中文  |  English

菌物学报, 2021, 40(8): 2134-2147 doi: 10.13346/j.mycosystema.210095

研究论文

六妹羊肚菌的化学成分

涂小曼1, 谢光波,,1,2,*, 唐岚1, 邓科君1,2, 谢丽源3

1.电子科技大学生命科学与技术学院 四川 成都 610054

2.电子科技大学信息生物学中心 四川 成都 610054

3.四川省农业科学院土壤肥料研究所 四川 成都 610066

Chemical composition of Morchella sextelata (Pezizales, Ascomycota)

TU Xiao-Man1, XIE Guang-Bo,,1,2,*, TANG Lan1, DENG Ke-Jun1,2, XIE Li-Yuan3

1. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

2. Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

3. Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China

责任编辑: 王敏

收稿日期: 2021-03-8   接受日期: 2021-03-26  

基金资助: 四川省科技计划项目(2017NZ0006)
四川省科技计划项目(2021YFN0094)

Corresponding authors: *E-mail: gbxie@uestc.edu.cn,ORCID: XIE Guang-Bo (0000-0001-7600-3214)

Received: 2021-03-8   Accepted: 2021-03-26  

Fund supported: Sichuan Science and Technology Program(2017NZ0006)
Sichuan Science and Technology Program(2021YFN0094)

摘要

以六妹羊肚菌Morchella sextelata为研究对象,对其子实体的化学成分进行研究。采用气相色谱-质谱联用技术(GC-MS)进行子实体芳香物和亲脂性提取物的化学成分分析,同时对其亲脂性提取物的抗氧化和抗菌活性进行了初步评价;采用正反相硅胶柱色谱、葡聚糖凝胶柱色谱等多种色谱分离方法进行化学成分的分离纯化,并通过核磁共振(NMR)、质谱(MS)等技术鉴定化合物结构。从六妹羊肚菌子实体的芳香物中共鉴定出26个化合物,辛-1-烯-3-醇(32.53%)、(E)-辛-2-烯醛(25.15%)和苯乙醛(12.31%)为主要成分;从六妹羊肚菌子实体的亲脂性提取物中共鉴定出14个化合物,亚油酸(77.80%)为主要成分;六妹羊肚菌亲脂性提取物仅显示出中等强度的抗氧化活性。从六妹羊肚菌子实体中共分离鉴定出14个化合物,包括7个甾体类化合物,其中化合物1、2、4、7、11、13和14为首次从羊肚菌属中分离得到。本研究首次对六妹羊肚菌的小分子化学成分进行了分析,对羊肚菌活性物质的阐明及进一步开发利用具有重要意义。

关键词: 六妹羊肚菌; 芳香物; 亲脂性提取物; 气相色谱-质谱联用; 次级代谢产物

Abstract

The chemical composition of Morchella sextelata was investigated. Chemical profiles of aromas and lipophilic extracts of fruiting bodies were analyzed by gas chromatography-mass spectroscopy (GC-MS), along with bioactivity evaluation of lipophilic extracts. The chemical constituents of fruiting bodies were isolated and purified by modern chromatographic separation techniques, and their structures were elucidated by nuclear magnetic resonance (NMR), mass spectrometry (MS), etc. Twenty-six compounds in total were identified from the aromas, and 1-octen-3-ol (32.53%), (E)-2-octenal (25.15%) and benzeneacetaldehyde (12.31%) were the main components. From the lipophilic extracts, 14 compounds were identified with linoleic acid as the main compound (77.80%). Only moderate antioxidant activities were observed in lipophilic extract. From the fruiting bodies of M. sextelata, 14 compounds were isolated and identified, including seven steroids, and compound 1, 2, 4, 7, 11, 13 and 14 were isolated from the genus Morchella for the first time. This is the first report on the small molecular compounds of M. sextelata, and it will be meaningful in clarification of morel bioactive compounds and utilization of morels.

Keywords: Morchella sextelata; aromas; lipophilic extracts; gas chromatography-mass spectroscopy (GC-MS); secondary metabolites

PDF (522KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

涂小曼, 谢光波, 唐岚, 邓科君, 谢丽源. 六妹羊肚菌的化学成分[J]. 菌物学报, 2021, 40(8): 2134-2147 doi:10.13346/j.mycosystema.210095

TU Xiao-Man, XIE Guang-Bo, TANG Lan, DENG Ke-Jun, XIE Li-Yuan. Chemical composition of Morchella sextelata (Pezizales, Ascomycota)[J]. Mycosystema, 2021, 40(8): 2134-2147 doi:10.13346/j.mycosystema.210095

羊肚菌Morchella隶属于子囊菌门Ascomycota、盘菌纲Pezizomycetes、盘菌目Pezizales、羊肚菌科Morchellaceae(杜习慧等 2014),其味道鲜美,肉质脆嫩可口,风味独特,在欧洲仅次于块菌,是食(药)用菌中的珍品之一,自古以来一直被奉为宴席上的美味佳肴(杜习慧等 2014)。羊肚菌营养丰富,含有多糖、生物酶类、氨基酸、脂肪酸,还有维生素和钙、锌、铁等多种矿物质(Gençcelep et al. 2009;刘蓓等 2012)。现代医学研究表明,羊肚菌有调节机体免疫力、抗疲劳、抑制肿瘤、抗菌、抗病毒、降血脂、抗氧化等多种生物活性(Mau et al. 2004;Turkoglu et al. 2006;Gursoy et al. 2009;殷伟伟等 2009;Ozturk et al. 2010;罗霞等 2011;王亚辉等 2013;马利等 2014;Wu et al. 2019)。羊肚菌在国内外市场上备受欢迎,日本、美国、欧洲、韩国、东南亚以及我国都有很大需求。

六妹羊肚菌Morchella sextelata M. Kuo属于黑色羊肚菌支系Elata Clade(杜习慧等 2014),是近年来我国羊肚菌大田栽培模式下成功驯化的羊肚菌品种,具有明显的抗极端气候特征,且产量稳定,是四川、湖北和贵州等地的主推品种(郜惠苹等 2020)。目前,针对六妹羊肚菌的研究多集中于栽培和多糖成分(熊川等 2017;Meng et al. 2019;王珍珍等 2019;郜惠苹等 2020),未见小分子化学成分的研究报道。有鉴于此,本研究以六妹羊肚菌子实体为对象,开展了两方面的化学成分研究工作:1)采用气相色谱-质谱联用技术,对其芳香物和亲脂性提取物的化学成分进行了分析,并对亲脂性提取物的生物活性进行初探;2)采用现代色谱分离技术并结合各种结构鉴定方法,对其化学成分进行分离和结构鉴定。

1 材料与方法

1.1 供试材料

1.1.1 六妹羊肚菌子实体:成熟的六妹羊肚菌子实体采自四川成都新都区羊肚菌种植基地,菌种由四川省农业科学院土壤肥料研究所唐杰副研究员鉴定。

1.1.2 试剂:2,2-二(4-叔辛基苯基)-1-苦肼基自由基[2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl, free radical, DPPH]和2,2’-联氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐[2,2’-Azino- bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt,ABTS]均购自美国Sigma- Aldrich公司,十八烷基键合硅胶(ODS)(孔径120Å,粒径50μm,日本YMC公司),葡聚糖凝胶(Sephadex LH-20)(美国GE Healthcare公司),硅胶(100-200目,200-300目,硅胶H,硅胶GF254,青岛海洋化工厂),其他试剂为分析纯(成都科隆化学品有限公司)。

1.1.3 仪器:QP2010 Plus气相色谱-质谱联用仪(日本岛津),SH-Rxi-5MS毛细管色谱柱(30m×0.25mm i.d.,涂层厚0.25μm,日本岛津),AV II-600和400核磁共振仪(TMS作为内标,美国Bruker公司),Q-TOF Premier高分辨质谱(美国Waters公司),550型酶标仪(美国BIO-RAD),X-4显微熔点仪(上海易测仪器设备有限公司,未校订)。

1.2 亲脂性提取物的提取

采用低极性溶剂浸提法进行六妹羊肚菌子实体中亲脂性提取物的提取(Kowalski 2011)。将新鲜六妹羊肚菌子实体切成小块(1.0cm±0.5cm),转移至带盖烧瓶中,加入重蒸石油醚(沸程30-60℃),烧瓶室温下避光静置7d。分离出石油醚提取液,无水Na2SO4干燥后减压蒸馏回收溶剂得到亲脂性提取物。亲脂性提取物放置于冰箱中(4℃)备用。

1.3 芳香物的提取

采用顶空固相微萃取法(HS-SPME)进行六妹羊肚菌子实体中芳香物的提取(Mateie et al. 2019)。新鲜六妹羊肚菌子实体经破碎后,称量2.5g放入20mL顶空瓶内密封。将已经老化好的萃取头(50/30μm,DVB/CAR/PDMS,美国Supulco公司)插入装有样品的顶空瓶中,萃取针位于样品液面上,在恒温(50℃)槽内萃取45min。从顶空瓶内取出萃取完成的萃取头,插入GC-MS进样口(进样口温度270℃),在270℃下解吸附1min,供GC-MS分析。

1.4 气相色谱-质谱分析(GC-MS)

1.4.1 芳香物分析的气相色谱条件:程序升温:从40℃开始,保持5min,然后以5℃/min升到160℃,保持2min,随后再以10℃/min升到280℃,保持5min;进样口温度为270℃;载气为氦气;柱流量:1mL/min;分流比:5:1。

1.4.2 亲脂性提取物分析的气相色谱条件:程序升温:从40℃开始,保持5min,然后以10℃/min升到220℃,保持2min,随后再以5℃/min升到290℃,保持20min;进样口温度为290℃;载气为氦气;柱流量:1mL/min;进样量为1μL;分流比:5:1。

1.4.3 质谱条件:EI离子源;电离电压:70eV;扫描范围:33-600amu;离子源温度:200℃。样品中各成分通过其质谱与标准质谱数据库(NIST08.LIB)检索比对确认。采用峰面积归一化方法确认各组分的相对含量(%)。

1.5 化学成分的提取与分离

将9kg干燥的六妹羊肚菌子实体粉碎后,用95%乙醇室温浸提3次(45L/次,7d/次),合并乙醇提取液后减压浓缩至无醇味,得到乙醇提取物1.6L。往乙醇提取物中加入8L纯净水进行稀释后,用乙酸乙酯萃取3次(10L/次),合并乙酸乙酯萃取液,减压浓缩回收溶剂后得到黑褐色乙酸乙酯浸膏165g。

乙酸乙酯浸膏(110g)经硅胶柱色谱(200-300目,2.2kg),石油醚-乙酸乙酯(体积比:100:1-1:1)梯度洗脱,得22个组分(Fr.1-22)。Fr.4(1g)经硅胶柱色谱(环己烷-丙酮=100:1-60:1)得到5个组分Fr.4.1-4.5,Fr.4.1(108mg)经葡聚糖凝胶柱色谱(Sephadax LH-20,氯仿-甲醇=2:1,下同)得到化合物1(12mg,无色油状物),Fr.4.2(300mg)经硅胶柱色谱(环己烷-丙酮=100:1)得两个组分Fr.4.2.1和Fr.4.2.2,。Fr.4.2.2(278mg)经葡聚糖凝胶柱色谱纯化得化合物2(41mg,无色油状物),Fr.4.4(70.6mg)经葡聚糖凝胶柱色谱纯化得到化合物3(26mg,无色油状物)。Fr.7(1.1g)经硅胶柱色谱(环己烷-乙酸乙酯=60:1)得5个组分Fr.7.1-7.5,Fr.7.2(54mg)经葡聚糖凝胶柱色谱纯化得化合物4(8mg,无色针状晶体,乙酸乙酯)。Fr.11(2.2g)以石油醚为溶剂进行重结晶得化合物5(57mg,无色针状晶体)。Fr.14(3g)以石油醚-乙酸乙酯混合溶剂进行重结晶得化合物6(305mg,无色针状晶体)。Fr.15(550mg)经硅胶柱色谱(石油醚-乙酸乙酯=50:1)得4个组分Fr.12.1-12.4,Fr.15.2(149mg)分别经葡聚糖凝胶柱色谱和ODS反相硅胶柱色谱(甲醇-水=17:3)得化合物7(5mg,白色无定型粉末)。Fr.16(1.48g)经硅胶柱色谱(石油醚-乙酸乙酯=50:1)得到6个组分Fr.16.1-16.6,Fr.16.1(244mg)分别经葡聚糖凝胶柱色谱和ODS反相硅胶柱色谱(甲醇)得到化合物8(41mg,无色油状物)。Fr.17以石油醚-丙酮混合溶剂进行重结晶到化合物9(无色透明针状晶体),剩余物(1.5g)经硅胶柱色谱(石油醚-乙酸乙酯=30:1)得到4个组分Fr.17.1-17.4,Fr.17.2(320mg)经乙酸乙酯重结晶后得到化合物10(26mg,无色针状晶体),Fr.17.4(167mg)经硅胶柱色谱(石油醚-乙酸乙酯=50:1)和葡聚糖凝胶柱色谱纯化得化合物11(4mg,无色针状晶体,氯仿-甲醇)。Fr.18经过滤除去固体物后滤液浓缩得残余物532mg,经硅胶柱色谱(石油醚-乙酸乙酯=3:1)得到两个组分Fr.18.1-18.2,Fr.18.2(73mg)经过葡聚糖凝胶柱色谱纯化得到化合物12(27mg,无定型粉末)。Fr.19(1.25g)经硅胶柱色谱(石油醚-乙酸乙酯=10:1)得到5个组分Fr.19.1-19.5,Fr.19.2经葡聚糖凝胶柱色谱,ODS反相硅胶柱色谱(甲醇)得到化合物13(5mg,无色油状物),Fr.19.5经葡聚糖凝胶柱色谱,ODS反相硅胶柱色谱(甲醇)得到化合物14(4mg,无色针状晶体,甲醇)。

1.6 亲脂性提取物生物活性检测

1.6.1 抗氧化活性检测:DPPH自由基清除活性的检测参考Brand-Williams et al.(1995)的方法。样品以乙醇溶解后,采用两倍稀释法配成系列浓度的样品溶液(0.625-40mg/mL)。分别取不同浓度的样品溶液50μL,与DPPH溶液(0.1mg/mL)100μL混合,混合溶液室温下避光放置25min后,采用酶标仪于517nm下测定吸光度值。以维生素C为阳性对照,以不含样品的同体积乙醇溶液为阴性对照,所有实验重复3次。自由基清除率(%)=[(A对照- (A样品-A空白))/A对照]×100,其中A对照为阴性对照的吸光度值,A样品为样品的吸光度值,A空白为不含DPPH的混合溶液吸光度值,自由基清除率达50%的有效浓度(EC50)通过SPSS软件计算。

ABTS自由基清除活性的检测参考Re et al.(1999)的方法。将ABTS溶液(7mmol/L)和过硫酸钾溶液(2.45mmol/L)混合后,用乙醇稀释至混合溶液吸光度值达到0.6-0.7(734nm),制得ABTS自由基溶液备用。样品以乙醇溶解后,仍采用两倍稀释法配成系列浓度的样品溶液(0.625-40mg/mL)。分别取不同浓度的样品溶液50μL,与ABTS自由基溶液100μL混合,混合溶液室温下避光放置5min后,采用酶标仪于734nm下测定吸光度值。以维生素C为阳性对照,以不含样品的同体积乙醇溶液为阴性对照,所有实验重复3次。自由基清除率参考上面公式计算。

1.6.2 抗菌活性检测:大肠杆菌Escherichia coli(ATCC 25922)、金黄色葡萄球菌Staphylococcus aureus(ATCC 25923)、枯草芽孢杆菌Bacillus subtilis(ATCC 6633)和白色念珠菌Candida albicans(ATCC 10231)被用于抗菌活性检测,参考Tu et al.(2021)的方法。样品以DMSO溶液后,采用两倍稀释法配置系列浓度的样品溶液(0.5-512μg/mL)。将不同浓度的样品溶液与菌液混合于96孔板的小孔中,细菌于37℃孵育24h,真菌于28℃孵育4d。以卡那霉素(针对细菌)和制霉菌素(针对真菌)为阳性对照,以不含样品的等体积DMSO为阴性对照,每次操作重复两次。以最小抑菌浓度(MIC)衡量样品的抗菌活性。

2 结果与分析

2.1 六妹羊肚菌的亲脂性提取物

因为采用水蒸气蒸馏法未能从六妹羊肚菌的子实体中获得挥发油,因此改用低级性溶剂浸提法,以期获得其亲脂性提取物。通过石油醚冷浸提取,从六妹羊肚菌新鲜子实体中获得的亲脂性提取物为淡黄色油状物,收率为0.116%(W/W,湿重)。

从亲脂性提取物中共鉴定出14个化合物,占总量的97.75%,包括2个醛类化合物、5个醇类化合物、4个羧酸/羧酸衍生物、3个甾体类化合物(表1)。其中,亚油酸为亲脂性提取物中的主要成分,占到总提取物的77.70%。亚油酸属于长链不饱和脂肪酸,具有重要的营养价值和生物活性,是人体必需脂肪酸。亚油酸有助于降低血清胆固醇水平,抑制动脉血栓的形成,在预防动脉粥样硬化和心肌梗塞等心血管疾病方面有良好作用(Marangoni et al. 2020)。近期亦有文献报道,亚油酸能在体外与SARS-CoV-2的刺突蛋白结合,阻碍其与ACE2相结合(Toelzer et al. 2020)。

表1   六妹羊肚菌子实体的芳香物和亲脂性提取物的化学组成

Table 1  Chemical composition of the aromas and lipophilic extracts of Morchella sextelata

化合物
Compounds
亲脂性提取物
Lipophilic extracts (%)
芳香物
Aromas (%)
醛/酮类化合物 Aldehydes and Ketones
乙醛 Acetaldehyde-1.59
丙醛 Propanal-0.92
3-甲基丁醛 3-Methyl-butanal-7.28
2-甲基丙醛 2-Methyl-propanal-0.92
2-甲基丁醛 2-Methyl-butanal-3.82
己醛Hexanal0.081.62
庚醛 Heptanal-0.05
(Z)-庚-2-烯醛 (Z)-2-Heptenal-0.08
苯甲醛 Benzaldehyde-0.26
苯乙醛 Benzeneacetaldehyde0.0712.31
(E)-辛-2-烯醛 (E)-2-Octenal-25.15
壬醛 Nonanal-0.45
(E)-壬-2-烯醛 (E)-2-Nonenal-0.42
癸醛 Decanal-0.27
(E,E)-癸-2,4-二烯醛 (E,E)-2,4-Decadienal-0.22
(E,E)-辛-2,4-二烯醛 (E,E)-2,4-Octadienal-0.21
辛-3-酮 3-Octanone-1.32
醇类化合物 Alcohols
3-甲基-丁-1-醇 3-Methyl-1-butanol-0.25
R-己-2-醇 R-2-Hexanol0.05
辛-1-烯-3-醇 1-Octen-3-ol0.0932.53
2-乙基己-1-醇2-Ethyl-1-hexanol-0.20
(E)-辛-2-烯-1-醇 (E)-2-Octen-1-ol-4.16
R-(-)-14-甲基十六-8-炔-1-醇 R-(-)-14-Methyl-8-hexadecyn-1-ol0.73-
(Z,Z)-十五-6,9-二烯-1-醇 (Z,Z)-6,9-Pentadecadien-1-ol0.10-
香叶基香叶醇 Geranylgeraniol0.21-
羧酸/羧酸衍生物 Carboxylic acids/Carboxylic acid derivatives
十五酸 Pentadecanoic acid1.54-
亚油酸 Linoleic acid77.80-
(Z,Z)-十八-9,12-二烯酸甲酯 (Z,Z)-9,12-Octadecadienoic acid methyl ester0.37-
亚油酸甘油三酯 Trilinolein2.46-
杂环/含硫化合物 Heterocycles/Sulfurs
2-丁基呋喃 2-Butyl furan-0.06
3-甲硫基丙醛 3-(Methylthio)-propanal-0.54
甾体类化合物 Steroids
(3β, 22E)-麦角甾-5,22-二烯-3-醇 (3β, 22E)-Ergosta-5,22-dien-3-ol6.20-
麦角甾醇 Ergosterol6.73-
豆甾醇 Stigmasterol1.32-
其他类 Others
3,5,5-三甲基己-2-烯 3,5,5-Trimethyl-2-hexene-1.02
3-乙基-2-甲基-戊-1-烯 3-Ethyl-2-methyl-1-pentene-3.61
2,6,11-三甲基十二烷 2,6,11-Trimethyl-dodecane-0.09
合计In total97.7599.35

新窗口打开| 下载CSV


2.2 六妹羊肚菌的芳香物

从六妹羊肚菌新鲜子实体的芳香物中共鉴定出26个化合物,占到总量的99.35%,包括16个醛类化合物、1个酮类化合物、4个醇类化合物、1个杂环化合物、1个含硫化合物和3个其他类型化合物(表1)。其中,辛-1-烯-3-醇、(E)-辛-2-烯醛、苯乙醛和3-甲基丁醛为芳香物中的主要成分,分别占总量的32.53%、25.15%、12.31%和7.28%。

醛类化合物占总芳香物的55.57%,其中(E)-辛-2-烯醛(25.15%),苯乙醛(12.31%)和3-甲基丁醛(7.28%)为3个主要的醛类成分。食用菌挥发性芳香物中的醛类成分多具有不同的香味,(E)-辛-2-烯醛具有甜香味,苯乙醛具有花香味,3-甲基丁醛具有果香味(Cho et al. 2007;李琴等 2011)。醇类化合物占总芳香物的37.14%,其中辛-1-烯-3-醇(32.53%)和(E)-辛-2-烯-1-醇(4.16%)为主要的醇类成分。作为主要成分的辛-1-烯-3-醇具有蘑菇样的香味,常见于各种食用菌的芳香物中,是食用菌芳香物中的代表性成分(Cho et al. 2008;Culleré et al. 2013)。

2.3 化合物的结构鉴定

化合物1-14的结构见图1

图1

图1   化合物1-14结构

Fig. 1   The structures of compounds 1-14.


化合物1,无色油状物;1H NMR (400MHz,CDCl3) δ: 5.34 (6H, m, H-9, 9’, 9’’, 10, 10’, 10’’), 5.27 (m, 1H, Glycerol H-2), 4.30 (2H, dd, J= 11.6, 4.4Hz, Glycerol H-1α, H-3α), 4.15 (2H, dd, J=11.6, 6.0Hz, Glycero H-1β, H-3β), 2.31 (6H, m, H-2, 2’, 2’’), 2.02 (12H, m, H-8, 8’, 8’’, 11, 11’, 11’’), 1.61 (6H, m, H-3, 3’, 3’’), 1.25-1.30 (60H, m, 3×10×CH2), 0.88 (9H, m, H-18, 18’, 18’’); 13C NMR (100MHz, CDCl3) δ: 173.3, 173.2, 172.8 (C-1, 1’, 1’’), 130.2, 130.0, 129.6 (C-9, 9’, 9’’), 128.0, 128.0, 127.9 (C-10, 10’, 10’’), 68.8 (Glycerol C-2), 62.1 (Glycerol C-1, 3), 34.2, 34.0, 34.0 (C-2, 2’, 2’), 31.9, 31.9, 31.5 (C-16, 16’, 16’’), 29.0-29.7 (3×9-CH2), 27.2, 27.2, 27.1 (C-8, 8’, 8’’), 25.6, 24.8, 24.8 (C-11, 11’, 11’’), 22.7, 22.7, 22.5 (C-17, 17’, 17’’), 14.2, 14.1, 14.0 (C-18, 18’, 18’’)。以上数据与Hamid et al.(2017)的报道一致,故鉴定为三油酸甘油酯(glycerol trioleate)。

化合物2,无色油状物;1H NMR (400MHz,CDCl3) δ: 7.73 (2H, m, H-3, 6), 7.53 (2H, m, H-4, 5), 4.10 (4H, d, J=6.8Hz, H-1’, 1’’), 2.04 (2H, m, H-2’, 2’’), 0.98 (12H, d, J=6.8Hz, H-3’, 3’’, 4’, 4’’); 13C NMR (100MHz, CDCl3) δ: 167.6 (2×C-α), 132.3 (C-1, 2), 130.9 (C-3, 6), 128.8 (C-4, 5), 71.7 (C-1’, 1’’), 27.7 (C-2’, 2’’), 19.1 (C-3’, 3’’, 4’, 4’’)。以上数据与韩冰洋等(2016)的报道一致,故鉴定为邻苯二甲酸二异丁酯(phthalic acid diisobutyl ester)。

化合物3,无色油状物;1H NMR (400MHz,CDCl3) δ: 5.34 (4H, m, H-9, 10, 12, 13), 2.77 (2H, dd, J=6.5Hz, H-11), 2.34 (2H, t, J=7.0Hz, H-2), 2.05 (4H, q, J=7.0Hz, H-8, 14), 1.63 (2H, m, H-3), 1.25-1.32 (14H, m, H-4, 5, 6, 7, 15, 16, 17), 0.88 (3H, m, H-18); 13C NMR (100MHz, CDCl3) δ: 179.5 (C-1), 130.2 (C-9), 130.0 (C-13), 128.0 (C-10), 127.9 (C-12), 34.0 (C-2), 31.5 (C-16), 31.5 (C-6), 29.7-29.1 (C-4, 5, 7, 15), 27.2, 27.2 (C-8, 14), 25.6 (C-3), 24.7 (C-11), 22.7 (C-17), 14.1 (C-18)。以上数据与Kim et al.(2016)的报道一致,故鉴定为亚油酸(linoleic acid)。

化合物4,无色针状晶体(乙酸乙酯);1H NMR (400MHz,CDCl3) δ: 5.72 (1H, s, H-4), 5.18 (2H, dd, J=10.0, 7.2Hz, H-22, 23), 1.18 (3H, s, H-19), 1.00 (3H, d, J=6.8Hz, H-21), 0.91 (3H, d, J=6.6Hz, H-28), 0.83 (3H, d, J=6.6Hz, H-26), 0.82 (3H, d, J=6.6Hz, H-27), 0.72 (3H, s, H-18); 13C NMR (100MHz, CDCl3) δ: 199.7 (C-3), 171.7 (C-5), 135.6 (C-22), 131.8 (C-23), 123.7 (C-4), 55.9 (C-17), 55.8 (C-14), 53.8 (C-9), 42.8 (C-24), 42.2 (C-13), 40.1 (C-20), 39.5 (C-12), 38.6 (C-1), 35.6 (C-10), 35.6 (C-8), 34.0 (C-2), 33.1 (C-25), 32.9 (C-6), 32.0 (C-7), 28.5 (C-16), 24.2 (C-15), 21.0 (C-11), 20.9 (C-21), 19.9 (C-26), 19.6 (C-27), 17.6 (C-28), 17.3 (C-19), 12.1 (C-18)。以上数据与Sun et al.(2012)的报道一致,故鉴定为ergosta-4,22-dien-3-one。

化合物5,无色针状晶体(石油醚);1H NMR (400MHz,CDCl3) δ: 5.35 (1H, d, J=5.2Hz, H-6), 5.18 (2H, m, H-22, 23), 3.49 (1H, m, H-3), 1.01 (3H, d, J=6.4Hz, H-28), 1.00 (3H, s, H-19), 0.91 (3H, d, J=6.8Hz, H-21), 0.83 (3H, d, J=6.4Hz, H-27), 0.81 (3H, d, J=6.5Hz, H-26), 0.69 (3H, s, H-18); 13C NMR (100MHz, CDCl3) δ: 140.7 (C-5), 135.8 (C-22), 131.7 (C-23), 121.7 (C-6), 70.8 (C-3), 56.8 (C-14), 56.0 (C-17), 50.1 (C-9), 42.8 (C-24), 42.3 (C-13), 42.1 (C-4), 40.1 (C-20), 39.6 (C-12), 37.2 (C-1), 36.5 (C-10), 33.7 (C-25), 33.1 (C-8), 31.6 (C-7), 30.5 (C-2), 28.5 (C-16), 24.3 (C-15), 21.0 (C-11), 20.9 (C-19), 19.9 (C-21), 19.6 (C-26), 19.4 (C-27), 17.6 (C-28), 12.0 (C-18)。以上数据与Gao et al. (2001)的报道一致,故鉴定为ergosta-5,22- dien-3β-ol。

化合物6,无色针状晶体(石油醚-乙酸乙酯);熔点:141-143℃;1H NMR (400MHz,CDCl3) δ: 5.35 (1H, m, H-6), 3.52 (1H, m, H-3), 1.00 (3H, s, H-19), 0.92 (3H, d, J=6.5Hz, H-21), 0.84 (3H, t, J=7.6Hz, H-29), 0.83 (3H,d, J=7.1Hz, H-26), 0.81 (3H, d, J=6.8Hz, H-27), 0.67 (3H, s, H-18)。将以上数据与Zhang et al.(2020)的报道进行比较,并将化合物6与β-谷甾醇标准品共薄层色谱对比(环己烷-乙酸乙酯3:1;环己烷-丙酮4:1;氯仿-乙酸乙酯10:1),结果显示Rf值一致,故鉴定为β-谷甾醇(β-sitosterol)。

化合物7,白色无定型粉末;熔点:180- 182℃;1H NMR (400MHz,CDCl3) δ: 7.75 (1H, d, J=15.0Hz, H-7), 7.14 (1H, d, J=6.4Hz, H-6), 7.08 (1H, s, H-2), 6.89 (1H, d, J=8.4Hz, H-5), 6.30 (1H, d, J=16.0Hz, H-8), 3.93 (6H, s, -OCH3)。通过将以上数据与费永和等(2014)的结果进行比较,并将化合物7与3,4-二甲氧基肉桂酸标准品共薄层色谱对比(石油醚-乙酸乙酯2:1;环己烷-丙酮4:1;氯仿-乙酸乙酯10:1,每个展开系统均滴加两滴甲酸),结果显示Rf值一致,故鉴定为3,4-二甲氧基肉桂酸(3,4-dimethoxycinnamic acid)。

化合物8,无色油状物;1H NMR (400MHz,CDCl3) δ: 5.34 (2H, m, H-9, 10), 3.67 (3H, s, -OCH3), 2.30 (2H, t, J=8.0Hz, H-2), 2.02 (4H, m, H-8, 11), 1.62 (2H, m, H-3), 1.25-1.32 (20H, m, 10×CH2), 0.88 (3H, t, J=8.0Hz, H-18); 13C NMR (100MHz, CDCl3) δ: 174.3 (C-1), 130.0 (C-9), 129.7 (C-10), 51.4 (-OCH3), 34.1 (C-2), 29.7- 29.1 (9×CH2), 27.2, 27.1 (C-8, 11), 24.9 (C-3), 22.7 (C-17), 14.1 (C-18)。以上数据与麻兵继和王佩佩(2008)的报道一致,故鉴定为油酸甲酯(methyl oleate)。

化合物9,无色针状结晶(石油醚-丙酮);1H NMR (400MHz,CDCl3) δ: 5.57 (1H, s, H-6), 5.39 (1H, s, H-7), 5.19 (2H, m, H-22, 23), 3.64 (1H, m, H-3), 1.03 (3H, d, J=6.4Hz, H-21), 0.94 (3H, s, H-19), 0.91 (3H, d, J=7.5Hz, H-28), 0.84 (3H, d, J=6.4Hz, H-26), 0.82 (3H, d, J=6.4Hz, H-27), 0.63 (3H, s, H-18); 13C NMR (100MHz, CDCl3) δ: 141.3 (C-8), 139.8 (C-5), 135.5 (C-22), 131.9 (C-23), 119.5 (C-6), 116.3 (C-7), 70.4 (C-3), 55.7 (C-17), 54.5 (C-14), 46.2 (C-9), 42.8 (C-13), 42.8 (C-24), 40.8 (C-4), 40.4 (C-20), 39.1 (C-12), 38.4 (C-1), 37.0 (C-10), 33.1 (C-25), 32.0 (C-2), 28.31 (C-16), 23.0 (C-15), 21.1 (C-11), 21.0 (C-21), 19.9, 19.6 (C-26, 27), 17.6 (C-28), 16.2 (C-19), 12.0 (C-18)。以上数据与Shirane et al.(1996)的报道一致,故鉴定为麦角甾醇(ergosterol)。

化合物10,无色针状结晶(乙酸乙酯);熔点:176-178℃;1H NMR (600MHz,CDCl3) δ: 6.50 (1H, d, J=9.0Hz, H-7), 6.25 (1H, d, J=8.4Hz, H-6), 5.20 (1H, dd, J=15.0Hz, 7.8Hz, H-23), 5.15 (1H, dd, J=15.0Hz, 8.4Hz, H-22), 3.97 (1H, m, H-3), 1.00 (3H, d, J=6.6Hz, H-21), 0.90 (3H, d, J=6.7Hz, H-28), 0.88 (3H, s, H-19), 0.83 (3H, d, J=6.8Hz, H-27), 0.81 (3H, d, J=6.6Hz, H-26), 0.81 (3H, s, H-18)。通过将以上数据与Zhang et al.(2020)的结果进行比较,并将化合物10与过氧麦角甾醇标准品共薄层色谱对比(石油醚-乙酸乙酯2:1;环己烷-丙酮3:1;氯仿-甲醇7:1),结果显示Rf值一致,故鉴定为过氧麦角甾醇(5α,8α- peroxyergosterol)。

化合物11,无色针状结晶(氯仿-甲醇);1H NMR (400MHz,CDCl3) δ: 5.16 (1H, m, H-7), 4.71, 4.65 (2H, br s, H-28), 4.65 (1H, br s, H-28), 3.59 (1H, m, H-3), 2.23 (1H, m, H-25), 1.02 (3H, d, J=6.8Hz, H-26), 1.02 (3H, d, J=6.8Hz, H-27), 0.95 (3H, d, J=6.5Hz, H-28), 0.79 (3H, s, H-19), 0.54 (3H, s, H-18); 13C NMR (100MHz, CDCl3) δ: 156.8 (C-24), 139.5 (C-8), 117.5 (C-7), 105.9 (C-28), 71.0 (C-3), 56.0 (C-17), 55.0 (C-14), 49.4 (C-9), 43.4 (C-13), 40.2 (C-5), 39.5 (C-12), 37.9 (C-4), 37.1 (C-1), 36.2 (C-20), 34.6 (C-22), 34.2 (C-10), 33.8 (C-25), 31.9 (C-2), 31.0 (C-23), 29.7 (C-6), 27.9 (C-16), 22.9 (C-15), 22.0 (C-26), 21.8 (C-27), 21.5 (C-11), 18.8 (C-21), 13.8 (C-19), 11.8 (C-18)。以上数据与Shirane et al.(1996)的报道一致,故鉴定为麦角甾-7,24(28)-二烯-3β-醇(ergosta- 7,24(28)-dien-3β-ol)。

化合物12,无定型粉末;1H NMR (400MHz,CD3OD) δ: 7.46 (1H, br s, H-2), 7.45 (1H, dd, J=7.8, 2.0Hz, H-6), 6.82 (1H, d, J=8.4Hz, H-5); 13C NMR (100MHz, CDCl3) δ: 168.9 (C=O), 150.1 (C-4), 144.6 (C-3), 122.5 (C-6), 121.6 (C-1), 116.3 (C-2), 114.4 (C-5)。以上数据与Zhang et al.(1998)的报道一致,故鉴定为原儿茶酸(protocatechuic acid)。

化合物13,无色油状物;1H NMR (400MHz,CDCl3) δ: 7.73 (2H, m, H-3’’, 6‘’), 7.52 (2H, m, H-4’’, 5’’), 4.22 (4H, m, H-1, 1’), 1.69 (2H, m, H-2, 2’), 1.42 (16H, m, H-3, 3’, 4, 4’, 5, 5’, 7, 7’), 0.98 (12H, m, H-6, 6’, 8, 8’); 13C NMR (100MHz, CDCl3) δ: 167.7 (2×C=O), 132.4 (C-1’’, 2’’), 130.9 (C-3’, 6’), 128.8 (C-4’’, 5’’), 68.1 (C-1, 1’), 38.7 (C-2, 2’), 30.3 (C-3, 3’), 28.9 (C-4, 4’), 23.7 (C-7, 7’), 23.0 (C-5, 5’), 14.0 (C-8, 8’), 10.9 (C-6, 6’)。以上数据与Katade et al.(2006)的报道一致,故鉴定为邻苯二甲酸二(2-乙基)己酯[bis(2-ethylhexyl) benzene-1,2- dicarboxylate]。

化合物14,无色针状晶体(甲醇);HR-ESI-MS [M-H]- m/z 411.3282 (calcd. for C28H43O2, 411.3263);1H NMR (600MHz,CDCl3/CD3OD) δ: 5.31 (1H, s, H-7), 5.18 (2H, m, H-22, 23), 3.98 (1H, m, H-3), 3.57 (1H, d, J=4.8Hz, H-6), 1.07 (3H, s, H-19), 1.03 (3H, d, J=6.6Hz, H-21), 0.92 (3H, d, J=6.6Hz, H-28), 0.84 (3H, d, J=6.8Hz, H-26), 0.82 (3H, d, J=3.7Hz, H-27), 0.62 (3H, s, H-18); 13C NMR (100MHz, CDCl3/CD3OD) δ: 143.4 (C-8), 135.5 (C-22),131.9 (C-23), 114.7 (C-7), 75.9 (C-9), 72.7 (C-6), 67.0 (C-3), 55.9 (C-17), 54.7 (C-14), 43.5 (C-13),43.3 (C-10), 42.8 (C-24), 40.4 (C-20), 39.2 (C-4), 39.2 (C-12), 37.0 (C-5), 33.0 (C-25), 32.4 (C-1), 30.2 (C-2), 27.8 (C-16), 22.8 (C-11), 21.8 (C-15), 20.8 (C-21), 19.6 (C-27), 19.2 (C-26), 17.8 (C-19), 17.3 (C-28), 11.9 (C-18)。以上数据与Guo et al.(2007)的报道一致,故鉴定为6,9-epoxy-ergosta-7,22-dien-3β-ol。

2.4 六妹羊肚菌亲脂性提取物的生物活性

2.4.1 抗氧化活性:清除自由基的能力常被用于评价化合物的抗氧化活性,本研究通过检测六妹羊肚菌亲脂性提取物清除DPPH和ABTS自由基的能力来评价其抗氧化活性,实验结果见图2。由实验结果可知,相较于阳性对照维生素C(EC50:DPPH 0.41mg/mL;ABTS 0.17mg/mL),六妹羊肚菌亲脂性提取物仅显示出中等强度的DPPH和ABTS自由基清除能力,其EC50分别22.00mg/mL和11.17mg/mL。亚油酸具有一定的清除DPPH自由基的能力(Yu 2001),而六妹羊肚菌亲脂性提取物中的主要成分为亚油酸,这可能是其显示出一定自由基清除能力的原因。

图2

图2   六妹羊肚菌亲脂性提取物清除自由基能力曲线

A:亲脂性提取物;B:维生素C

Fig. 2   Radical scavenging activities of lipophilic extracts from Morchella sextelata.

A: Lipophilic extracts; B: Vitamin C.


2.4.2 抗菌活性:本研究共检测了六妹羊肚菌亲脂性提取物对4种微生物的抑菌活性,包括属于革兰氏阳性菌的金黄色葡萄球菌和枯草芽孢杆菌,属于革兰氏阴性菌的大肠杆菌,属于真菌的白色念珠菌(表2)。结果显示,相较于阳性对照卡那霉素和制霉菌素,六妹羊肚菌亲脂性提取物仅对枯草芽孢杆菌显示出微弱的抑菌活性(MIC 32μg/mL),对其他微生物没有明显的抗菌活性(MIC ≥512μg/mL)。

表2   六妹羊肚菌亲脂性提取物的抗菌活性

Table 2  Antimicrobial activities of the lipophilic extracts from Morchella sextelata (MIC, μg/mL)

样品
Samples
大肠杆菌
Escherichia coli
金黄色葡萄球菌
Staphylococcus aureus
枯草芽孢杆菌
Bacillus subtilis
白色念珠菌
Candida albicans
亲脂性提取物
Lipophilic extracts
51251232512
卡那霉素
Kanamycin
11<1-
制霉菌素
Nystatin
---1

新窗口打开| 下载CSV


3 讨论

六妹羊肚菌作为一种大田栽培模式下人工种植的羊肚菌品种,在我国广泛种植。本研究首次对六妹羊肚菌子实体的小分子化合物进行了分析。

六妹羊肚菌子实体的亲脂性提取物中化学成分以亚油酸为主,占总量的77.70%,其化学组成与另一人工种植羊肚菌品种——梯棱羊肚菌M. importuna的亲脂性提取物相似(Tu et al. 2021)。亚油酸的大量存在很好地体现了羊肚菌的营养价值。六妹羊肚菌子实体芳香物的化学成分多样,包含了醛、酮、醇、杂环、含硫化合物、长链烷烃和烯烃

等,其化学组成和主要成分与梯棱羊肚菌芳香物相似(Tu et al. 2021),都是食用菌常见的挥发性化合物,如辛-1-烯-3-醇和苯乙醛,代表了食用菌不同的香味。

从六妹羊肚菌子实体的乙醇浸膏中共分离鉴定出14个化合物,包括7个甾体类化合物、3个长链脂肪酸及其酯类化合物和4个芳香酸及其酯类化合物。7个甾体类化合物中有6个为麦角甾类,麦角甾类化合物具有28个碳原子骨架,是真菌中的特征性和代表性化合物(宋明杰和包海鹰 2013)。此外,本研究还从六妹羊肚菌子实体中分离得到两个邻苯二甲酸酯类化合物(化合物2和13)。邻苯二甲酸酯(Pathalic Acid Esters,简称PAEs,别名酞酸酯)为常见的塑料增塑剂,对生物和人类的健康构成一定的威胁。大棚种植作物,如蔬菜、食用菌等可通过根系或者茎叶等途径对PAEs进行吸收累积(林梦茜等 2011),这是以后大棚种植作物需要关注的问题。

参考文献

Brand-Williams W, Cuvelier ME, Berset C, 1995.

Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and

Technology, 28(1):25-30

[本文引用: 1]

Cho IH, Lee SM, Kim SY, Choi HK, Kim KO, Kim YS, 2007.

Differentiation of aroma characteristics of pine-mushrooms (Tricholoma matsutake Sing.) of different grades using gas chromatography- olfactometry and sensory analysis

Journal of Agricultural and Food Chemistry, 55(6):2323-2328

DOI:10.1021/jf062702z      URL     [本文引用: 1]

Cho IH, Namgung HJ, Choi HK, Kim YS, 2008.

Votatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.)

Food Chemistry, 106(1):71-76

DOI:10.1016/j.foodchem.2007.05.047      URL     [本文引用: 1]

Culleré L, Ferreira V, Venturini ME, Marco P, Blanco D, 2013.

Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles

Food Chemistry, 141(1):105-110

DOI:10.1016/j.foodchem.2013.03.027      PMID:23768334      [本文引用: 1]

The Tuber indicum (Chinese truffle) and Tuber melanosporum (Black truffle) species are morphologically very similar but their aromas are very different. The black truffle aroma is much more intense and complex, and it is consequently appreciated more gastronomically. This work tries to determine whether the differences between the aromatic compounds of both species are sufficiently significant so as to apply them to fraud detection. An olfactometric evaluation (GC-O) of T. indicum was carried out for the first time. Eight important odorants were identified. In order of aromatic significance, these were: 1-octen-3-one and 1-octen-3-ol, followed by two ethyl esters (ethyl isobutyrate and ethyl 2-methylbutyrate), 3-methyl-1-butanol, isopropyl acetate, and finally the two sulfides dimethyldisulfide (DMDS) and dimethylsulfide (DMS). A comparison of this aromatic profile with that of T. melanosporum revealed the following differences: T. indicum stood out for the significant aromatic contribution of 1-octen-3-one and 1-octen-3-ol (with modified frequencies (MF%) of 82% and 69%, respectively), while in the case of T. melanosporum both had modified frequencies of less than 30%. Ethyl isobutyrate, ethyl 2-methylbutyrate and isopropyl acetate were also significantly higher, while DMS and DMDS had low MF (30-40%) compared to T. melanosporum (>70%). The volatile profiles of both species were also studied by means of headspace solid-phase microextraction (HS-SPME-GC-MS). This showed that the family of C8 compounds (3-octanone, octanal, 1-octen-3-one, 3-octanol and 1-octen-3-ol) is present in T. indicum at much higher levels. The presence of 1-octen-3-ol was higher by a factor of about 100, while 1-octen-3-one was detected in T. indicum only (there was no chromatographic signal in T. melanosporum). As well as showing the greatest chromatographic differences, these two compounds were also the most powerful from the aromatic viewpoint in the T. indicum olfactometry. Therefore, either of the two chromatographic methods (GC-O or HS-SPME-GC-MS), together or separately, could be used as a screening technique to distinguish between T. indicum and T. melanosporum and thus avoid possible fraud.Copyright © 2013 Elsevier Ltd. All rights reserved.

Du XH, Zhao Q, Yang ZL, 2014.

Diversity, evolutionary history and cultivation of morels: a review

Mycosystema, 33(2):183-197 (in Chinese)

Fei YH, Chen Z, Li XR, Xu QM, Yang SL, 2014.

Chemical constituents from seeds of Helianthus annuus

Chinese Traditional and Herbal Drugs, 45(5):631-634 (in Chinese)

Gao HP, Tian F, Li B, Gao XL, 2020.

Effects of different concentrations of plant ash on mycelium growth and sclerotia formation of Morchella sextelata

Bulletin of Agricultural Science and Technology, 11: 100-101+104 (in Chinese)

Gao J, Hu L, Liu J, 2001.

A novel sterol from Chinese truffles Tuber indicum

Steroids, 66:771-775

DOI:10.1016/S0039-128X(01)00105-2      URL     [本文引用: 1]

Gençcelep H, Uzun Y, Tunçtürk Y, Demirel K, 2009.

Determination of mineral contents of wild-grown edible mushrooms

Food Chemistry, 113(4):1033-1036

DOI:10.1016/j.foodchem.2008.08.058      URL     [本文引用: 1]

Guo WJ, Guo SX, Yang JS, Chen XM, Xiao PG, 2007.

Triterpenes and steroids from Armillaria mellea Vahl. ex Fr

Biochemical Systematics and Ecology, 35:790-793

DOI:10.1016/j.bse.2007.03.017      URL     [本文引用: 1]

Gursoy N, Sarikurkcu C, Cengiz M, Solak MH, 2009.

Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species

Food and Chemical Toxicology, 47(9):2381-2388

DOI:10.1016/j.fct.2009.06.032      URL     [本文引用: 1]

Hamid AA, Aiyelaagbe OO, Kaneez F, Luqman S, Negi AS, 2017.

Isolation, characterization and antiproliferative evaluation of constituents from stem extracts of Alafia barteri Olive. Hook. f

Medicinal Chemistry Research, 26:3407-3416

DOI:10.1007/s00044-017-2033-4      URL     [本文引用: 1]

Han BY, Zhang Y, Tian XY, Xiao CJ, Dong X, Jiang B, 2016.

Chemical constituents from underground part of Astragalus camptodontoides

Guihaia, 36(11):1382-1388 (in Chinese)

Katade SR, Pawar PV, Tungikar VB, Tambe AS, Kalal KM, Wakharkar RD, Deshpande NR, 2006.

Larvicidal activity of bis(2-ethylhexyl) benzene- 1,2-dicarboxylate from Sterculia guttata seeds against two mosquito species

Chemistry & Biodiversity, 3:49-53

[本文引用: 1]

Kim HJ, Kim HM, Ryu B, Lee WS, Shin JS, Lee KT, Jang DS, 2016.

Constituents of PG201 (Layla®), a multi-component phytopharmaceutical, with inhibitory activity on LPS-induced nitric oxide and prostaglandin E2 productions in macrophages

Archives of Pharmacal Research, 39:231-239

DOI:10.1007/s12272-015-0654-z      URL     [本文引用: 1]

Kowalski R, 2011.

The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and Silphium trifoliatum L. rhizomes

Journal of Essential Oils Research, 20(3):255-259

[本文引用: 1]

Li Q, Zhu KX, Zhou HM, 2011.

Analysis of flavor components in button mushroom soup by HS-SPME-GC-MS and GC-O

Food Science, 32(16):300-304 (in Chinese)

Lin MQ, Wang FJ, Yu JY, Zhu C, 2011.

Status review of PAEs pollution and its detection method in greenhouse plants

Horticulture & Seed, 5:91-95+98 (in Chinese)

Liu B, Wu SR, Zhu P, Zhang LY, Tai LM, Gui MY, 2012.

Nutrient analysis of morel in northwest Yunnan province

Science and Technology of Food Industry, 33(1):363-365 (in Chinese)

Luo X, Wei W, Yu MY, Jiang N, Xu XY, Zheng LY, 2011.

The gastric protective effects of Morchella conica on ethanol-induced gastric mucosal lesion in rats

Mycosystema, 30(2):319-324 (in Chinese)

Ma BJ, Wang PP, 2008.

Chemical study on the fruiting bodies of Armillariella tabescens

China Pharmacy, 19(10):740-742 (in Chinese)

Ma L, Li X, Zhang S, 2014.

Effects of exopolysaccharide extract from Morchella conica on proliferation and aging of human skin fibroblasts

Mycosystema, 33(2):385-393 (in Chinese)

Marangoni F, Agostoni C Borghi C, Catapano AL, Cena H, Ghiselli A, Vecchia CL, Lercker G, Manzato E, Pirillo A, Riccardi G, Risé P, Visioli F, Poli A, 2020.

Dietary linoleic acid human health: focus on cardiovascular and cardiometabolic effects

Atherosclerosis, 292:90-98

DOI:S0021-9150(19)31575-8      PMID:31785494      [本文引用: 1]

This narrative review aims to discuss the more relevant evidence on the role of linoleic acid (LA), a n-6 essential fatty acid that constitutes the predominant proportion of dietary polyunsaturated fatty acids (PUFA), in cardiovascular health. Although LA can be metabolized into Arachidonic Acid (AA), a 20 carbon PUFA which is the precursor of eicosanoids, including some with proinflammatory or prothrombotic-vasoconstrictor action, the large majority of experimental and clinical studies have assessed the potential benefit of increasing dietary intake of LA. Overall, data from clinical studies and meta-analyses suggest an association between high dietary intakes or tissue levels of n-6 PUFA, and specifically LA, and the improvement of cardiovascular risk (mainly of the plasma lipid profile), as well as long-term glycaemic control and insulin resistance. Most observational data show that elevated/increased dietary intake or tissue levels of LA is associated with a reduced incidence of cardiovascular diseases (mainly coronary artery diseases) and of new onset metabolic syndrome or type 2 diabetes. The effects of LA (or n-6 PUFA) in other physio-pathological areas are less clear. High quality clinical trials are needed to assess both the actual amplitude and the underlying mechanisms of the health effects related to dietary intake of this essential fatty acid.Copyright © 2019 Elsevier B.V. All rights reserved.

Mateie WA, Zhang W, Xie G, 2019.

Chemical composition and antimicrobial activity of essential oil from Phytolacca dodecandra collected in Ethiopia

Molecules, 24(2):342

DOI:10.3390/molecules24020342      URL     [本文引用: 1]

Mau JL, Chang CN, Huang SJ, Chen CC, 2004.

Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia

Food Chemistry, 87(1):111-118

DOI:10.1016/j.foodchem.2003.10.026      URL     [本文引用: 1]

Meng X, Che C, Zhang J, Gong Z, Si M, Yang G, Cao L, Liu J, 2019.

Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata

International Journal of Biological Macromolecules, 129:608-614

DOI:S0141-8130(18)36907-1      PMID:30771397      [本文引用: 1]

A purified polysaccharide was acquired from a newly collected wild Morchella. The strain identification initially showed that the strain was Morchella sextelata. This study aimed to investigate the structural features and immunomodulating activities of the polysaccharide. Polysaccharide extracted from mycelia was purified by DEAE-cellulose chromatography and Sephadex G-25 size-exclusion chromatography in sequence. The main fraction of polysaccharide (MSP-II) was obtained during purification process. High Performance Liquid Chromatography (HPLC) analysis revealed that MSP-II was composed of Glc, Ara, Gal, Man, Rha, Fuc, GalUA and GluUA in ratio of 34.95:8.7:9.55:4.55:5.0:1.45:12.7:7.65. The structure of MSP-II was furtherly analyzed by FT-IR spectrum and H and C NMR spectroscopy, the results showed that MSP contained β-glycosidic bonds as well as α-glycosidic linkages. In vitro tests proved that MSP-II could not only promote the proliferation and phagocytosis of RAW264.7 cells, but also induce the section of nitric oxide (NO) of macrophages. Consequently, the polysaccharide has a potent immunomodulatory activity by stimulating macrophages and can be considered as a novel potential immunopotentiator in medical and food industries.Copyright © 2019. Published by Elsevier B.V.

Ozturk I, Sahan S, Sahin U, Ekici L, Sagdic O, 2010.

Bioactivity and mineral contents of wild-grown edible Morchella conica in the Mediterranean region

Journal für Verbraucherschutz und Lebensmittelsicherheit, 5:453-457

DOI:10.1007/s00003-010-0625-8      URL     [本文引用: 1]

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, 1999.

Antioxidant activity applying an improved ABTS radical cation decolorization assay

Free Radical Biology and Medicine, 26(9-10):1231-1237

PMID:10381194      [本文引用: 1]

A method for the screening of antioxidant activity is reported as a decolorization assay applicable to both lipophilic and hydrophilic antioxidants, including flavonoids, hydroxycinnamates, carotenoids, and plasma antioxidants. The pre-formed radical monocation of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS*+) is generated by oxidation of ABTS with potassium persulfate and is reduced in the presence of such hydrogen-donating antioxidants. The influences of both the concentration of antioxidant and duration of reaction on the inhibition of the radical cation absorption are taken into account when determining the antioxidant activity. This assay clearly improves the original TEAC assay (the ferryl myoglobin/ABTS assay) for the determination of antioxidant activity in a number of ways. First, the chemistry involves the direct generation of the ABTS radical monocation with no involvement of an intermediary radical. Second, it is a decolorization assay; thus the radical cation is pre-formed prior to addition of antioxidant test systems, rather than the generation of the radical taking place continually in the presence of the antioxidant. Hence the results obtained with the improved system may not always be directly comparable with those obtained using the original TEAC assay. Third, it is applicable to both aqueous and lipophilic systems.

Shirane N, Takenaka H, Ueda K, Hashimoto Y, Katoh K, Ishii H, 1996.

Sterol analysis of DMI-resistant and -sensitive strains of Venturia inaequalis

Phytochemistry, 41(5):1301-1308

DOI:10.1016/0031-9422(95)00787-3      URL     [本文引用: 2]

Song MJ, Bao HY, 2013.

Research progress of ergot steroid compounds extracted from fungi

Journal of Fungal Research, 11(4):266-274 (in Chinese)

Sun XP, Shao CL, Wang CY, Li XB, Xu Y, Qian PY, Zhao K, Zheng CJ, 2012.

Steroids of soft coral Scleronephthya sp. from the south China sea

Chemistry of Natural Compounds, 48(2):341-343

DOI:10.1007/s10600-012-0245-x      URL     [本文引用: 1]

Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD, Williamson MK, Shoemark DK, Garzoni F, Staufer O, Milligan R, Capin J, Mulholland AJ, Spatz J, Fitzgerald D, Berger I, Schaffitzel C, 2020.

Free fatty acid binding pocker in the locked structure of SARS-CoV-2 spike protein

Science, 370(6517):725-730

DOI:10.1126/science.abd3255      URL     [本文引用: 1]

Tu X, Tang L, Xie G, Deng K, Xie L, 2021.

Chemical composition of aromas and lipophilic extracts from black morel (Morchella importuna) grown in China

Mycobiology, 49(1):78-85

DOI:10.1080/12298093.2020.1862473      URL     [本文引用: 3]

Turkoglu A, Kivrak I, Mercan N, Duru ME, Gezer K, Turkoglu H, 2006.

Antioxidant and antimicrobial activities of Morchella conica Pers

African Journal of Biotechnology, 5(11):1146-1150

[本文引用: 1]

Wang ZZ, Guan Y, Liu Y, Liu SY, 2019.

Extraction process optimization, structural characterization and antioxidant activities of polysaccharide from Morchella sextelata

Mycosystema, 38(9):1548-1558 (in Chinese)

Wang YH, Mei XD, Zhang S, 2013.

Antihypertensive effects of bioactive extracts from Morchella conica

Modern Food Science & Technology, 29(9):2147-2151 (in Chinese)

Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC, 2019.

Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species

Fungal Diversity, 98:1-76

DOI:10.1007/s13225-019-00432-7      URL     [本文引用: 1]

Xiong C, Luo Q, Li Q, Chen C, Chen ZQ, Huang WL, 2017.

Physical and chemical properties of polysaccharide isolated from the fruiting bodies of Morchella sextelata and its antioxidant effect. Natural Product Research and Development, 29(7):

1182-1187+1153 (in Chinese)

Yin WW, Zhang S, Wu JF, 2009.

Hypolipidemic effect of bioactive extract from Morchella conica

Mycosystema, 28(6):873-877 (in Chinese)

Yu L, 2001.

Free radical scavenging properties of conjugated linoleic acids

Journal of Agricultural and Food Chemistry, 49(7):3452-3456

PMID:11453790      [本文引用: 1]

Conjugated linoleic acids (CLA) were investigated for free radical scavenging properties against the stable 2,2-diphenyl-1-picryhydrazyl radical (DPPH.) by electron spin resonance (ESR) spectrometry and spectrophotometric methods. ESR results demonstrated that CLA directly reacted and quenched free DPPH radicals in benzene, while spectrophotometric analysis showed the radical scavenging capacity of CLA in ethanol. Dose and time effects of CLA-DPPH. reactions were observed in both tests. The ED(50) of CLA was 18 mg/mL under experimental conditions. CLA are much weaker radical scavengers as compared to vitamin E, vitamin C, and BHT. Kinetics of CLA-DPPH. reactions was different to that of linoleic acid (LA)-DPPH. reactions. CLA reacted and quenched DPPH radicals at all tested levels without a lag phase, while LA had a lag phase and showed no radical quenching activity at levels of 5-80 mg/mL in 30 min. These data indicated that CLA can provide immediate protection against free radicals, but LA cannot.

Zhang HL, Nagatsu A, Okuyama H, Mizukami H, Sakakibara J, 1998.

Sesquiterpene glycosides from cotton oil cake

Phytochemistry, 48(4):665-668

DOI:10.1016/S0031-9422(98)00075-2      URL     [本文引用: 1]

Zhang S, Tu XM, Zhang WC, Xie GB, 2020.

Chemical constituents from Saussurea pachyneura

Pharmacognosy Magazine, 16(71):564-567

DOI:10.4103/pm.pm_453_19      URL     [本文引用: 2]

杜习慧, 赵琪, 杨祝良, 2014.

羊肚菌的多样性、演化历史及栽培研究进展

菌物学报, 33(2):183-197

[本文引用: 3]

费永和, 陈重, 李笑然, 许琼明, 杨世林, 2014.

向日葵种子的化学成分研究

中草药, 45(5):631-634

[本文引用: 1]

郜惠苹, 田芳, 李宾, 高新楼, 2020.

不同浓度草木灰对六妹羊肚菌菌丝生长及菌核形成的影响

农业科技通讯, 11: 100-101+104

[本文引用: 2]

韩冰洋, 张宇, 田新雁, 肖朝江, 董相, 姜北, 2016.

类芒赤黄芪地下部分化学成分研究

广西植物, 36(11):1382-1388

李琴, 朱科学, 周惠明, 2011.

固相微萃取-气相色谱-质谱及气相色谱嗅闻技术分析双孢蘑菇汤的风味活性物质

食品科学, 32(16):300-304

[本文引用: 1]

林梦茜, 王飞娟, 余佳悦, 朱诚, 2011.

大棚植物中邻苯二甲酸酯类(PAEs)污染现状与检测方法

园艺与种苗, 5: 91-95+98

[本文引用: 1]

刘蓓, 吴素蕊, 朱萍, 张丽英, 邰丽梅, 桂明英, 2012.

滇西北地区四种羊肚菌营养成分分析比较

食品工业科技, 33(1):363-365

[本文引用: 1]

罗霞, 魏巍, 余梦瑶, 江南, 许晓燕, 郑林用, 2011.

尖顶羊肚菌对急性酒精性胃粘膜损伤保护作用研究

菌物学报, 30(2):319-324

[本文引用: 1]

麻兵继, 王佩佩, 2008.

亮菌子实体化学成分研究

中国药房, 19(10):740-742

[本文引用: 1]

马利, 李霞, 张松, 2014.

尖顶羊肚菌胞外多糖提取物对皮肤成纤维细胞增殖和衰老的影响

菌物学报, 33(2):385-393

[本文引用: 1]

宋明杰, 包海鹰, 2013.

菌物中麦角甾类化合物的研究进展

菌物研究, 11(4):266-274

[本文引用: 1]

王亚辉, 梅晓灯, 张松, 2013.

尖顶羊肚菌活性提取物降血压作用的研究

现代食品科技, 29(9):2147-2151

[本文引用: 1]

王珍珍, 官月, 刘洋, 刘淑艳, 2019.

六妹羊肚菌多糖的提取工艺优化及结构表征和抗氧化活性

菌物学报, 38(9):1548-1558

[本文引用: 1]

熊川, 罗强, 李强, 陈诚, 陈祖琴, 黄文丽, 2017.

六妹羊肚菌多糖部分理化性质及抗氧化活性研究

天然产物研究与开发, 29(7): 1182-1187+ 1153

[本文引用: 1]

殷伟伟, 张松, 吴金凤, 2009.

尖顶羊肚菌活性提取物降血脂作用的研究

菌物学报, 28(6):873-877

[本文引用: 1]

/