中文  |  English

菌物学报, 2021, 40(6): 1413-1426 doi: 10.13346/j.mycosystema.200317

研究论文

氨基酸影响尖孢镰孢菌古巴专化型厚垣孢子的形成

丁兆建,1,2,3, 漆艳香2, 曾凡云2, 朱为菊1, 许天委1, 彭军2, 谢艺贤2, 张欣,2,*

1.琼台师范学院生物科学系 海南 海口 571127

2.中国热带农业科学院环境与植物保护研究所 海南 海口 571101

3.琼台师范学院热带生物多样性与资源利用实验室 海南 海口 571127

Amino acid involved in chlamydospore formation of Fusarium oxysporum f. sp. cubense

DING Zhao-Jian,1,2,3, QI Yan-Xiang2, ZENG Fan-Yun2, ZHU Wei-Ju1, XU Tian-Wei1, PENG Jun2, XIE Yi-Xian2, ZHANG Xin,2,*

1. Department of Biological Science, Qiongtai Normal University, Haikou, Hainan 571127, China

2. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China

3. Tropical Biodiversity and Bioresource Utilization Laboratory, Qiongtai Normal University, Haikou, Hainan 571127, China

责任编辑: 王敏

收稿日期: 2020-10-10   接受日期: 2020-12-11   网络出版日期: 2021-06-22

基金资助: 国家自然科学基金.  31801690
2019 年海南省基础与应用基础研究计划高层次人才项目.  2019RC249
现代农业产业技术体系专项.  CARS-31-07
琼台师范学院校级项目.  qtyb201910

Corresponding authors: *E-mail: zhxppi@163.com; ORCID: DING Zhao-Jian (0000-0003-2974-388X)

Received: 2020-10-10   Accepted: 2020-12-11   Online: 2021-06-22

Fund supported: National Natural Science Foundation of China.  31801690
Basic and Applied Basic Program for High-level Talent of Hainan Province.  2019RC249
Project of Modern Agricultural Industrial Technology System.  CARS-31-07
Project of Qiongtai Normal University.  qtyb201910

摘要

香蕉枯萎病是由尖孢镰孢菌古巴专化型Fusarium oxysporum f. sp. cubense(Foc)侵染引起的一种土传真菌病害,已严重威胁香蕉产业的健康发展。该病菌产生的厚垣孢子可在土壤中存活多年,是香蕉枯萎病的初侵染源。本研究通过氨基酸添加试验,证明添加甘氨酸可抑制厚垣孢子的形成;通过对该病菌厚垣孢子形成前期、初期、中期和后期的转录组分析,发现氨基酸合成通路中有93个基因的表达水平在厚垣孢子形成过程中发生了显著变化;In silico 分析表明其中10个基因参与调控真菌的氨基酸合成,11个基因参与调控真菌种的生长发育和产孢,19个基因参与调控真菌种的致病性和毒素产生。由此推测,氨基酸合成通路不仅与尖孢镰孢菌古巴专化型厚垣孢子的形成相关,其有可能参与调控该病菌的致病性。

关键词: 香蕉枯萎病 ; 甘氨酸 ; 形态发育 ; 差异表达基因

Abstract

Fusarium wilt of banana is a devastative soil-borne fungal disease, caused by Fusarium oxysporum f. sp. cubense (Foc) and it is a serious threat to health production of banana. Chlamydospores abundantly produced by Foc could survive for many years in the infected-soil as primary infection sources of the disease. The experimental results indicate that chlamydospore formation of Foc is evidently inhibited by supplement of glycine in the induction system. Transcriptome analyses of mycelial growth, and chlamydospore formation in initial and afterwards developing stages revealed that expression levels of 93 genes varyied in amino acid biosynthesis pathway. Among them, 10 genes were involved in the regulation of fungal amino acid biosynthesis, 11 genes involved in the regulation of fungal growth and conidial formation, and the other 19 genes in the regulation of fungal virulence and toxin production. These results confirm that glycine is involved in chlamydospore formation and virulence of Foc.

Keywords: Fusarium wilt of banana ; glycine ; morphological development ; differential expression genes

PDF (643KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

丁兆建, 漆艳香, 曾凡云, 朱为菊, 许天委, 彭军, 谢艺贤, 张欣. 氨基酸影响尖孢镰孢菌古巴专化型厚垣孢子的形成. 菌物学报[J], 2021, 40(6): 1413-1426 doi:10.13346/j.mycosystema.200317

DING Zhao-Jian, QI Yan-Xiang, ZENG Fan-Yun, ZHU Wei-Ju, XU Tian-Wei, PENG Jun, XIE Yi-Xian, ZHANG Xin. Amino acid involved in chlamydospore formation of Fusarium oxysporum f. sp. cubense. Mycosystema[J], 2021, 40(6): 1413-1426 doi:10.13346/j.mycosystema.200317

香蕉枯萎病是由尖孢镰孢菌古巴专化型 Fusarium oxysporum f. sp. cubense侵染引起的一种土传真菌病害,现已成为热带和亚热带地区香蕉产业的重大威胁(Ploetz 2006)。根据对不同香蕉品种的致病力差异分析,该病菌被分为3个生理小种(1、2和4号生理小种),其中1号生理小种侵染大密哈(Gros Michel,AAA)和基因型为AAB的香蕉品种;2号生理小种侵染棱香蕉(Bluggoe,AAB);4号生理小种几乎侵染所有的香蕉品种,给种植户造成了严重的经济损失(Su et al. 1986)。该病菌产生3种类型的孢子,分别为大型分生孢子、小型分生孢子和厚垣孢子;其中大型分生孢子和小型分生孢子是次级侵染源,多形成于香蕉寄主根部和假茎的表面;厚垣孢子是一种厚壁休眠孢子,是初级侵染源,其可在土壤中存活多年甚至10年以上。当厚垣孢子受到香蕉根部分泌物的信号刺激后,会萌发形成菌丝,侵染香蕉寄主,导致发生香蕉枯萎病(Katan et al. 1997;Ohara & Tsuge 2004;丁兆建等2019a)。

尖孢镰孢菌古巴专化型的致病因子主要包括细胞壁降解酶、信号转导通路、毒素、sRNAs和致病相关基因。在病原菌和寄主互作过程中,病原菌通过分泌一系列细胞壁降解酶降解寄主植物的细胞壁,进而将多糖等营养物质从植物细胞内释放供病原菌生长,促进病原菌的侵入和定殖;多聚半乳糖醛酸酶已被鉴定为尖孢镰孢菌古巴专化型4号生理小种的致病因子(董章勇和王振中 2012)。已有报道表明,FoSlt2 MAPK信号转导通路调控尖孢镰孢菌古巴专化型的生理特性和致病性(Dinget al. 2015 ;Dinget al. 2018a ;丁兆建等 2019b;Dinget al. 2020 );cAMP-PKA信号通路G蛋白亚基FGA2和FGB1参与调控尖孢镰孢菌古巴专化型的生长发育、产孢、耐热性和致病性(Guoet al. 2016 )。镰孢菌酸(fusaric acid,FA)是镰孢菌产生的非寄主专化性毒素,对动物和人类具有中低毒性,但对植物有较高的毒性,可引起多种作物的萎蔫病和根腐病害(Brownet al. 2012 ;Niehauset al. 2014 )。国内外已报道尖孢镰孢菌古巴专化型的多个致萎相关毒素,包括FA、白僵菌素和伏马菌素B1(许文耀等 2004;陈石等 2011;李春雨等 2011;Ding et al. 2018b ;Portal et al. 2018 )。关于植物病原真菌致病相关sRNAs报道较多,灰霉菌Botrytis cinerea、大丽轮枝菌Verticillium dahlia、小麦柄锈菌Puccinia striiformis f. sp. tritici和卵菌Oomycetes产生的sRNAs效应子可跨界传输到寄主细胞中,通过沉默寄主相关免疫基因,抑制寄主植物的免疫反应(Weiberget al. 2013 ;Wanget al. 2016 ;Wanget al. 2017 );关于尖孢镰孢菌古巴专化型sRNAs的研究处于起步阶段,李敏慧等(2019)发现用该病菌接种香蕉苗根部24h后,病原菌编码Dicer 和Argonaute的基因表达显著升高,sRNA测序结果也表明,大量milRNA显著高表达。也有多个相关致病基因得到鉴定,如活性氧迸发转录因子Foatf1(Qiet al. 2013 )、编码α-1,6-甘露糖转移酶的基因FoOCH1Liet al. 2014 )、微管蛋白β1β2刘远征等 2018a,2018b)和Ⅴ型肌球蛋白Myosin5的协作蛋白smy1(何壮等 2019)。尽管该菌的致病机理研究已取得了显著进展,但其致病机制仍不清晰,尤其对作为初侵染源的厚垣孢子的研究也尚未引起足够的重视。

氨基酸是重要的有机化合物,其在蛋白质合成、细胞生长、发育和能量产生等多个生物学过程中起着重要作用。已有研究证明氨基酸代谢与真菌的产孢、生长和致病性相关。在人类致病菌中,赖氨酸合成基因lysF调控烟曲霉Aspergillus fumigatus的致病性(Liebmannet al. 2004 );3个精氨酸合成相关基因Car1Agt1Gbu1调控白念珠菌Candida albicans的生长和致病性(Schaeferet al. 2020 );天冬氨酸合成基因asd的缺失抑制白念珠菌的生长(Dahalet al. 2020 )。L-精氨酸是生防菌盾壳霉Coniothyrium minitans产孢所必需的,其衍生物一氧化氮可能介导其产孢功能(Gonget al. 2007 )。在植物病原菌中,尖孢镰孢菌甜瓜专化型F.oxysporum f. sp. melonis精氨酸合成基因ARG1缺失突变体(Namikiet al. 2001 )和灰霉菌精氨酸合成基因bcass1缺失突变体(Patelet al. 2010 )的致病性均减弱;甲硫氨酸合成基因FgMETB调控禾谷镰孢菌的孢子萌发、菌丝生长、DON毒素产生和致病性(Fuet al. 2013 );谷氨酸合成基因P5Cdh调控栗疫病菌Cryphonectria parasitica的致病性和产孢(Yaoet al. 2013 );甲硫氨酸合成基因MET13Yanet al. 2013 )、赖氨酸合成基因MoLys2Chenet al. 2014 )、苏氨酸合成基因MoIlv1Duet al. 2014 )、精氨酸合成基因(MoARG1MoARG5MoARG6MoARG7)(Zhanget al. 2015 )、亮氨酸合成基因(MoLEU1MoLEU2MoLEU4LEU1LEU2ALEU4)(Queet al. 2020 ;Weiet al. 2020 )与稻瘟菌的生理特性和致病性密切相关。迄今,尚未有氨基酸与尖孢镰孢菌古巴专化型产孢、生长发育和致病性的相关报道。

本研究旨在通过甘氨酸添加试验、转录组和In silico分析尖孢镰孢菌古巴专化型厚垣孢子形成前期、初期、中期和后期的基因表达情况及其功能,揭示氨基酸与该病菌厚垣孢子形成的关系。

1 材料与方法

1.1 菌株和培养条件

本研究采用的菌株尖孢镰孢菌古巴专化型4号生理小种(Foc4)(丁兆建等 2018a),为本实验室保存菌株。采用马铃薯葡萄糖琼脂培养基(PDA)、察氏培养基(Czapek dox medium)进行病菌培养,培养温度为28℃(丁兆建等 2019a)。

1.2 氨基酸添加试验

为了检测氨基酸是否影响尖孢镰孢菌古巴专化型厚垣孢子的形成,本研究开展了甘氨酸(glycine)添加试验,即在该病菌厚垣孢子的诱导形成体系中(丁兆建等 2019a)添加甘氨酸,使其终浓度达到10g/L或者20g/L,96h后观察厚垣孢子的形成情况,以不添加甘氨酸处理作为阳性对照。

1.3 厚垣孢子的定量

根据丁兆建等(2019a)建立的方法进行厚垣孢子定量分级,稍加修改,具体分为4级:利用光学显微镜观察3张玻片(每张玻片不少于5个视野)共计不少于15个视野,视野中无厚垣孢子产生为0级;厚垣孢子覆盖的视野面积小于1/5为厚垣孢子少量产生,定为1级;厚垣孢子覆盖的视野面积大于或等于1/5但小于1/2为厚垣孢子中等产生,定为2级;厚垣孢子覆盖的视野面积大于或等于1/2为厚垣孢子大量产生,定为3级。

1.4 氨基酸合成通路在厚垣孢子形成发育过程中的基因表达概况和聚类分析

利用OmicShare热图工具对厚垣孢子形成发育过程中,富集在氨基酸合成通路的差异表达基因的FPKM(fragments per kilobase per million)值(丁兆建等 2019a),进行基因表达量和聚类分析。

1.5 基因的功能分析

利用Nr、KOG/COG、Swiss-prot、KEGG、GO、Ensembl、mirTarbase、starbase v2.0和PNRD 9大数据库预测和分析基因的功能。

2 结果与分析

2.1 甘氨酸的添加影响尖孢镰孢菌古巴专化型厚垣孢子的形成

在该病菌厚垣孢子的诱导形成体系中添加甘氨酸,当甘氨酸的添加量达到10g/L时,96h后该病菌菌丝顶端仍有少量厚垣孢子形成(图1A);当甘氨酸的添加量达到20g/L时,96h后该病菌菌丝顶端则无厚垣孢子形成(图1B);而未添加甘氨酸的对照,该病菌菌丝顶端则有大量厚垣孢子形成(图1C)。由此说明,氨基酸合成通路与该病菌厚垣孢子的形成相关。

图1

图1   甘氨酸抑制尖孢镰孢菌古巴专化型厚垣孢子的形成

A:菌丝产生少量厚垣孢子;B:菌丝无厚垣孢子产生;C:作为阳性对照(CK)菌丝产生大量厚垣孢子;标尺=20µm

Fig. 1   Effects of glycine supplement on formation of Foc chlamydospores.

A: Fewer chlamydospores produced; B: No chlamydospores produced; C: Abundant chlamydospores produced as positive control (CK). Bars=20µm.


2.2 氨基酸合成通路基因的表达分析

通过对尖孢镰孢菌古巴专化型4号生理小种厚垣孢子形成发育过程(0h:形成前期;24h:形成初期;48h:形成中期;96h:形成后期)的厚垣孢子菌丝样品的RNA-seq数据分析,发现氨基酸合成通路中有93个基因的表达水平发生了显著变化;在24h时,有15个基因的表达水平上调,26个基因的表达水平下调;在48h时,有12个基因的表达水平上调,24个基因的表达水平下调;在96h时,有14个基因的表达水平上调,22个基因的表达水平下调(图2)。另外,氨基酸合成通路中,厚垣孢子形成24h、48h和96h时的差异基因的表达趋势较为类似,但均与厚垣孢子形成前期0h时基因的表达趋势有显著差异(图2)。

图2

图2   氨基酸合成通路在尖孢镰孢菌古巴专化型厚垣孢子形成过程中的基因表达趋势

列表示差异表达基因,行表示不同样本. 0h:厚垣孢子形成前期;24h:厚垣孢子形成初期;48h:厚垣孢子形成中期;96h:厚垣孢子形成后期

Fig. 2   Expression profiles of differential expression genes of amino acid biosynthesis pathway across various developmental stages of Foc chalmydospore formation.

Columns indicating differential expression genes and rows indicating different samples. 0h: The mycelial stage; 24h: Initial stage of chlamydospore formation; 48h: Middle stage of chlamydospore formation; 96h: Later stage of chlamydospore formation.


2.3 氨基酸合成通路差异表达基因的功能分析

通过对氨基酸合成通路93个差异表达基因的In silico分析,发现其中部分差异表达基因在其他真菌已得到鉴定,如FOIG_05525FOIG_05468FOIG_09550FOIG_075934个基因的同源基因参与调控真菌亮氨酸的合成(Liebmannet al. 2004 ;Queet al. 2020 );FOIG_12215FOIG_09392的同源基因参与调控尖孢镰孢菌甜瓜专化型精氨酸的合成(Namikiet al. 2001 );FOIG_12832FOIG_03926的同源基因参与调控白念珠菌甘氨酸的合成(McNeilet al. 2000 );FOIG_05323的同源基因参与调控烟曲霉支链氨基酸的合成(Oliveret al. 2012 );FOIG_02315的同源基因参与调控白念珠菌天冬氨酸的合成(Dahalet al. 2020 );FOIG_01066FOIG_01154FOIG_10878FOIG_02315FOIG_07232FOIG_07170FOIG_03322FOIG_05025FOIG_10638FOIG_07565FOIG_0314711个基因的同源基因参与调控真菌的生长发育或产孢(Puyeskyet al. 1997 ;Baidyaroyet al. 2001 ;Rodakiet al. 2006 ;Dinget al. 2010 ;Kuret al. 2010 ;Gerkeet al. 2012 ;Fuet al. 2013 ;Duet al. 2014 ;Fernandezet al. 2014 ;Dahalet al. 2020 ;Schaeferet al. 2020 );FOIG_00393FOIG_01066FOIG_12215FOIG_05468FOIG_05352FOIG_05323FOIG_06701FOIG_06470FOIG_09550FOIG_05525FOIG_09392FOIG_07410FOIG_07232FOIG_05897FOIG_03295FOIG_05025FOIG_15020FOIG_07593FOIG_0756519个基因的同源基因参与调控真菌的致病性或毒素产生(Chenget al. 1999 ;Baidyaroyet al. 2001 ;Namikiet al. 2001 ;Liebmannet al. 2004 ;Seonget al. 2005 ;Dinget al. 2010 ;Kingsbury & McCusker 2010;Oliveret al. 2012 ;Fuet al. 2013 ;Yaoet al. 2013 ;Duet al. 2014 ;Liet al. 2018 ;Guoet al. 2019 ;Queet al. 2020 ;Schaeferet al. 2020 ;Weiet al. 2020 )(表1)。由此说明,氨基酸合成通路不仅与尖孢镰孢菌古巴专化型的氨基酸合成和厚垣孢子形成相关,其有可能参与调控该病菌的致病性。

表1   尖孢镰孢菌古巴专化型氨基酸合成通路差异表达基因的功能注释

Table 1  Functional annotation of differential expression genes in amino acid biosynthesis pathway of Foc

编号
Numbers
基因编号
Gene ID
功能注释
Functional annotation
1FOIG_00566Aromatic amino acid aminotransferaseⅠ
2FOIG_00952Anthranilate phosphoribosyltransferase
3FOIG_01066Cystathionine gamma-synthase
4FOIG_01095Phospho-2-dehydro-3-deoxyheptonate aldolase
5FOIG_01154S-adenosylmethionine synthase
6FOIG_01247Saccharopine dehydrogenase [NADP+, L-glutamate-forming]
7FOIG_01371Histidine biosynthesis trifunctional protein
8FOIG_01426Cysteine synthase A
9FOIG_00491Enolase
10FOIG_10878Homocitrate synthase
11FOIG_10889Homocitrate synthase
12FOIG_10894Threonine ammonia-lyase
13FOIG_11063Glutamine synthetase
14FOIG_02661D-3-phosphoglycerate dehydrogenase 2
15FOIG_02712Aspartate kinase
16FOIG_03010Pyruvate carboxylase
17FOIG_12215Argininosuccinate lyase
18FOIG_057061-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino]
imidazole-4-carboxamide isomerase
19FOIG_05674Cysteine synthase
20FOIG_05558Triosephosphate isomerase
21FOIG_055253-isopropylmalate dehydrogenase
22FOIG_054682-isopropylmalate synthase
23FOIG_05352Cystathionine beta-synthase
24FOIG_05333Anthranilate synthase componentⅠ
25FOIG_05323Dihydroxy-acid dehydratase
26FOIG_02062Transaldolase
27FOIG_02315Aspartate-semialdehyde dehydrogenase
28FOIG_02363N-acetyl-gamma-glutamyl-phosphate reductase
29FOIG_13030Serine hydroxymethyltransferase
30FOIG_06711Hypothetical protein
31FOIG_06701Cystathionine beta-lyase
32FOIG_06470Dihydroxy-acid dehydratase 32
33FOIG_095503-isopropylmalate dehydrogenase
34FOIG_09392Argininosuccinate lyase
35FOIG_09242Isocitrate dehydrogenase
36FOIG_07410Homoserine kinase
37FOIG_07356Glutamine synthetase
38FOIG_07325Aconitate hydratase
39FOIG_07232Threonine dehydratase
40FOIG_07231Ketol-acid reductoisomerase
41FOIG_07186Imidazole glycerol phosphate synthase
42FOIG_07170Transketolase
43FOIG_071393-dehydroquinate dehydrataseⅠ
44FOIG_06947Serine hydroxymethyltransferase
45FOIG_05897Branched-chain amino acid aminotransferase
46FOIG_05815Isocitrate dehydrogenase [NAD] subunit 2
47FOIG_058023-isopropylmalate dehydratase
48FOIG_12948Chorismate mutase
49FOIG_12894Histidinol-phosphate aminotransferase
50FOIG_12832Threonine aldolase
51FOIG_03552Arginine biosynthesis ArgJ/imidazoleglycerol-phosphate dehydratase
52FOIG_03547Argininosuccinate synthase
53FOIG_035303-isopropylmalate dehydrogenase
54FOIG_03370Phosphoserine aminotransferase
55FOIG_03322Glyceraldehyde 3-phosphate dehydrogenase
56FOIG_03295Acetolactate synthase small subunit/ornithine carbamoyltransferase
57FOIG_03282Serine hydroxymethyltransferase
58FOIG_03147Cystathionine gamma-synthase
59FOIG_07996Acetylornithine deacetylase
60FOIG_12306Threonine synthase
61FOIG_12350Isocitrate dehydrogenase [NAD] subunit 1
62FOIG_05025Histone deacetylase HOS3/histidinol-phosphatase (PHP family)
63FOIG_05200Hypothetical protein
64FOIG_08726Hypothetical protein
65FOIG_10638Fructose-bisphosphate aldolase, classⅡ
66FOIG_10703Dihydroxy-acid dehydratase 34
67FOIG_10822Ribose 5-phosphate isomerase A
68FOIG_00196L-aminoadipate-semialdehyde dehydrogenase
69FOIG_00219Acetylornithine aminotransferase
70FOIG_00381Glutamate synthase [NADPH]
71FOIG_00393Citrate synthase
72FOIG_00398O-acetylhomoserine (thiol)-lyase
73FOIG_00427Homoisocitrate dehydrogenase/elongation factor G
74FOIG_04097Acetolactate synthaseⅠ/Ⅱ/Ⅲ large subunit
75FOIG_03966Phosphoglycerate kinase
76FOIG_03926Threonine aldolase
77FOIG_15020Pyrroline-5-carboxylate reductase
78FOIG_10094Aspartate aminotransferase
79FOIG_07865Tryptophan synthase
80FOIG_077535-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase
81FOIG_07622Ubiquitin thiolesterase
82FOIG_07593Homoaconitase
83FOIG_07565Arginase
84FOIG_10462Aspartate aminotransferase
85FOIG_11367Branched-chain amino acid aminotransferase
86FOIG_11377N-acetyl-gamma-glutamyl-phosphate reductase
87FOIG_04525Argininosuccinate synthase
88FOIG_043483-phosphoshikimate 1-carboxyvinyltransferase
89FOIG_09624Citrate synthase
90FOIG_16458O-acetylhomoserine (thiol)-lyase
91FOIG_16452Aspartate kinase
92FOIG_02596Pyruvate kinase
93FOIG_14822Acetylornithine deacetylase 27

新窗口打开| 下载CSV


3 讨论

本研究通过甘氨酸添加试验,证明外源甘氨酸抑制尖孢镰孢菌古巴专化型4号生理小种厚垣孢子的形成;对该病菌厚垣孢子形成过程的转录组分析,发现氨基酸合成通路中有93个基因的表达水平在厚垣孢子形成过程中发生了显著变化;In silico分析表明其中10个基因与真菌氨基酸合成相关,11个基因与真菌生长发育和产孢相关,19个基因与真菌致病性和毒素产生相关。总之,本研究揭示了氨基酸影响尖孢镰孢菌古巴专化型厚垣孢子的形成。

氨基酸合成通路通过调控氨基酸的合成,影响尖孢镰孢菌古巴专化型厚垣孢子的形成。前人的研究表明,氨基酸合成基因的敲除能导致氨基酸的合成缺失,同时影响真菌生长或产孢,如白念珠菌精氨酸合成基因 Car1Agt1Gbu1Schaeferet al. 2020 )及天冬氨酸合成基因asdDahalet al. 2020 ),禾谷镰孢菌甲硫氨酸合成基因FgMETBFuet al. 2013 )、栗疫病菌谷氨酸合成基因 P5CdhYaoet al. 2013 )、稻瘟菌甲硫氨酸合成基因MET13Yanet al. 2013 )、赖氨酸合成基因MoLys2Chenet al. 2014 )、苏氨酸合成基因MoIlv1Duet al. 2014 )、精氨酸合成基因(MoARG1MoARG5MoARG6MoARG7)(Zhanget al. 2015 )、亮氨酸合成基因(MoLEU1MoLEU2MoLEU4LEU1LEU2ALEU4)(Queet al. 2020 ;Weiet al. 2020 )。值得指出的是,这些氨基酸合成基因的同源基因的表达水平在尖孢镰孢菌古巴专化型厚垣孢子形成过程中均发生了变化。此外,本研究发现外源甘氨酸抑制尖孢镰孢菌古巴专化型厚垣孢子的诱导形成。这些数据确认了氨基酸合成基因与尖孢镰孢菌古巴专化型厚垣孢子形成存在联系,氨基酸合成通路可通过调控氨基酸合成基因的转录,进而影响尖孢镰孢菌古巴专化型厚垣孢子的形成。

氨基酸如何影响真菌产孢、生长或者抑制尖孢镰孢菌古巴专化型厚垣孢子形成呢?真菌为适应不同或者变化的环境,会尽可能广泛地选择营养来源。有些真菌种类利用氨基酸的降解产物作为唯一氮源,有的则利用其作为唯一碳源,有的则两者兼有之(Rzadet al. 2018 ),如白念珠菌、新型隐球菌Cryptococcus neoformans和烟曲霉利用赖氨酸作为唯一氮源,酿酒酵母则利用赖氨酸作为唯一的碳源而非唯一氮源(Kinzelet al. 1983 )。已有报道表明,碳源的浓度与真菌厚垣孢子的形成相关,高浓度的葡萄糖抑制白色念珠菌和镰孢菌厚垣孢子的形成,缺乏或者低浓度的葡萄糖可促使镰孢菌厚垣孢子的形成(Qureshi & Page 1970;Griffin 1976;Mandal & Chaudhuri 2013;Bottcheret al. 2016 )。前期的研究发现,作为碳源的N-乙酰葡糖胺浓度达到20g/L时,尖孢镰孢菌古巴专化型的菌丝不产生厚垣孢子;当N-乙酰葡糖胺缺乏时,其菌丝可产生大量厚垣孢子(丁兆建等 2019a)。由此推测,外源甘氨酸的添加导致碳源的浓度升高,从而抑制尖孢镰孢菌古巴专化型厚垣孢子的诱导形成。

鉴于氨基酸是影响尖孢镰孢菌古巴专化型厚垣孢子形成的重要因子,其合成通路有望成为香蕉枯萎病防控的新靶标。然而,该通路的差异表达基因是否具有调控尖孢镰孢菌古巴专化型产孢、生长和致病性等功能,仍需要通过基因敲除等方法进行验证。

参考文献

Baidyaroy D, Brosch G, Ahn JH, Graessle S, Wegener S, Tonukari NJ, Caballero O, Loidl P, Walton JD, 2001.

A gene related to yeast HOS2 histone deacetylase affects extracellular depolymerase expression and virulence in a plant pathogenic fungus

Plant Cell, 13(7):1609-1624

PMID:11449054      [本文引用: 2]

A gene, HDC1, related to the Saccharomyces cerevisiae histone deacetylase (HDAC) gene HOS2, was isolated from the filamentous fungus Cochliobolus carbonum, a pathogen of maize that makes the HDAC inhibitor HC-toxin. Engineered mutants of HDC1 had smaller and less septate conidia and exhibited an approximately 50% reduction in total HDAC activity. Mutants were strongly reduced in virulence as a result of reduced penetration efficiency. Growth of hdc1 mutants in vitro was normal on glucose, slightly decreased on sucrose, and reduced by 30 to 73% on other simple and complex carbohydrates. Extracellular depolymerase activities and expression of the corresponding genes were downregulated in hdc1 mutant strains. Except for altered conidial morphology, the phenotypes of hdc1 mutants were similar to those of C. carbonum strains mutated in ccSNF1 encoding a protein kinase necessary for expression of glucose-repressed genes. These results show that HDC1 has multiple functions in a filamentous fungus and is required for full virulence of C. carbonum on maize.

Bottcher B, Pollath C, Staib P, Hube B, Brunke S, 2016.

Candida species rewired hyphae developmental programs for chlamydospore formation

Frontiers in Microbiology, 7:1697

[本文引用: 1]

Brown DW, Butchko RA, Busman M, Proctor RH, 2012.

Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production inFusarium verticillioides

Fungal Genetics and Biology, 49(7):521-532

DOI:10.1016/j.fgb.2012.05.010      URL     [本文引用: 1]

Chen S, Li CY, Yi GJ, Zhou HL, Zheng JX, 2011.

Research advances on pathogenic mechanism of Fusarium oxysporum

Chinese Agricultural Science Bulletin, 27(13):74-78 (in Chinese)

Chen Y, Zuo R, Zhu Q, Sun Y, Li M, Dong Y, Ru Y, Zhang H, Zheng X, Zhang Z, 2014.

MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae

Fungal Genetics and Biology, 67:51-57

DOI:10.1016/j.fgb.2014.04.001      URL     [本文引用: 2]

Cheng YQ, Ahn JH, Walton JD, 1999.

A putative branched-chain-amino-acid transaminase gene required for HC-toxin biosynthesis and pathogenicity inCochliobolus carbonum

Microbiology (Reading), 145(Pt 12):3539-3546

DOI:10.1099/00221287-145-12-3539      URL     [本文引用: 1]

Dahal GP, Launder D, McKeone KMM, Hunter JP, Conti HR, Viola RE, 2020.

Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans

Drug Development Research, 81(6):736-744

DOI:10.1002/ddr.v81.6      URL     [本文引用: 4]

Ding SL, Liu W, Iliuk A, Ribot C, Vallet J, Tao A, Wang Y, Lebrun MH, Xu JR, 2010.

The tig1 histone deacetylase complex regulates infectious growth in the rice blast fungusMagnaporthe oryzae

Plant Cell, 22(7):2495-2508

DOI:10.1105/tpc.110.074302      URL     [本文引用: 2]

Ding Z, Li M, Sun F, Xi P, Sun L, Zhang L, Jiang Z, 2015.

Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense

PLoS One, 10(4):e0122634

[本文引用: 1]

Ding ZJ, Qi YX, Zeng FY, Peng J, Xie YX, Zhang X, 2018a.

A transcription factor FoSwi6 regulates physiology traits and virulence in Fusarium oxysporum f. sp. cubense

Acta Phytopathologica Sinica, 48(5):601-610 (in Chinese)

[本文引用: 1]

Ding ZJ, Qi YX, Zeng FY, Peng J, Xie YX, Zhang X, 2019a.

Amino sugar metabolism pathway involved in chlamydospore formation of Fusarium oxysporum f. sp. cubense

Mycosystema, 38(4):485-493 (in Chinese)

[本文引用: 1]

Ding ZJ, Wu XX, Sun JM, Chen LX, Fu QY, Xu TW, 2019b.

Transcriptome analysis of the MAPK FoSlt2 deletion mutant of Fusarium oxysporum f. sp. cubense

Mycosystema, 38(7):1090-1098 (in Chinese)

Ding Z, Xu T, Zhu W, Li L, Fu Q, 2020.

A MADS-box transcription factor FoRlm1 regulates aerial hyphal growth, oxidative stress, cell wall biosynthesis and virulence in Fusarium oxysporum f. sp. cubense

Fungal Biology, 124(3-4):183-193

DOI:10.1016/j.funbio.2020.02.001      URL     [本文引用: 1]

Ding Z, Yang L, Wang G, Guo L, Liu L, Wang J, Huang J, 2018b.

Fusaric acid is a virulence factor of Fusarium oxysporum f. sp. cubenseon banana plantlets

Tropical Plant Pathology, 43(4):297-305

DOI:10.1007/s40858-018-0230-4      URL    

Dong ZY, Wang ZZ, 2012.

Research progress of fungal cell wall degrading enzyme

Hubei Agricultural Science, 51(21):4697-4700 (in Chinese)

Du Y, Hong L, Tang W, Li L, Wang X, Ma H, Wang Z, Zhang H, Zheng X, Zhang Z, 2014.

Threonine deaminase MoIlv1 is important for conidiogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae

Fungal Genetics and Biology, 73:53-60

DOI:10.1016/j.fgb.2014.10.001      URL     [本文引用: 4]

Fernandez J, Marroquin-Guzman M, Wilson RA, 2014.

Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae

PLoS Pathogens, 10(9):e1004354

DOI:10.1371/journal.ppat.1004354      URL     [本文引用: 1]

Fu J, Wu J, Jiang J, Wang Z, Ma Z, 2013.

Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum

Fungal Biology, 117(1):13-21

DOI:10.1016/j.funbio.2012.11.001      URL     [本文引用: 4]

Gerke J, Bayram O, Braus GH, 2012.

Fungal S-adenosylmethionine synthetase and the control of development and secondary metabolism in Aspergillus nidulans

Fungal Genetics and Biology, 49(6):443-454

DOI:10.1016/j.fgb.2012.04.003      URL     [本文引用: 1]

Gong X, Fu Y, Jiang D, Li G, Yi X, Peng Y, 2007.

L-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans

Fungal Genetics and Biology, 44(12):1368-1379

DOI:10.1016/j.fgb.2007.07.007      URL     [本文引用: 1]

Griffin GJ, 1976.

Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation byFusarium solani

Canadian Journal of Microbiology, 22(9):1381-1389

DOI:10.1139/m76-202      URL     [本文引用: 1]

Guo L, Yang L, Liang C, Wang J, Liu L, Huang J, 2016.

The G-protein subunits FGA2 and FGB1 play distinct roles in development and pathogenicity in the banana fungal pathogen Fusarium oxysporum f. sp. cubense

Physiological and Molecular Plant Pathology, 93:29-38

DOI:10.1016/j.pmpp.2015.12.003      URL     [本文引用: 1]

Guo SX, Yao GF, Ye HR, Tang J, Huang ZQ, Yang F, Li YH, Han Z, Hu LY, Zhang H, Hu LY, Zhang H, Hu KD, 2019.

Functional characterization of a cystathionine beta-synthase gene in sulfur metabolism and pathogenicity of Aspergillus niger in pear fruit

Journal of Agricultural Food Chemistry, 67(16):4435-4443

DOI:10.1021/acs.jafc.9b00325      URL     [本文引用: 1]

He Z, Qi YX, Zeng FY, Ding ZJ, Liang JM, Zhang X, Peng J, Xie PL, Xie YX, 2019.

Effects of smy1 gene knockout on physiological function of Fusarium oxysporum f. sp. cubense race 4

Chinese Journal of Tropical Crops, 40(12):2447-2455 (in Chinese)

Katan T, Shlevin E, Katan J, 1997.

Sporulation of Fusarium oxysporum f. sp. lycopersici on stem surfaces of tomato plants and aerial dissemination of inoculum

Phytopathology, 87(7):712-719

PMID:18945093      [本文引用: 1]

Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control.

Kingsbury JM, McCusker JH, 2010.

Fungal homoserine kinase (thr1Δ) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation

Eukaryotic Cell, 9(5):729-737

DOI:10.1128/EC.00045-10      URL     [本文引用: 1]

Kinzel JJ, Winston MK, Bhattacharjee JK, 1983.

Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source forRhodotorula glutinis

Journal of Bacteriology, 155(1):417-419

DOI:10.1128/jb.155.1.417-419.1983      URL     [本文引用: 1]

Kur K, Gabriel I, Morschhauser J, Barchiesi F, Spreghini E, Milewski S, 2010.

Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence

Mycopathologia, 170(6):397-402

DOI:10.1007/s11046-010-9337-y      URL     [本文引用: 1]

Li CY, Chen S, Zuo CW, Kuang RK, Yi GJ, 2011.

Identification of beauvericin, a novel mycotoxin from Fusarium oxysporum f. sp. cubense

Acta Horticulturae Sinica, 38(11):2092-2098 (in Chinese)

Li D, Pang L, Yuan P, Zheng P, Huai B, Yao M, Kang Z, Liu J, 2018.

A novel citrate synthase isoform contributes infection and stress resistance of the stripe rust fungus

Environmental Microbiology, 20(11):4037-4050

DOI:10.1111/emi.2018.20.issue-11      URL     [本文引用: 1]

Li MH, Yuan ML, JIang ZD, Li HP, 2019.

Research progress in pathogenic mechanism ofFusarium oxysporum f. sp. cubense

Journal of Fruit Science, 36(6):803-811 (in Chinese)

Li MH, Xie XL, Lin XF, Shi JX, Ding ZJ, Ling JF, Xi PG, Zhou JN, Leng Y, Zhong S, Jiang ZD, 2014.

Functional characterization of the gene FoOCH1 encoding a putative alpha-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense

Fungal Genetics and Biology, 65:1-13

DOI:10.1016/j.fgb.2014.01.005      URL     [本文引用: 1]

Liebmann B, Muhleisen TW, Muller M, Hecht M, Weidner G, Braun A, Brock M, Brakhage AA, 2004.

Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis

Archives of Microbiology, 181(5):378-383

DOI:10.1007/s00203-004-0667-3      URL     [本文引用: 3]

Liu YV, Qi YX, Zeng FY, Ding ZJ, He Z, Peng J, Zhang X, Xie PL, Xie YX, 2018a.

Functional analysis of the β1-tubulin gene in Fusarium oxysporum f. sp. cubenserace 4

Chinese Journal of Tropical Crops, 39(6):1153-1160 (in Chinese)

Liu YZ, Qi YX, Zeng FY, Ding ZJ, He Z, Peng J, Zhang X, Xie YX, 2018b.

Gene knockout and phenotype analysis of the β2-tubulin in Fusarium oxysporum f. sp. cubense race 4

Journal of Fruit Science, 35(12):1467-1477 (in Chinese)

Mandal DN, Chaudhuri SJIP, 2013.

Induction of chlamydospore in Fusarium moniliforme

Indian Phytopathology, 125(2):794-800

[本文引用: 1]

McNeil JB, Flynn J, Tsao N, Monschau N, Stahmann K, Haynes RH, McIntosh EM, Pearlman RE, 2000.

Glycine metabolism in Candida albicans: characterization of the serine hydroxymethyltransferase (SHM1, SHM2) and threonine aldolase (GLY1) genes

Yeast, 16(2):167-175

PMID:10641038      [本文引用: 1]

Genes encoding the mitochondrial (SHM1) and cytosolic (SHM2) serine hydroxymethyltransferases, and the L-threonine aldolase gene (GLY1) from Candida albicans were cloned and sequenced. All three genes are involved in glycine metabolism. The C. albicans Shm1 protein is 82% identical to that from Saccharomyces cerevisiae and 56% identical to that from Homo sapiens. The corresponding identities for the Shm2 proteins are 68% and 53%. The Gly1 protein shares significant identity with the S. cerevisiae L-threonine aldolase (55%) and also with threonine aldolases from Aeromonas jandiae (36%) and Escherichia coli (36%). Genetic ablation experiments show that GLY1 is a non-essential gene in C. albicans and that L-threonine aldolase plays a lesser role in glycine metabolism than it does in S. cerevisiae. GenBank Accession Nos of the C. albicans SHM1 and SHM2 are AF009965 and AF009966, respectively. Accession No. for C. albicans GLY1 is AF009967. Copyright 2000 John Wiley & Sons, Ltd.

Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T, 2001.

Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis

Molecular Plant Microbe Interactions, 14(4):580-584

DOI:10.1094/MPMI.2001.14.4.580      URL     [本文引用: 3]

Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B, 2014.

Characterization of the fusaric acid gene cluster in Fusarium fujikuroi

Applied Microbiology Biotechnology, 98(4):1749-1762

DOI:10.1007/s00253-013-5453-1      URL     [本文引用: 1]

Ohara T, Tsuge T, 2004.

FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum

Eukaryotic Cell, 3(6):1412-1422

DOI:10.1128/EC.3.6.1412-1422.2004      URL     [本文引用: 1]

Oliver JD, Kaye SJ, Tuckwell D, Johns AE, Macdonald DA, Livermore J, Warn PA, Birch M, Bromley MJ, 2012.

The Aspergillus fumigatusdihydroxyacid dehydratase Ilv3A/IlvC is required for full virulence

PLoS One, 7(9):e43559

DOI:10.1371/journal.pone.0043559      URL     [本文引用: 2]

Patel RM, van Kan JA, Bailey AM, Foster GD, 2010.

Inadvertent gene silencing of argininosuccinate synthase (bcass1) inBotrytis cinerea by the pLOB1 vector system

Molecular Plant Pathology, 11(5):613-624

[本文引用: 1]

Ploetz RC, 2006.

Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense

Phytopathology, 96(6):653-656

DOI:10.1094/PHYTO-96-0653      PMID:18943184      [本文引用: 1]

Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.

Portal N, Soler A, Alphonsine PAM, Borras-Hidalgo O, Portieles R, Pena-Rodriguez LM, Yanes E, Herrera L, Solano J, Ribadeneira C, Walton JD, Santos R, 2018.

Nonspecific toxins as components of a host-specific culture filtrate from Fusarium oxysporum f. sp. cubense race 1

Plant Pathology, 67(2):467-476

DOI:10.1111/ppa.2018.67.issue-2      URL     [本文引用: 1]

Puyesky M, Ponce-Noyola P, Horwitz BA, Herrera-Estrella A, 1997.

Glyceraldehyde-3- phosphate dehydrogenase expression in Trichoderma harzianum is repressed during conidiation and mycoparasitism

Microbiology, 143(10):3157-3164

DOI:10.1099/00221287-143-10-3157      URL     [本文引用: 1]

Qi XZ, Guo LJ, Yang LY, Huang JS, 2013.

Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of cavendish banana (Musa spp.)

Physiological and Molecular Plant Pathology, 84:76-85

DOI:10.1016/j.pmpp.2013.07.007      URL     [本文引用: 1]

Que Y, Yue X, Yang N, Xu Z, Tang S, Wang C, Lv W, Xu L, Talbot NJ, Wang Z, 2020.

Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae

Current Genetics, 66(1):155-171

DOI:10.1007/s00294-019-01009-2      URL     [本文引用: 4]

Qureshi AA, Page OT, 1970.

Observations on chlamydospore production by Fusarium in a two-salt solution

Canadian Journal of Microbiology, 16(1):29-32

DOI:10.1139/m70-005      URL     [本文引用: 1]

Rodaki A, Young T, Brown AJ, 2006.

Effects of depleting the essential central metabolic enzyme fructose-1,6-bisphosphate aldolase on the growth and viability ofCandida albicans: implications for antifungal drug target discovery

Eukaryotic Cell, 5(8):1371-1377

DOI:10.1128/EC.00115-06      URL     [本文引用: 1]

Rzad K, Milewski S, Gabriel I, 2018.

Versatility of putative aromatic aminotransferases from Candida albicans

Fungal Genetics and Biology, 110:26-37

DOI:10.1016/j.fgb.2017.11.009      URL     [本文引用: 1]

Schaefer K, Wagener J, Ames RM, Christou S, MacCallum DM, Bates S, Gow NAR, 2020.

Three related enzymes in Candida albicans achieve arginine- and agmatine-dependent metabolism that is essential for growth and fungal virulence

mBio, 11(4):e01845-20

[本文引用: 4]

Seong K, Hou Z, Tracy M, Kistler HC, Xu JR, 2005.

Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum

Phytopathology, 95(7):744-750

DOI:10.1094/PHYTO-95-0744      URL     [本文引用: 1]

Su HJ, Hwang SC, Ko WH, 1986.

Fusarial wilt of Cavendish bananas in Taiwan

Phytopathology, 70:814-818

[本文引用: 1]

Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, Wang X, Kang Z, 2017.

Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene

New Phytologist, 215(1):338-350

DOI:10.1111/nph.2017.215.issue-1      URL     [本文引用: 1]

Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H, 2016.

Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection

Nature Plants, 2:16151

DOI:10.1038/nplants.2016.151      URL     [本文引用: 1]

Wei C, Qin T, Li Y, Wang W, Dong T, Wang Q, 2020.

Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.)

Biochemical and Biophysical Research Communications, 524(2):392-397

DOI:10.1016/j.bbrc.2020.01.126      URL     [本文引用: 3]

Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H, 2013.

Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways

Science, 342(6154):118-123

[本文引用: 1]

Xu WY, Wu XH, Lin CH, 2004.

The toxicity of the crude toxin of Fusarium oxysporum f. sp. cubense and its model

Chinese Journal of Tropical Crops, 25(4):25-29 (in Chinese)

Yan X, Que Y, Wang H, Wang C, Li Y, Yue X, Ma Z, Talbot NJ, Wang Z, 2013.

The MET13 methylenetetrahydrofolate reductase gene is essential for infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae

PLoS One, 8(10):e76914

DOI:10.1371/journal.pone.0076914      URL     [本文引用: 2]

Yao Z, Zou C, Zhou H, Wang J, Lu L, Li Y, Chen B, 2013.

Δ1-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation

PLoS One, 8(9):e73483

DOI:10.1371/journal.pone.0073483      URL     [本文引用: 3]

Zhang Y, Shi H, Liang S, Ning G, Xu N, Lu J, Liu X, Lin F, 2015.

MoARG1, MoARG5,6 and MoARG7 involved in arginine biosynthesis are essential for growth, conidiogenesis, sexual reproduction, and pathogenicity in Magnaporthe oryzae

Microbiological Research, 180:11-22

DOI:10.1016/j.micres.2015.07.002      URL     [本文引用: 2]

陈石, 李春雨, 易干军, 周红玲, 郑加协, 2011.

尖镰孢菌致病机理研究进展

中国农学通报, 27(13):74-78

[本文引用: 1]

丁兆建, 漆艳香, 曾凡云, 彭军, 谢艺贤, 张欣, 2018a.

转录因子FoSwi6调控香蕉枯萎病菌的生理特性和致病性

植物病理学报, 48(5):601-610

[本文引用: 1]

丁兆建, 漆艳香, 曾凡云, 彭军, 谢艺贤, 张欣, 2019a.

氨基糖代谢通路影响尖孢镰刀菌古巴专化型厚垣孢子的形成

菌物学报, 38(4):485-493

[本文引用: 6]

丁兆建, 吴小霞, 孙君梅, 陈丽霞, 傅琪彦, 许天委, 2019b.

尖孢镰刀菌古巴专化型MAPK FoSlt2敲除突变体的转录组分析

菌物学报, 38(7):1090-1098

[本文引用: 1]

董章勇, 王振中, 2012.

植物病原真菌细胞壁降解酶的研究进展

湖北农业科学, 51(21):4697-4700

[本文引用: 1]

何壮, 漆艳香, 曾凡云, 丁兆建, 梁峻玮, 张欣, 彭军, 谢培兰, 谢艺贤, 2019.

香蕉枯萎病菌4号生理小种smy1基因的功能分析

热带作物学报, 40(12):2447-2455

[本文引用: 1]

李春雨, 陈石, 左存武, 邝瑞彬, 易干军, 2011.

香蕉枯萎病菌新毒素——白僵菌素的鉴定

园艺学报, 38(11):2092-2098

[本文引用: 1]

李敏慧, 苑曼琳, 姜子德, 李华平, 2019.

香蕉枯萎病菌致病机理研究进展

果树学报, 36(6):803-811

刘远征, 漆艳香, 曾凡云, 丁兆建, 何壮, 彭军, 张欣, 谢培兰, 谢艺贤, 2018a.

香蕉枯萎病菌4号生理小种β1-微管蛋白基因的功能分析

热带作物学报, 39(6):1153-1160

[本文引用: 1]

刘远征, 漆艳香, 曾凡云, 丁兆建, 何壮, 彭军, 张欣, 谢艺贤, 2018b.

香蕉枯萎病菌4号生理小种β2-微管蛋白基因敲除与表型分析

果树学报, 35(12):1467-1477

[本文引用: 1]

许文耀, 兀旭辉, 林成辉, 2004.

香蕉枯萎病菌粗毒素的毒性及其模型

热带作物学报, 2004(4):25-29

[本文引用: 1]

/