,ERMF只占其中的一部分。Allenet al.(2003) 就在白珠树属Gaultheria shallon的同一个ERM结构中发现了担子菌的蜡壳耳属Sebacina spp.、砖隔腔菌Capronia sp.和R.ericae,平均每根有3.8个遗传上不同的真菌分类单元。还有研究表明,ERM的相邻细胞能够与不同真菌形成菌根结构(Monreal et al. 1999 ;Perotto et al. 2002 )。对来自中国四川和云南的杜鹃花属Rhododendron decorum菌根真菌的研究发现有25个公认的ERMF种类(Sun et al. 2012 )。这些研究说明ERMF的多样性水平较高,但是这些内生真菌的种类和分布是否存在宿主特异性和生境特异性还有待进一步验证(Walker et al. 2011 )。

尽管用分子生物学手段已经把ERMF的分类鉴定精确到目,甚至更精细的分类等级,但是有很多真菌仍然因为缺少明显的子实体或分离培养困难,而难以鉴定到物种水平(Perotto et al. 2002 ;Allen et al. 2003 ;Hamímet al. 2017 ),这也是ERMF研究进展缓慢的重要原因。

4 ERM真菌形成菌根类型的多样性

在开放的自然生态系统中,杜鹃花科植物常与松科Pinaceae、桦木科Betulaceae、壳斗科Fagaceae、杨柳科Salicaceae、禾本科Poaceae等的植物种类伴生。而且有证据表明,一些公认的ERMF也可与其他植物的根共生,形成不同类型的菌根(Cairney & Meharg 2003)。

在北半球的地中海,从相邻的Fagaceae植物(ECM)栎属Quercus ilex和杜鹃花科植物(ERM)Erica arborea分离出相同的真菌(Bergero et al. 2000 ;Cairney & Meharg 2003);同样地,在北温带森林中,相邻的Pinaceae植物(ECM)Pinus sylvestris和杜鹃花科植物(ERM)Vaccinium vitis-idaea,杜鹃花科植物Vaccinium myrtillu与Pinaceae植物Pinus sylvestrisPiceirhiza bicolorata之间也都分离出相似的真菌菌株,且发现其中38%以上形成ECM的Pinus根尖被典型ERMF——Rhizoscyphus ericae聚集体所侵染(Grelet et al. 2009 ,2010)。因此,在北半球能形成ERM和ECM的不同伴生物种可能存在较为普遍的基因型相似的共生真菌。同样,在南半球干旱的澳大利亚东部的硬叶林中,从伞形科Apiaceae、火把树科(或南蔷薇科)Cunoniaceae、莎草科Cyperaceae、茅藳菜科Droseraceae、豆科Fabaceae的含羞草亚科Mimosoideae、点柱花科Lomandraceae、桃金娘科Myrtaceae、海桐花科Pittosporaceae、山龙眼科Proteaceae和花柱草科Stylidiaceae的10个科17种植物根中分离出来的真菌涉及子囊菌、担子菌和接合菌多个类群(Chamberset al. 2008 ),发现其中能够在Epacris sp.形成ERM的真菌是澳大利亚东北部硬叶林中非杜鹃花植物根中常见的栖息者。在欧洲、澳洲和南极半岛,苔藓植物——地钱常与杜鹃花科植物伴生,而杜鹃花科植物根部常见的ERMF——R.ericae及其亲缘关系较近的真菌也是一些叶状地钱的内生菌(Duckett & Read 1995;Chambers et al. 1999 ),与从温带杜鹃花科植物中获得的真菌功能相同(Cairney et al. 2000 ;Whittaker & Cairney 2001)。

在具有相同菌根真菌存在的条件下,菌根共生体(ERM或ECM)的形态结构是在宿主植物控制下发生的(Grelet et al. 2009 ),如在实验条件下Helotiales的Phialophora finlandia与不同宿主植物分别形成了ERM、ECM或EEM结构(Perotto et al. 2002 );在无菌条件下,一个Rhizoscyphus ericae聚集体菌株,与Vaccinium myrtillusPinus sylvestris可以同时形成ERM和ECM结构(Villarreal-Ruiz et al. 2004 );在荷兰和丹麦欧石南荒地,从Poaceae的Deschampsia flexuosa的根中分离出来Helotiales的真菌,可以侵染并提高Calluna vulgaris幼苗吸收氮的能力(Zijlstra et al. 2005 ;Chambers et al. 2008 )。因此,Bergero & Girlanda(2002)推断在地中海缺少杜鹃花宿主的成熟Quercus ilex森林土壤中,能够形成ERM的真菌仍然能够坚持和保持形成菌根的能力,为在干扰后的Q.ilex纯林中杜鹃花科植物Erica arborea幼苗的定居储备了必要的真菌资源。根据真菌与不同宿主形成不同类型菌根能力的情况来看,非杜鹃花科植物种类在阔叶林土壤中能够起着ERM真菌库的作用(Chambers et al. 2008 )。

虽然有很多研究认为ERM植物和其他类型菌根在植物根部或者土壤中的真菌种类相似,但是并不等于就一定能发生交叉侵染。从Picea stichensis(ECM)根部分离得来的Oidiodendron maius菌株在杜鹃花宿主上未能形成ERM(Douglas et al. 1989 ),该真菌甚至会表现出很强的腐生性(Piercey et al. 2002 ;Brundrett 2006);分别来自ECM和ERM的Rhizoscyphus ericae野生菌株,只能分别与乔木种类形成ECM共生体,或与杜鹃花植物形成典型的ERM结构(Vrålstadet al. 2001 ),交叉侵染都未能在对方的宿主根中形成应有的菌根结构(Bergero et al. 2000 ;Piercey et al. 2002 ;Brundrett 2006)。这些相反的结果表明,尽管在ERMF和菌根结构的研究中取得了一定的进展,但是,仍有很多问题还待于进一步的研究。

5 ERM功能的多样性

van der Heijden & Horton(2009)在对60个案例的研究中发现,菌根真菌网络对不同种类的幼苗生长有促进作用、负作用和没影响的分别占48%、25%和27%,说明幼苗与菌根共生获利占主流。这些现象在ERM共生体中也有相应的报道,正面影响的实例很多,如Rhizoscyphus ericae的有性型和无性型及Oidiodendron griseumCalluna vulgaris的幼苗生长有促进作用(Read 1996);在Vaccinium corymbosum上接种Cadophora菌株能形成典型的ERM并促进宿主的生长(Bizabani & Dames 2015);拟隐孢壳属Cryptosporiopsis和瓶头霉属Phialocephala菌株接种在Rhododendron formosanum中,形成ERM菌根结构后其幼苗均比对照健壮(Lin et al. 2011 );一些ERMF在Rhododendron fortunei的幼苗生长(Yu et al. 2008 ,Wei et al. 2016 )和在其他Rhododendron spp.植物生长过程中也表现出同样的促进作用(Jansa & Vosatka 2000);在不同营养条件下,ERM菌根的存在提高了Calluna vulgaris与Poaceae的Nardus stricta的竞争力(Genney et al. 2000 )。

5.1 ERM促进营养吸收

ERM的功能往往通过其组成的菌根真菌来实现,ERMF能产生多种水解酶和氧化酶,有降解多种有机物如纤维素、木质素等和加速必要营养素释放的能力(Cairney & Meharg 2003)。真菌种类不同,所分泌酶的类型也就不同,Phialocephala属的菌株能分泌过氧化物酶和酪氨酸酶,而Cryptosporiopsis属菌株除了分泌出这两种酶外,还可以分泌漆酶和纤维素酶(Lin et al. 2011 )。Oidiodendron maiusO.scytaloides能够降解单宁酸,分泌多酚氧化酶(Thormann et al. 2002 )。ERMF分泌的酶类不仅能帮助有机物降解,而且还能够提高对必要营养素,特别是氮和磷的直接吸收(Lin et al. 2011 ),如ERMF分泌的蛋白酶和几丁质酶帮助宿主植物获得蛋白质和几丁质中的氮,磷酸酯酶则使宿主从磷酸单脂和磷酸二酯中获得磷(Bajwa et al. 1985 ;Leake & Read 1989;Myers & Leake 1996;Kerley & Read 1997);ERMF也可以促进宿主植物从氨基酸和核酸中吸收氮(Bending & Read 1996,1997;Cairney & Burke 1998;Nielsena et al. 2009 ),生长在大西洋西北部贫瘠的温带常绿森林中的Vaccinium membranaceum,其ERMF是磷的主要供应者(van der Wal et al. 2006 )。比较生理学研究指出,对于Rhizoscyphus ericae及其类似的菌株、甚至更远缘的相关内生真菌,不管分类地位和原生境如何,它们从有机源获得氮和磷的能力几乎相同(Chen et al. 1999 ;Whittaker & Cairney 2001)。在自然生态系统中,植物对氮和磷的需求分别多达80%和90%来自菌根真菌(van der Heijden et al. 2008 ),进而菌根真菌也能在抵御干旱和土壤病原体等胁迫方面提供帮助(Auge 2001;Sikes et al. 2009 ;Vohníket al. 2009 )。如由于土壤有机物通常分解缓慢,ERMF利用复杂的有机氮的机制有益于宿主植物在寒温带气候区的生长(Straker 1996)。这些研究都充分说明了与ERMF共生的宿主植物具有很强的营养吸收能力,在逆境中具有生存和竞争优势。

将AM、ECM与ERM菌根的营养吸收能力进行比较发现,具有ECM(Picea abies)和ERM(Vaccinium myrtillus)的宿主从所有有机和无机氮源中获得了相似量的氮,而AM(Deschampsia flexuosa)宿主除了NH4+-N外,所吸收的所有氮源都显著低于NO3--N(Persson et al. 2003 );在对加利福尼亚沿海森林酸性、贫瘠和高有机质的土壤中,生长的ERM宿主(Rhododendron macrophyllumVaccinium ovatum)和AM宿主(Cupressus goveniana ssp. pigmaea)比较也发现,ERM宿主没有显示出对有机氮和无机氮的偏好,而AM宿主获得的无机氮明显高于有机氮(Rains & Bledsoe 2007)。这些研究表明AM宿主对无机氮吸收的偏好,在吸收有机氮方面的能力没有ERM和ECM宿主的能力强(Read & Perez-Moreno 2003)。

5.2 ERM抵抗重金属污染的能力

通常认为微生物比植物对金属毒性的耐受力更高(Hartley et al. 1997 ),因此,具有ERM的共生体能提高宿主在重金属污染的土壤环境中的适合度(Meharg & Cairney 2000;Sharples et al. 2000a ,2000b;Chambers et al. 2008 )。有关ERM在抗重金属污染方面的研究以Calluna vulgaris的成果最多,在Zn和Cu(Bradleyet al. 1981 ;Meharg & Cairney 2000)、Cu和Ni(Monniet al. 2000a ,2000b)、As和Cu(Cairney & Meharg 2003)、Pb和Cu污染(Marrs & Bannister 1978)的土壤中都表现出很强的抵抗力和进化适应的能力。另外,ERM宿主自然定居的土壤通常呈酸性,这就意味着有害金属如Al,氧化还原作用活跃的金属Fe和Mn等在这样的环境下更加活跃(Cairney & Meharg 2003)。这些研究都说明具有ERM结构的杜鹃花科宿主植物能忍耐的金属离子的范围非常广。

从生长于重金属污染土壤Calluna vulgaris的毛根中能分离出来的ERMF主要是Rhizoscyphus ericaeOidiodendron maius。Sharples(2000b,2000c)认为R.ericae及其宿主C.vulgaris在抵抗重金属污染方面是平行进化的;将从Cd、Zn、Al污染(Vallino et al. 2011 )和Cr、Ni污染(Martino et al. 2002 )的土壤中都分离出O.maius的耐受菌株,且都比未污染地分离出来的O.maius菌株易于培养。经过污染地驯化的真菌菌株可能会在宿主植物适应环境污染方面发挥更大的作用,具有显著的生态价值和潜在的商业价值。

真菌怎样抵抗重金属毒害来保护自己呢?研究认为ERM中的真菌如Rhizoscyphus ericae对金属阳离子有很强的亲和力(Bradley et al. 1981 ),真菌通过降低吸收或增加金属离子的流出来避免和限制重金属进入细胞质,如金属离子可以被吸收到菌丝表面以及在宿主和真菌的交界处(Bradleyet al. 1982 ),被固定在真菌的细胞壁上(Leyval et al. 1997 ),或被分隔在液泡或其他细胞器中(Pócsi 2011);菌丝的细胞外分泌物对金属离子有耐受性(Perotto et al. 2002 ),可与重金属结合并产生沉淀,或形成螯合物等方式(Colpaertet al. 2011 )来降低重金属毒性。对于ERMF在重金属污染土壤中的存活、降解机制以及在污染地的治理方面的研究还需要进行更多的实践和总结。

6 ERM及其组成真菌对环境变化响应的多样性

6.1 ERMF群落组成随生境条件而变化

杜鹃花科植物能广泛地分布于全世界范围内的多种生境中,包括北半球的粗腐殖质的欧石南荒地、地中海木本林地、热带云雾森林和澳大利亚干旱沙化平原,被认为与ERM的存在有关(Cairney & Meharg 2003)。菌根真菌与植物兼性共生者很多,可能也是杜鹃花广泛分布的重要原因,如北美洲的加拿大和欧洲的意大利北部的不同杜鹃花植物根中都发现了高丰富度的Oidiodendron spp.(Hambleton & Currah 1997;Monreal et al. 1999 );Zhanget al.(2009) 调查的中国亚热带的黄山等4个不同山体Rhododendron fortunei时发现,Oidiodendron maius在宿主根中普遍存在,但是其分离出来的频率差距很大;Hamímet al.(2017) 发现在摩洛哥和法国5个样点的6种杜鹃花科宿主根中Helotiales最常见,但是毛根内生真菌分离频率因地区和宿主种类的不同而有很大差异;同样地,在欧洲,Calluna vulgaris在英格兰西南的矿质和自然欧石南荒地生境中主要被Rhizoscyphus erica侵染(Sharples et al. 2000a ),在意大利北部的欧石南荒地则主要是被O.maius侵染(Perotto et al. 1996 ,2002)。说明ERMF种类及其丰富度可能与特殊的立地条件有关。土地利用方式的改变也会影响到ERM真菌在宿主根部真菌群落中的相对丰度,如Zhanget al.(2016,2017)在我国亚热带森林中对Vaccinium carlesiiRhododendron ovatum的研究均发现,相同种类宿主根中的ERMF生长在人工林下的比生长在天然林下或次生林下的要少得多。DSE真菌也有对环境选择的类似情况(Zhanget al. 2009 ),Vohník & Albrechtová(2011)对6种Rhododendronspp.研究发现,频率最高的ERM出现在欧洲南部与中部,而DSE的最高频率则在芬兰北部的亚北极区与喀尔巴阡山脉的亚高山区出现,认为纬度和海拔高度改变了ERM共生体的结构和组成;但是,Sunet al.(2012) 在中国云南和四川的15个样点采集分析的Rhododendron decorum毛根发现,其ERMF群落组成受到宿主遗传组成的影响比地理因素的影响更大,在诸多地理因素中仅与纬度相关,而非ERMF群落则与纬度、经度、海拔高度和年平均降雨量等多个因素有关。

ERMF群落组成在不同的生境中有明显的差异,优势真菌种类随着环境的不同而有变化,这些差异是由哪些因素影响造成的,还需要进行更深入的研究。

6.2 ERMF群落的季节性变化

杜鹃花毛根受到ERMF侵染不仅有水平分布和垂直分布的变化,还呈现出季节性的变化(Chambers et al. 2008 ),如在澳大利亚西南季节性变化明显的地中海式气候区,在较冷湿条件下,毛根和内生菌的活力优势最为明显(Hutton et al. 1994 );Cairney & Ashford(2002)研究了毛根的季节变化发现,毛根长度在夏季土壤变干时都快速下降到很低的水平,在秋季再次出现,在湿润的冬季变为菌根,到了春季每株植物的侵染率都达到最高的水平,说明毛根及其菌根的形成和侵染率的高低与温度和湿度等气候因子存在着一定的相关性。原Epacridaceae的Woollsia pungens中菌根侵染水平差异与水分无关,但是却与温度呈现负相关。而Lorberauet al.(2017) 在人工控制条件下发现,温度升高对Cassiope tetragona宿主根部真菌群落的影响却较微弱。Read(1996)指出不同水分区域导致毛根发育的特点不同,然而更广泛的调查并没有发现任何侵染强度和纬度、海拔、土壤或气候因子之间的关系,北半球研究的大多数宿主种类存在着全年侵染的情况(Read & Kerley 1995)。Calluna vulgaris根中菌根侵染的季节变化非常显著,而且菌根侵染的空间变化都相当大(Johansson 2000)。研究指出,除非是在非常干旱的条件下,否则ERM可以全年起作用。

从对ERMF季节性变化的研究可以看出,高温和干旱可能会影响到具有ERM宿主的毛根发育,进而会对ERMF群落的组成和结构产生一定的影响。在欧洲和澳洲的研究认为湿、冷对毛根的发育和ERMF的侵染有促进作用。

6.3 ERM植物与其他物种的竞争关系随着资源比率的变化而变化

欧石南荒地的土壤通常养分水平低,并伴有pH值低、金属阳离子高、排水不良或持水很差、极端温度频繁出现等多种组合(Cairney & Meharg 2003)。以前由杜鹃花科的Calluna vulgarisErica tetralix矮灌木占优势的荷兰欧石南荒地,在近几十年中已经快速地被多年生草本植物Deschampsia flexuosaMolinia caerulea所取代(van der Eerden et al. 1991 ;Aerts 1993;Bobbink & Heil 1993;Berendse 1994)。高水平的氮沉积极大地促进了土壤有机质的积累和从杜鹃花科植物向草本植物占优势的群落方向演替(Berendse & Aerts 1984;Berendse & Elberse 1990;Hofland -Zijlstra & Berendse 2010)。类似的情况也出现在英国的部分地区(Barker et al. 2004 )。虽然氮沉积会导致欧石南荒地植被的演替,但是低水平的磷供给可能会阻止或减缓这一过程(Nielsena et al. 2009 )。与荷兰相比,中等水平的氮沉积在丹麦同样类型的欧石南荒地中并没有引起Calluna占优势的植被发生变化(Kristensen & Henriksen 1998)。说明可能是资源比率的变化引起不同菌根类型植物竞争关系发生变化导致。从菌根功能的研究可以看出,具有ERM的杜鹃花科植物在氮贫瘠土壤占优势,但是无机氮输入可能更有利于那些AM或无菌根的宿主。欧石南荒地的植被受到氮沉积影响发生的演替是否会影响到地下菌根真菌群落的变化还需要进一步研究,但是能在杜鹃花科根部形成ERM的真菌也往往具有可以与其他植物物种形成其他菌根类型的特性(Ishida & Nordin 2010),再加上构成ERM的真菌具有一定的腐生生活能力,因此,地上部分植被的演替并不一定会在短时间内影响到地下部分真菌群落结构的变化。

7 ERM研究的展望

尽管有关于ERM的研究取得了一定的进展,但是在理论基础和实践体系的建立方面还有很多有待于进一步探索的问题。

(1)杜鹃花科植物种类及资源十分丰富,据《中国植物志》记载,本科有约103属,3 350种(杨汉碧等 2006),将原Empetraceae和Epacridaceae归属于杜鹃花科(Smith & Read 2008),种类则更多,这些植物广泛分布于全球不同气候区的生态系统中,生境类型多样。各地区研究ERM起步时间和水平的差异较大,欧洲、北美和澳洲的研究成果居多,而亚洲的研究成果相对较少。今后对于不同生长环境和不同种类杜鹃花的ERMF资源的调查、分类和鉴定还有很多工作要做。

He et al.(2010) 概括了过去60年我国在菌根研究领域中的成就,总结了AM、ECM和OM的研究成果,而ERM的研究成果还很少。中国是杜鹃花的起源和分布中心,约有15属,757种(杨汉碧等 2006),目前Zhanget al.(2009) Rhododendron fortunei,郑钰等(2010)Rhododendron argyrophyllumR.floribundum,Tian et al.(2011) Sun et al.(2012) Rhododendron decorum,Zhanget al.(2017,2019)对Rhododendron ovatumR. simsii等的内生菌多样性进行了研究,还有很多ERM宿主及其共生真菌有待研究。特有的生态环境和特有种是孕育ERM的重要基础和前提,中国是世界ERM研究不可或缺的组成部分,缩短与欧美研究差距将是一项长期而艰巨的工作。

(2)杜鹃花科宿主和内生真菌的种类之间是否存在共生特异性?目前存在两种观点,从Rhododendron的不同栽培品种和Vaccinium myrtillus都分离出来Oidiodendron sp.,且从Vaccinium宿主中分离的比从Rhododendron分离的种类更多(Jansa & Vosatka 2000),Zhanget al.(2016,2019)用高通量测序也发现Rhododendron宿主其根部真菌多样性比Vaccinium,共生真菌可能存在一定的宿主偏好,但是,从Cassiope tetragonaEmpetrum nigrumVaccinium vitis-idaea等3种植物分离的根部真菌,侵染实验室培养的Vaccinium uliginosum时却没有发现宿主特异性的证据(Walker et al. 2011 )。更多的研究和实践可能在不久的将来能客观地回答这一问题,特别是我国特有杜鹃花种类仅生长在特定的区域内,对其宿主和真菌特异性的研究,可能是未来成功引种的重要基础。

(3)在有杜鹃花科植物的自然生态系统演替过程中,杜鹃花科宿主和共生真菌是否能够协同进化和迁移?从厄瓜多尔、巴拿马和北美的Vaccinioideae的58个宿主个体中Sebacinales的研究认为,两个新热带区和北美的温带区Vaccinioideae-Sebacinales群落的植物-真菌发生了共同迁移(Setaro & Kron 2011)。在我国29个植被类型中有4个其关键种属于杜鹃花科(Enright & Cao 2010),这些宿主不断受到自然和人为的干扰,它们的地上植物-地下真菌群落之间有着怎样的联系,植被-真菌群落的演替未来向什么方向发展也将是生态学家关注的问题。

(4)在能够形成ERM的真菌种类中有哪些对杜鹃花科的生长和适应起着促进作用?这些有益的内生菌是否能够被成功地分离、培养、纯化和成功回接?人工培养和释放的内生菌株对目标宿主的侵染效果如何?能否形成ERM结构?共存的ERM与DSE是有益的相互补充还是发生拮抗作用?Vohník(2020)全面总结了ERM共生体的实验研究方法,可以在此基础上进一步对共生真菌进行分离、培养和纯化,对未知的ERMF种类进行鉴定,弄清共生真菌群落的物种组成和结构特点,为进一步了解其功能作用奠定基础。

(5)在能够分离、培养、鉴定和纯化的基础上,对于不同菌种在营养吸收、忍耐瘠薄、对各类污染的抗性及机理的研究,合适菌剂的研发,利用菌根技术引种优良的高山杜鹃,研究其在新生境中的成活、生长、开花等生物学特性与菌根之间的关系,都将是未来ERM研究很重要的发展方向。

(6)自然生态系统是一个开放的动态系统,研究根系ERMF群落与土壤中存在的其他生物群落类型之间的关系,ERMF对土壤环境因子如氮、磷、硫等元素的加入、对全球CO2和温度升高、对干旱和洪涝的响应,以及ERMF群落将在不同气候、土壤、植被区域存在着怎样的动态规律等,都需要进行大量的调查和分析。

随着国内外学者对ERM关注度的提高,相信未来有关杜鹃花及其菌根的研究会逐步深入,必将进一步推动杜鹃花资源的保护和利用,为杜鹃花在自然生态系统、城市园林绿化以及果树栽培等方面发挥更大作用奠定坚实的基础。

参考文献

Aerts R, 1993.

Competition between dominant plant species in heathlands. In: Aerts R, Heil GW (eds.) Heathlands: patterns and processes in a changing environment

Kluwer Academic Publishers, Springer Netherlands. 125-151

[本文引用: 1]

Allen TR, Millar T, Berch SM, Berbee ML, 2003.

Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots

New Phytologist, 160:255-272

DOI:10.1046/j.1469-8137.2003.00885.x      URL     [本文引用: 5]

Auge RM, 2001.

Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis

Mycorrhiza, 11:3-42

DOI:10.1007/s005720100097      URL     [本文引用: 1]

Bajwa R, Abuarghub S, Read DJ, 1985.

The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants

New Phytologist, 101:459-467

DOI:10.1111/nph.1985.101.issue-3      URL     [本文引用: 1]

Barker CG, Power SA, Bell JNB, Orme CDL, 2004.

Effects of habitat management on heathland response to atmospheric nitrogen deposition

Biological Conservation, 120(1):41-52

DOI:10.1016/j.biocon.2004.01.024      URL     [本文引用: 1]

Bending GD, Read DJ, 1996.

Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi

Soil Biology and Biochemistry, 28:1603-1612

DOI:10.1016/S0038-0717(96)00258-1      URL     [本文引用: 1]

Bending GD, Read DJ, 1997.

Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi

Mycological Research, 101:1348-1354

DOI:10.1017/S0953756297004140      URL     [本文引用: 1]

Berch SM, Allen TR, Berbee ML, 2002.

Molecular detection, community structure and phylogency of ericoid mycorrhizal fungi

Plant and Soil, 244:55-66

DOI:10.1023/A:1020291516884      URL     [本文引用: 2]

Berendse F, Aerts R, 1984.

Competition between Erica tetralix L. and Molinia cearulea(L.) Moench as affected by the availability of nutrients

Oecologia Plantarum, 5:3-14

[本文引用: 1]

Berendse F, Elberse WTH, 1990.

Competition and nutrient availability in heathland and grassland ecosystems. In: Grace J, Tilman D (eds.) Perspectives on plant competition

Academic Press, Florida,Orlando. 93-116

[本文引用: 1]

Berendse F, 1994.

Competition between plant populations at low and high nutrient supplies

Oikos, 71:253-260

DOI:10.2307/3546273      URL     [本文引用: 1]

Bergero R, Girlanda M, 2002.

Soil persistence and biodiversity of ericoid mycorrhizal fungi in the absence of the host plant in a Mediterranean ecosystem

Mycorrhiza, 13:69-75

DOI:10.1007/s00572-002-0202-9      URL     [本文引用: 1]

Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM, 2000.

Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex)

Molecular Ecology, 9:1639-1650

DOI:10.1046/j.1365-294x.2000.01059.x      URL     [本文引用: 3]

Bizabani C, Dames J, 2015.

Effects of inoculating Lachnum and Cadophora isolates on the growth of Vaccinium corymbosum

Microbiological Research, 181:68-74

DOI:10.1016/j.micres.2015.08.005      URL     [本文引用: 1]

Bobbink R, Heil GW, 1993.

Atmospheric deposition of sulphur and nitrogen in heathland ecosystems. In: Aerts R, Heil GW (eds.) Heathlands: patterns and processes in a changing environment

Kluwer Academic Publishers, Springer Netherlands. 25-50

[本文引用: 1]

Bonfante-Fasolo P, 1980.

Occurrence of a basidiomycete in living cells of mycorrhizal hair roots ofCalluna vulgaris

Transactions of the British Mycological Society, 75:320-325

DOI:10.1016/S0007-1536(80)80097-0      URL     [本文引用: 1]

Bougoure DS, Cairney JWG, 2005a.

Assemblages of ericoid mycorrhizal and other root-associated fungi fromEpacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots

Environment Microbiology, 7:819-827

DOI:10.1111/emi.2005.7.issue-6      URL     [本文引用: 1]

Bougoure DS, Cairney JWG, 2005b.

Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods

Environment Microbiology, 7:1743-1754

DOI:10.1111/emi.2005.7.issue-11      URL     [本文引用: 2]

Bradley R, Burt AJ, Read DJ, 1981.

Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris

Nature, 292:335-337

DOI:10.1038/292335a0      URL     [本文引用: 2]

Bradley R, Burt AJ, Read DJ, 1982.

The biology of mycorrhiza in the Ericaceae. Ⅷ. The role of mycorrhizal infection in heavy metal resistance

New Phytologist, 91:197-209

DOI:10.1111/nph.1982.91.issue-2      URL     [本文引用: 1]

Brundrett MC, 1991.

Mycorrhizas in natural ecosystems

Advances in Ecological Research, 21:171-313

[本文引用: 1]

Brundrett MC, 2006.

Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds.) Microbial root endophytes

Springer Berlin Heidelberg, Berlin. 281-298

[本文引用: 2]

Cairney JWG, Burke RM, 1998.

Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil

Plant and Soil, 205:181-192

DOI:10.1023/A:1004376731209      URL     [本文引用: 2]

Cairney JWG, Sawyer NA, Sharples JM, Meharg AA, 2000.

Intraspecific variation in nitrogen source utilization by isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan

Soil Biology and Biochemistry, 32:1319-1322

DOI:10.1016/S0038-0717(00)00025-0      URL     [本文引用: 1]

Cairney JWG, Ashford AE, 2002.

Tansley review no.135. Biology of mycorrhizal associations of epacrids (Ericaceae)

New Phytologist, 154:305-326

DOI:10.1046/j.1469-8137.2002.00398.x      URL     [本文引用: 1]

Cairney JWG, Meharg AA, 2003.

Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions

European Journal of Soil Science, 54:735-740

DOI:10.1046/j.1351-0754.2003.0555.x      URL     [本文引用: 7]

Cázares E, Trappe JM, Jumpponen A, 2005.

Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession

Mycorrhiza, 15(6):405-416

PMID:15772815      [本文引用: 2]

Lyman glacier in the North Cascades Mountains of Washington has a subalpine forefront characterized by a well-developed terminal moraine, inconspicuous successional moraines, fluting, and outwash. These deposits were depleted of symbiotic fungi when first exposed but colonized by them over time after exposure. Four major groups of plant species in this system are (1) mycorrhiza-independent or facultative mycotrophic, (2) dependent on arbuscular mycorrhizae (AM) (3) dependent on ericoid mycorrhiza (ERM) or ectomycorrhizae (EM), and (4) colonized by dark-septate (DS) endophytes. We hypothesized that availability of mycorrhizal propagules was related to the success of mycorrhiza-dependent plants in colonizing new substrates in naturally evolved ecosystems. To test this hypothesis roots samples of 66 plant species were examined for mycorrhizal colonization. The plants were sampled from communities at increasing distances from the glacier terminus to compare the newest communities with successively older ones. Long established, secondary successional dry meadow communities adjacent to the glacier forefront, and nearby high alpine communities were sampled for comparison. DS were common on most plant species on the forefront. Nonmycorrhizal plants predominated in the earlier successional sites, whereas the proportion of mycorrhizal plants generally increased with age of community. AM were present, mostly at low levels, and nearly absent in two sites of the forefront. ERM were present in all species of Ericaceae sampled, and EM in all species of Pinaceae and Salicaceae. Roots of plants in the long established meadow and heath communities adjacent to the forefront and the high alpine community all had one or another of the colonization types, with DS and AM predominating.

Chambers SM, Curlevski NJA, Cairney JWG, 2008.

Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a southeastern Australian sclerophyll forest

FEMS Microbiology Ecology, 65(2):263-270

DOI:10.1111/fem.2008.65.issue-2      URL     [本文引用: 7]

Chambers SM, Liu G, Cairney JWG, 2000.

ITS rDNA sequence comparison of ericoid mycorrhizal endophytes from Woollsia pungens

Mycological Research, 104:168-174

DOI:10.1017/S0953756299001306      URL     [本文引用: 1]

Chambers SM, Willianms PG, Seppelt RD, Cairney JWG, 1999.

Molecular identification of aHymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica

Mycological Research, 103:286-288

DOI:10.1017/S0953756298007217      URL     [本文引用: 1]

Chaurasia B, Pandey A, Palni LMS, 2005.

Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons

Forest Ecology and Management, 207:315-324

DOI:10.1016/j.foreco.2004.10.014      URL     [本文引用: 2]

Chen A, Chambers SM, Cairney JWG, 1999.

Utilization of organic nitrogen and phosphorus sources by mycorrhizal endophytes of Woollsia pungens (Cav.) F. Muell. (Epacridaceae)

Mycorrhiza, 8:181-187

DOI:10.1007/s005720050232      URL     [本文引用: 1]

Colpaert JV, Wevers J, Krznaric E, Adriaensen K, 2011.

How metaltolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution

Annals of Forest Science, 68:17-24

DOI:10.1007/s13595-010-0003-9      URL     [本文引用: 1]

Couture M, Fortin JA, Dalpé Y, 1983.

Oidiodendron griseum Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp

New Phytologist, 95:375-380

DOI:10.1111/nph.1983.95.issue-3      URL     [本文引用: 1]

Currah RS, Tsuneda A, Murakami S, 1993a.

Morphology and ecology of Phialocephala fortinii in roots of Rhododendron brachycarpum

Canadian Journal of Botany, 71:1639-1644

DOI:10.1139/b93-199      URL     [本文引用: 2]

Currah RS, Tsuneda A, Murakami S, 1993b.

Conidiogenesis in Oidiodendron periconioides and ultrastructure of ericoid mycorrhizas formed with Rhododendron brachycarpum

Canadian Journal of Botany, 71:1481-1485

DOI:10.1139/b93-179      URL     [本文引用: 1]

Dalpé Y, 1986.

Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species

New Phytologist, 103:391-396

DOI:10.1111/nph.1986.103.issue-2      URL     [本文引用: 2]

Dalpé Y, 1991.

Statut endomycorrhizien du genre Oidiodendron

Canadian Journal of Botany, 69:1712-1714

DOI:10.1139/b91-217      URL     [本文引用: 1]

Douglas GC, Heslin MC, Reid C, 1989.

Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterization of synthesized mycorrhizas

Canadian Journal of Botany, 67:2206-2212

DOI:10.1139/b89-280      URL     [本文引用: 2]

Duckett JG, Read DJ, 1995.

Ericoid mycorrhizas and rhizoid-ascomycete association in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associationsin vitro

New Phytologist, 129:439-447

DOI:10.1111/nph.1995.129.issue-3      URL     [本文引用: 1]

Duddridge J, Read DJ, 1982.

An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum

Canadian Journal of Botany, 60:2345-2356

DOI:10.1139/b82-287      URL     [本文引用: 1]

Egger KN, Sigler L, 1993.

Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA

Mycologia, 85:219-230

DOI:10.1080/00275514.1992.12026271      URL     [本文引用: 1]

Enright NJ, Cao KF, 2010.

Plant ecology in China

Plant Ecology, 209:181-187

DOI:10.1007/s11258-010-9802-1      URL     [本文引用: 1]

Genney DR, Alexander IJ, Hartley SE, 2000.

Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas

Journal of Experimental Botany, 51:1117-1125

DOI:10.1093/jexbot/51.347.1117      URL     [本文引用: 1]

Gerz M, Bueno CG, Ozinga WA, Zobel M, Moora M, 2018.

Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis

Journal of Ecology, 106:254-264

DOI:10.1111/jec.2018.106.issue-1      URL     [本文引用: 1]

Gorman NR, Starrett MC, 2003.

Host range of a select isolate of the ericoid mycorrhizal fungusHymenoscyphus ericae

Hortscience, 38(6):1163-1166

DOI:10.21273/HORTSCI.38.6.1163      URL     [本文引用: 2]

Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ, 2009.

Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorataectomycorrhizas

New Phytologist, 182:359-366

DOI:10.1111/nph.2009.182.issue-2      URL     [本文引用: 3]

Grelet GA, Johnson D, Vrålstad T, Alexander IJ, Anderson IC, 2010.

New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots

New Phytologist, 188(1):210-222

DOI:10.1111/j.1469-8137.2010.03353.x      URL     [本文引用: 3]

Grünig CR, Queloz V, Sieber TN, Holdenrieder O, 2008.

Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.-Acephala applanata species complex in tree roots: classification, population biology, and ecology

Botany, 86:1355-1369

DOI:10.1139/B08-108      URL     [本文引用: 1]

Hambleton S, Currah RS, 1997.

Fungal endophytes from the roots of alpine and boreal Ericaceae

Canadian Journal of Botany, 75:1570-1581

DOI:10.1139/b97-869      URL     [本文引用: 3]

Hamím A, Miché L, Douaík A, Mrabet R, Ouhammou A, Duponnoís R, Hafídí M, 2017.

Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems

Comptes Rendus Biologies, 340:226-237

DOI:10.1016/j.crvi.2017.02.003      URL     [本文引用: 2]

Hartley J, Cairney JWG, Meharg AA, 1997.

Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment?

Plant and Soil, 189:303-319

DOI:10.1023/A:1004255006170      URL     [本文引用: 1]

He XH, Duan YH, Chen YL, Xu MG, 2010.

A 60-year journey of mycorrhizal research in China: Past, present and future directions

Science China-Life Science, 53:1374-1398

DOI:10.1007/s11427-010-4096-z      URL     [本文引用: 1]

Hofland-Zijlstra JD, Berendse F, 2010.

Effects of litters with different concentrations of phenolics on the competition between Calluna vulgaris and Deschampsia flexuosa

Plant and Soil, 327(1):131-141

DOI:10.1007/s11104-009-0037-7      URL     [本文引用: 1]

Hutton BJ, Dixon KW, Sivasithamparam K, 1994.

Ericoid endophytes of Western Australian heaths (Epacridaceae)

New Phytologist, 127:557-566

DOI:10.1111/nph.1994.127.issue-3      URL     [本文引用: 1]

Ishida TA, Nordin A, 2010.

No evidence that nitrogen enrichment affect fungal communities of Vacciniumroots in two contrasting boreal forest types

Soil Biology and Biochemistry, 42(2):234-243

DOI:10.1016/j.soilbio.2009.10.021      URL     [本文引用: 1]

Jansa J, Vosátka M, 2000.

In vitro and post vitro inoculation of micropropagated rhododendrons with ericoid mycorrhizal fungi

Applied Soil Ecology, 15(2):125-136

DOI:10.1016/S0929-1393(00)00088-3      URL     [本文引用: 5]

Johansson M, 2000.

The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization ofCalluna vulgaris (L.) Hull from a Danish heathland

Oecologia, 123:418-424

DOI:10.1007/s004420051029      PMID:28308597      [本文引用: 1]

Conversion of European heathlands to grassland has been reported as a response to increased nutrient availability, especially of nitrogen; a direct effect upon mycorrhizal colonization has been proposed as an likely explanation.This hypothesis was tested in a random block experiment with four blocks and four replicates on a Danish inland heath, Hjelm Hede. Ammonium nitrate was applied (0, 35, 50 and 70 kg N ha year) to a stand of Calluna vulgaris (L.) Hull four times annually for 2 years. Calluna roots were sampled on four occasions in the 2nd year of the nitrogen treatment. The extent of ericoid mycorrhizal colonization was determined by direct observation of the roots using a line-intersection method. The nitrogen content of the current-year shoots of Calluna increased when they were treated with nitrogen. Nitrogen fertilization had no significant effects on ericoid mycorrhizal colonization of Calluna nor on root biomass. The seasonal variation in mycorrhizal colonization of the Calluna roots was highly significant. The spatial variability of mycorrhizal colonization, both in replicated plots and in the two contrasted soil horizons - the mor layer and the bleached sand - within the plots, were considerable. I conclude that heather decline under enhanced nitrogen input is unlikely to be caused by a direct impact on the ericoid mycorrhizae of Calluna.

Kamal S, Varma A, 2008.

Peatland microbiology. In: Dion P, Nautiyal CS (eds.) Microbiology of extreme soils

Springer Berlin Heidelberg, Berlin. 177-203

[本文引用: 2]

Kerley SJ, Read DJ, 1997.

The biology of mycorrhiza in the Ericaceae. XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants

New Phytologist, 136:691-701

DOI:10.1046/j.1469-8137.1997.00778.x      URL     [本文引用: 1]

Kristensen HL, Henriksen K, 1998.

Soil nitrogen transformations along a successional gradient from Calluna heathland to Quercus forest at intermediate atmospheric nitrogen deposition

Applied Soil Ecology, 8(1-3):95-109

DOI:10.1016/S0929-1393(97)00062-0      URL     [本文引用: 1]

Leake JR, Read DJ, 1989.

The biology of mycorrhizas in the Ericaceae. ⅩⅢ. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae

New Phytologist, 112:69-76

DOI:10.1111/nph.1989.112.issue-1      URL     [本文引用: 1]

Leyval C, Turnau K, Haselwandter K, 1997.

Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects

Mycorrhiza, 7:139-153

DOI:10.1007/s005720050174      URL     [本文引用: 1]

Lin LC, Lee MJ, Chen JL, 2011.

Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron (Rhododendron formosanum Hemsl.)

Mycorrhiza, 21(5):331-339

DOI:10.1007/s00572-010-0342-2      URL     [本文引用: 3]

Liu G, Chambers SM, Cairney JWG, 1998.

Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens(Cav.) F. Muell. (Epacridaceae)

New Phytologist, 140:145-153

DOI:10.1046/j.1469-8137.1998.00256.x      URL     [本文引用: 1]

Lorberau KE, Botnen SS, Mundra S, Aas AB, Rozema J, Eidesen PB, Kauserud H, 2017.

Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrubCassiope tetragona (Ericaceae)?

Mycorrhiza, 27:513-524

DOI:10.1007/s00572-017-0767-y      PMID:28349216      [本文引用: 3]

Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.

Marrs RH, Bannister P, 1978.

The adaptation of Calluna vulgaris (L.) Hull to contrasting soil types

New Phytologist, 81:753-761

DOI:10.1111/nph.1978.81.issue-3      URL     [本文引用: 1]

Martino E, Franco B, Piccoli G, Stocchi V, Perotto S, 2002.

Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius

Molecular and Cellular Biochemistry, 231(1):179-185

DOI:10.1023/A:1014485420186      URL     [本文引用: 1]

McLean CB, Lawrie AC, 1996.

Patterns of root colonization in epacridaceous plants collected from different sites

Annals of Botany, 77:405-411

DOI:10.1006/anbo.1996.0049      URL     [本文引用: 1]

McLean CB, Anthony J, Collins RA, Steinke E, Lawrie AC, 1998.

First synthesis of ericoid mycorrhizas in the Epacridaceae under axenic conditions

New Phytologist, 139(3):589-593

DOI:10.1046/j.1469-8137.1998.00213.x      URL     [本文引用: 2]

McLean CB, Cunnington JH, Lawrie AC, 1999.

Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae

New Phytologist, 144:351-358

DOI:10.1046/j.1469-8137.1999.00510.x      URL     [本文引用: 1]

Meharg AA, Cairney JWG, 2000.

Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments

Advances in Ecological Research, 30:69-112

[本文引用: 2]

Midgley DJ, Greenfield P, Bissett A, Tran-Dinh N, 2017.

First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root associated fungi

Mycorrhiza, 27:587-594

DOI:10.1007/s00572-017-0769-9      PMID:28315064      [本文引用: 1]

The prominent ericoid mycorrhizal fungus, Pezoloma ericae, has not been found in Australia to date. In the present study, internal transcribed spacer (ITS) data from the Biomes of Australia Soil Environments (BASE) was searched for evidence of P. ericae and other known ericoid mycorrhizal and root-associated taxa. ITS sequences with high identity to P. ericae, Meliniomyces bicolor, Meliniomyces variabilis, Cairneyella sp. 2, Cadophora finlandica and Woollsia mycorrhizal fungus VI were identified and their distribution in Australia visualised. This is the first evidence that P. ericae, M. bicolor and M. variabilis very likely occur on the Australian continent and provides a set of locations from which to seek isolates for further characterisation. The presence of P. ericae in South America, South Africa, and now Australia suggests a broad and ancient Gondwanan distribution for this well-studied species.

Monni S, Salemaa M, Millar N, 2000a.

The tolerance of Empetrum nigrum to copper and nickel

Environmental Pollution, 109:221-229

DOI:10.1016/S0269-7491(99)00264-X      URL     [本文引用: 1]

Monni S, Salemaa M, White C, Tuittila E, Huopalainen M, 2000b.

Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland

Environmental Pollution, 109:211-219

DOI:10.1016/S0269-7491(99)00265-1      URL     [本文引用: 1]

Monreal M, Berch SM, Berbee M, 1999.

Molecular diversity of ericoid mycorrhizal fungi

Canadian Journal of Botany, 77:1580-1594

DOI:10.1139/b99-107      URL     [本文引用: 4]

Myers MD, Leake JR, 1996.

Phosphodiesters as mycorrhizal P sources. II. Ericoid mycorrhiza and the utilisation of nuclei as a phosphorus and nitrogen source byVaccinium macrocarpon

New Phytologist, 132:445-451

DOI:10.1111/j.1469-8137.1996.tb01864.x      PMID:26763640      [本文引用: 1]

Mycorrhizal plants of Vaccinium mocrocarpon Aiton used nuclei from salmon sperm as a sole source of phosphorus (P) and achieved similar yields, P content and P concentration to plants crown with orthophosphate. Mycorrhizal infection significantly increased the effectiveness of utilization of both inorganic and organic (nuclei) sources of P by Vaccinium but in the case of the organic source this involved providing access to P which was completely unavailable to the uninfected plants. The results provide further support for the view that ericoid mycorrhizas have a crucial role in direct recycling of nutrients from organic matter, independent of the mineralizing activities of saprotrophic micro-organisms.

Nielsena PL, Andresena LC, Michelsena A, Schmidtb IK, Kongstad J, 2009.

Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants

Applied Soil Ecology, 42(3):279-287

DOI:10.1016/j.apsoil.2009.05.006      URL     [本文引用: 2]

Ning CH, Li WB, Yang XL, Liang C, Zhao HH, 2018.

Investigation on the root multiple symbionts and rhizosphere soil AM fungi of blueberry

Mycosystema, 37(9):1143-1153 (in Chinese)

Okuda A, Yamato M, Iwase K, 2011.

The mycorrhiza of Schizocodon soldanelloidesvar. magnus(Diapensiaceae) is regarded as ericoid mycorrhiza from its structure and fungal identities

Mycoscience, 5:1-6

[本文引用: 2]

Perotto S, Actis-Perino E, Perugini J, Bonfante P, 1996.

Molecular diversity of fungi from ericoid mycorrhizal roots

Molecular Ecology, 5:123-131

DOI:10.1111/j.1365-294X.1996.tb00298.x      URL     [本文引用: 1]

Perotto S, Girlanda M, Martino E, 2002.

Ericoid mycorrhizal fungi: some new perspectives on old acquaintances

Plant and Soil, 244:41-53

DOI:10.1023/A:1020289401610      URL     [本文引用: 7]

Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T, 2003.

Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field

Oecologia, 137(2):252-257

PMID:12883986      [本文引用: 1]

A wide range of recent studies have indicated that organic nitrogen may be of great importance to plant nitrogen (N) nutrition. Most of these studies have, however, been conducted in laboratory settings, excluding important factors for actual plant uptake, such as competition, mycorrhizal associations and soil interactions. In order to accurately evaluate the importance of different N compounds to plant N nutrition, field studies are crucial. In this study, we investigated short- as well as long-term plant nitrogen uptake by Deschampsia flexuosa, Picea abies and Vaccinium myrtillus from 15NO3-, 15NH4+ and (U-13C, 15N) arginine, glycine or peptides. Root N uptake was analysed after 6 h and 64 days following injections. Our results show that all three species, irrespective of their type of associated mycorrhiza (arbuscular, ecto- or ericoid, respectively) rapidly acquired similar amounts of N from the entire range of added N sources. After 64 days, P. abies and V. myrtillus had acquired similar amounts of N from all N sources, while for D. flexuosa, the uptake from all N sources except ammonium was significantly lower than that from nitrate. Furthermore, soil analyses indicate that glycine was rapidly decarboxylated after injections, while other organic compounds exhibited slower turnover. In all, these results suggest that a wide range of N compounds may be of importance for the N nutrition of these boreal forest plants, and that the type of mycorrhiza may be of great importance for N scavenging, but less important to the N uptake capacity of plants.

Peterson TA, Mueller WC, Englander L, 1980.

Anatomy and ultrastructure of a Rhododendron root-fungus association

Canadian Journal of Botany, 58:2421-2433

DOI:10.1139/b80-281      URL     [本文引用: 1]

Peterson RL, Massicotte HB, Melville LH, 2004.

Mycorrhizas:anatomy and cell biology

NRC Research Press,Ottawa. 1-173

[本文引用: 1]

Piercey MM, Thormann MN, Currah RS, 2002.

Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicumand Picea mariana in culture

Mycorrhiza, 12(4):175-180

PMID:12189471      [本文引用: 4]

Simultaneous associations among ectotrophic and ericoid mycorrhizal hosts and their mycorrhizal fungi are expected in boreal bogs where ericaceous shrubs and conifers coexist rooted in an organic matrix dominated by Sphagnum mosses. We were thus prompted to examine, in vitro, the abilities of three ericoid mycorrhizal fungi [ Hymenoscyphus ericae, Oidiodendron maius, and Variable White Taxon (VWT)] to associate with Picea mariana (Pinaceae), with both P. mariana and Rhododendron groenlandicum (Ericaceae) simultaneously, and to decompose Sphagnum fuscum. Hymenoscyphus ericae and VWT developed an intracellular association with roots of P. mariana and with roots of R. groenlandicum. Two strains of O. maius did not form typical infection units in R. groenlandicum, nor did they colonize the root cells of P. mariana. Mass losses incurred by sterilized S. fuscum plants inoculated with these three taxa indicated that O. maius could be more efficient as a free-living saprophyte on this material than either H. ericae or VWT and may in part explain why atypical associations with the roots of ericaceous hosts were formed.

Pócsi I, 2011.

Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Bánfalvi G (ed.) Cellular effects of heavy metals

Springer Netherlands. 31-58

[本文引用: 1]

Rains KC, Bledsoe CS, 2007.

Rapid uptake of15N-ammonium and glycine-13C,15N by arbuscular and ericoid mycorrhizal plants native to a Northern California coastal pygmy forest

Soil Biology and Biochemistry, 39(5):1078-1086

DOI:10.1016/j.soilbio.2006.11.019      URL     [本文引用: 1]

Read DJ, Kerley SJ, 1995.

The status and function of ericoid mycorrhizal systems. In: Varma A, Hock B (eds.) Mycorrhiza: structure, function, molecular biology and biotechnology

2nd ed. Springer- Verlag, Berlin. 499-520

[本文引用: 1]

Read DJ, 1996.

The structure and function of ericoid mycorrhizal

Annals of Botany, 77:365-374

DOI:10.1006/anbo.1996.0044      URL     [本文引用: 7]

Read DJ, Perez-Moreno J, 2003.

Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?

New Phytologist, 157:475-492

DOI:10.1046/j.1469-8137.2003.00704.x      URL     [本文引用: 1]

Rice AV, Currah RS, 2005.

Oidiodendron: a survey of the named species and related anamorphs of Myxotrichum

Studies in Mycology, 53:83-120

DOI:10.3114/sim.53.1.83      URL     [本文引用: 1]

Schulz B, 2006.

Mutualistic interaction with fungal root endophytes. In: Schulz B, Boyle C, Sieber T (eds.) Microbial root endophytes

Springer Berlin Heidelberg,Berlin. 261-279

[本文引用: 1]

Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M, 2007.

Sebacinales are common mycorrhizal associates of Ericaceae

New Phytologist, 174:864-878

DOI:10.1111/nph.2007.174.issue-4      URL     [本文引用: 1]

Setaro SD, Kron KA, 2011.

Neotropical and North American Vaccinioideae (Ericaceae) share their mycorrhizal Sebacinales-an indication for concerted migration?

PLoS Currents, 3: RRN1227

[本文引用: 2]

Sharples JM, Meharg AA, Chambers SM, Cairney JWG, 2000a.

Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites

New Phytologist, 148:153-162

DOI:10.1046/j.1469-8137.2000.00734.x      URL     [本文引用: 2]

Sharples JM, Meharg AA, Chambers SM, Cairney JWG, 2000b.

Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae

Plant Physiology, 124:1327-1334

DOI:10.1104/pp.124.3.1327      URL     [本文引用: 2]

Sharples JM, Meharg AA, Chambers SM, Cairney JWG, 2000c.

Symbiotic solution to arsenic contamination

Nature, 404:951-952

[本文引用: 1]

Sikes BA, Cottenie K, Klironomos JN, 2009.

Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas

Journal of Ecology, 97(6):1274-1280

DOI:10.1111/jec.2009.97.issue-6      URL     [本文引用: 1]

Smith SE, Read DJ, 2008.

Mycorrhizal symbiosis (Third Edition)

Academic Press, Cambridge. 389-390

[本文引用: 2]

Steinke E, Williams PG, Ashford AE, 1996.

The structure and fungal associates of mycorrhizas in Leucopogon parviflorus (Andr.) Lindl

Annals of Botany, 77:413-419

DOI:10.1006/anbo.1996.0050      URL     [本文引用: 1]

Straker CJ, 1996.

Ericoid mycorrhiza: ecological and host specificity

Mycorrhiza, 6:215-225

DOI:10.1007/s005720050129      URL     [本文引用: 2]

Sun LF, Pei KQ, Wang F, Ding Q, Bing YH, Gao B, Zheng Y, Liang Y, Ma KP, 2012.

Different distribution patterns between putative ericoid mycorrhizal and other fungal assemblages in roots of Rhododendron decorum in the southwest of China

PLoS One, 7(11):1-10

[本文引用: 2]

Thormann MN, Currah RS, Bayley SE, 2002.

The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates

Canadian Journal of Microbiology, 48(3):204-211

DOI:10.1139/w02-010      URL     [本文引用: 1]

Tian W, Zhang CQ, Qiao P, Milne R, 2011.

Diversity of culturable ericoid mycorrhizal fungi of Rhododendron decorum in Yunnan, China

Mycologia, 103(4):703-709

DOI:10.3852/10-296      PMID:21289105      [本文引用: 3]

The diversity of ericoid mycorrhizal fungi isolated from Rhododendron decorum Franch. in Yunnan, southwestern China, was examined for the first time. In total 300 hair-root samples were collected from 13 R. decorum individuals in two adjacent wild population sites and one cultivated population site. Two hundred eighteen slow-growing isolates were obtained; the ability of some to form ericoid mycorrhiza was tested in vitro. One hundred twenty-five isolates formed hyphal structures morphologically corresponding to ericoid mycorrhiza, and these were determined by morphological and molecular means to belong to 12 fungal species. There were hardly any differences in species among the three sampled populations. The sequences of several isolates were similar to those of Oidiodendron maius and ericoid mycorrhizal fungi from Helotiales, accounting respectively for 18.4% and 24.8% of the total culturable ericoid mycorrhizal fungi assemblage. Dark septate endophytes were detected in the sampled hair roots by microscopy.

Usuki F, Abe JP, Kakishima M, 2003.

Diversity of ericoid mycorrhizal fungi isolated from hair roots of Rhododendron obtusum var. kaempferi in a Japanese red pine forest

Mycoscience, 44:97-102

DOI:10.1007/S10267-002-0086-8      URL     [本文引用: 1]

Vallino M, Zampieri E, Murat C, Girlanda M, Picarella S, Pitet M, Portis E, Martino E, Perotto S, 2011.

Specific regions in the Sod1 locus of the ericoid mycorrhizal fungus Oidiodendron maius from metal-enriched soils show a different sequence polymorphism

FEMS Microbiology Ecology, 75(2):321-331

DOI:10.1111/fem.2010.75.issue-2      URL     [本文引用: 1]

van der Eerden LJ, Dueck ThA, Berdowski JJM, Greven H, van Dobben HF, 1991.

Influence of NH3 and (NH4)2SO4 on heathland vegetation

Acta Botanica Neerlandica, 40:281-296

DOI:10.1111/plb.1991.40.issue-4      URL     [本文引用: 1]

van der Heijden MGA, Bardgett RD, van Straalen NM, 2008.

The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems

Ecology Letters, 11:296-310

DOI:10.1111/ele.2008.11.issue-3      URL     [本文引用: 1]

van der Heijden MGA, Horton TR, 2009.

Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems

Journal of Ecology, 97(6):1139-1150

DOI:10.1111/jec.2009.97.issue-6      URL     [本文引用: 1]

van der Wal A, van Veen JA, Pijl AS, Summerbell RC, de Boer W, 2006.

Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils

Soil Biology and Biochemistry, 38:2890-2902

DOI:10.1016/j.soilbio.2006.04.046      URL     [本文引用: 1]

Villarreal-Ruiz L, Anderson IC, Alexander IJ, 2004.

Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium

New Phytologist, 164:183-192

DOI:10.1111/nph.2004.164.issue-1      URL     [本文引用: 1]

Vohník M, Lukancic S, Bahor E, Regvar M, Vosatka M, Vodnik D, 2003.

Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates

Folia Geobotanica, 38(2):191-200

DOI:10.1007/BF02803151      URL     [本文引用: 2]

Vohník M, Albrechtova J, Vosatka M, 2005.

The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution in Rhododendron cv. Azurro

Symbiosis, 40(2):87-96

[本文引用: 2]

Vohník M, Burdíková Z, Albrechtová J, Vosátka M, 2009.

Testate amoebae (Arcellinida and Euglyphida) vs. ericoid mycorrhizal and DSE fungi: a possible novel interaction in the mycorrhizosphere of ericaceous plants?

Microbial Ecology, 57(1):203-214

DOI:10.1007/s00248-008-9402-y      URL     [本文引用: 1]

Vohník M, Albrechtová J, 2011.

The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species

Folia Geobotanica, 46:373-386

DOI:10.1007/s12224-011-9098-5      URL     [本文引用: 1]

Vohník M, 2020.

Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation

Mycorrhiza, 30:671-695

DOI:10.1007/s00572-020-00989-1      URL     [本文引用: 1]

Vrålstad T, Schumacher T, Taylor AFS, 2001.

Mycorrhizal synthesis between fungal strains of theHymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts

New Phytologist, 153:143-152

DOI:10.1046/j.0028-646X.2001.00290.x      URL     [本文引用: 1]

Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A, 2011.

Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity

New Phytologist, 191(2):515-527

DOI:10.1111/nph.2011.191.issue-2      URL     [本文引用: 2]

Wei X, Chen J, Zhang C, Pan D, 2016.

Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth

Frontiers in Plant Science, 7:1594

Whittaker SP, Cairney JWG, 2001.

Influence of amino acids on biomass production by ericoid mycorrhizal endophytes from Woollsia pungens(Epacridaceae)

Mycological Research, 105:105-111

DOI:10.1017/S0953756200002811      URL     [本文引用: 2]

Wurzburger N, Higgins BP, Hendrick RL, 2011.

Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub

Ecology and Evolution, 2(1):65-79

DOI:10.1002/ece3.67      URL     [本文引用: 1]

Xiao GP, Berch SM, 1992.

Ericoid mycorrhizal fungi of Gaultheria shallon

Mycologia, 84:470-471

DOI:10.1080/00275514.1992.12026162      URL     [本文引用: 1]

Xiao GP, 1994.

The role of root-associated fungi in the dominance of Gaultheria shallon

PhD Dissertation, University of British Columbia, Vancouver. 1-148

[本文引用: 2]

Yang HB, Fang RZ, Jin CL, 2006.

Flora of China. Vol. 57. Fasc.1

Science Press, Beijing. 1-244(in Chinese)

Yu F, Zhang CY, Yin LJ, Lai ZX, 2008.

In vitro inoculation technology of Rhododendron fortunei L. with ericoid mycorrhizal fungi and its inoculation effect

Journal of Fujian Agricaltural Forestrey University (Natural Science Edition), 37(4):360-364

[本文引用: 2]

Zhang CY, Yin LJ, Dai SL, 2009.

Diversity of root-associated fungal endophytes in Rhododendron fortuneiin subtropical forests of China

Mycorrhiza, 19(6):417-423

DOI:10.1007/s00572-009-0246-1      URL     [本文引用: 4]

Zhang YH, Ni J, Tang FP, Pei KQ, Luo YQ, Jiang LF, Sun LF, Liang Y, 2016.

Root-associated fungi of Vaccinium carlesii in subtropical forests of China: intra- and inter-annual variability and impacts of human disturbances

Scientific Reports, 6:22399

DOI:10.1038/srep22399      URL     [本文引用: 3]

Zhang YH, Ni J, Tang FP, Jiang LF, Pei KQ, Guo TR, Sun LF, Liang Y, 2017.

The effects of different human disturbance regimes on root fungal diversity of Rhododendron ovatum in subtropical forests of China

Canadian Journal of Forest Research, 47:659-666

DOI:10.1139/cjfr-2016-0388      URL     [本文引用: 2]

Zhang YH, Tang FP, Ni J, Dong LJ, Sun LF, 2019.

Diversity of root‑associated fungi of Rhododendron simsii in subtropical forests: fungal communities with high resistance to anthropogenic disturbances

Journal Forest Research, 30(6):2321-2330

DOI:10.1007/s11676-019-01050-4      URL     [本文引用: 2]

Zheng Y, Gao B, Sun LF, Bing YH, Pei KQ, 2010.

Diversity of fungi associated with Rhododendron argyrophyllum andR.floribundum hair roots in Sichuan, China

Biodiversity Science, 18(1):76-82 (in Chinese)

DOI:10.3724/SP.J.1003.2010.076      URL    

Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, Braakhekke WG, Berendse F, 2005.

Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass,Deschampsia flexuosa

Studies in Mycology, 53:147-162

DOI:10.3114/sim.53.1.147      URL     [本文引用: 1]

宁楚涵, 李文彬, 杨小龙, 梁晨, 赵洪海, 2018.

蓝莓根系复合共生体及其根区土壤中AM真菌调查

菌物学报, 37(9):1143-1153

[本文引用: 1]

杨汉碧, 方瑞征, 金存礼, 2006. 中国植物志(第57卷第一分册). 北京: 科学出版社. 1-244

[本文引用: 2]

郑钰, 高博, 孙立夫, 邴艳红, 裴克全, 2010.

银叶杜鹃和繁花杜鹃根部真菌的多样性

生物多样性, 18(1):76-82

[本文引用: 1]

/