中文  |  English

菌物学报, 2021, 40(9): 2215-2222 doi: 10.13346/j.mycosystema.210199

综述

真菌环状RNA鉴定及研究展望

胡雪嫣1, 张赟1, 杨恩策1,2, 杜明昊,2,*

1.北京大学医学部基础医学院医学生物信息学系 北京 100191

2.北京大学医学部基础医学院病原生物学系 北京 100191

CircRNA in fungi: identification procedure and research perspective

HU Xue-Yan1, ZHANG Yun1, YANG En-Ce1,2, DU Ming-Hao,2,*

1. Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China

2. Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China

责任编辑: 王敏

收稿日期: 2021-05-24   接受日期: 2021-06-24  

Corresponding authors: *E-mail: duminghao@pku.edu.cn

Received: 2021-05-24   Accepted: 2021-06-24  

摘要

环状RNA是一类具有丰富调节潜力的闭合环状单链RNA,其可以通过竞争性结合内源RNA、充当蛋白质支架以及翻译模板等方式,从而参与基因表达调控。本文综述了真菌环状RNA的鉴定流程和难点,为后续解析环状RNA在真菌发育与代谢等过程中的调节作用提供理论支持。

关键词: 真菌环状RNA; 环状RNA鉴定; RNA-seq数据

Abstract

Circular RNA is a class of covalently closed RNAs, which plays important roles in the regulation of gene expression, such as competitive endogenous RNAs, protein scaffolds, and translation templates. The processes for identifying circular RNAs in fungi are reviewed for the purposes of providing theoretical support for unravelling the regulatory role of circular RNA in fungal developments and metabolisms.

Keywords: fungal circular RNA; circular RNA identification; RNA-seq data

PDF (356KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡雪嫣, 张赟, 杨恩策, 杜明昊. 真菌环状RNA鉴定及研究展望[J]. 菌物学报, 2021, 40(9): 2215-2222 doi:10.13346/j.mycosystema.210199

HU Xue-Yan, ZHANG Yun, YANG En-Ce, DU Ming-Hao. CircRNA in fungi: identification procedure and research perspective[J]. Mycosystema, 2021, 40(9): 2215-2222 doi:10.13346/j.mycosystema.210199

环状RNA(circular RNA,circRNA)是一种在转录过程中产生的单链环形RNA。与常见的线性剪接(linear splicing)方式有所不同,环状RNA通过反向剪接(back splicing)形成,即在加工过程中,前体RNA外显子或内含子的5’和3’端相互靠近,经剪接体加工后首尾相接,形成共价闭合的环状分子(Kristensen et al. 2019)。环状RNA普遍存在于众多物种中,在人类、小鼠、线虫以及真菌中,已经鉴定出数以千计的环状RNA。目前关于环状RNA表达谱的研究表明,环状RNA的表达不仅呈现出明显的物种特异性,而且在不同组织器官以及不同发育时期也具有一定的时空特异性(Chen 2020)。此外,一部分环状RNA在进化过程中表现出一定的保守性,其同源序列在人类和小鼠中皆有表达(Memczak et al. 2013)。这种生物普遍性和多样性提示环状RNA很可能具有丰富的分子生物学功能(Salzman et al. 2012)。

环状RNA分子呈闭合环状结构,不易降解,可以稳定地存在于胞浆(Huang et al. 2018)。同时,环状RNA功能十分丰富,可以充当微小RNA(microRNA)分子海绵、蛋白质分子海绵、蛋白质分子脚手架和翻译模板等,因而在基因转录、转录后修饰、蛋白质翻译以及翻译后修饰等多个层次均可发挥调控作用(Chen 2020;Shao et al. 2021)。现有研究表明,环状RNA不仅在诸如细胞分化、组织发育等正常生理调控作用中具有重要角色,而且在如细胞增殖异常、细胞代谢异常等多种病理过程中也发挥调控作用(Kristensen et al. 2019)。因此,深度解析环状RNA的功能,对于揭示转录组相互作用、研究生物体的复杂调控过程以及生物遗传进化机制等具有重要意义。

1 真菌环状RNA的研究现状及难点

虽然环状RNA逐渐成为RNA领域中的研究热点,但其在真菌中的研究却仍然有限。目前,在真菌中仅仅报道了数十至数千不等的环状RNA(表1),而且这些研究主要局限在一些模式菌种,如蜜蜂球囊菌Ascosphaera apisGuo et al. 2018a)、新生隐球菌Cryptococcus neoformansHuo et al. 2018)、灵芝Ganoderma lucidumShao et al. 2019)、稻瘟菌Magnaporthe oryzaeYuan et al. 2018)和裂殖酵母Schizosaccharomyces pombeWang et al. 2014)等。此外,虽然灵芝以及皮炎外瓶霉Exophiala dermatitidis等菌株在不同生长条件下的环状RNA表达谱差异提示环状RNA可能参与了真菌生长、发育、分化等过程(Blasi et al. 2015;Poyntner et al. 2016;Shao et al. 2019),但是与高等真核生物的环状RNA研究相比,目前真菌中环状RNA的研究仍然相对简单,主要停留于环状RNA的鉴定以及表达差异的定性比较,缺乏揭示真菌环状RNA的分子功能及其调控机制的研究。

表1   不同真菌环状RNA研究比较

Table 1  Circular RNA of different fungal species

物种
Species
富集方法
Enrichment method
软件
Software
环状RNA种类
Type of circular RNA
参考文献
Reference
Schizosaccharomyces pombeTotal RNAIn house scripts42Wang et al. 2014
Exophiala dermatitidispolyA(+)In house scripts87-677Blasi et al. 2015
Exophiala dermatitidispolyA(+)In house scripts62-126Poyntner et al. 2016
Ascosphaera apisRibo-Zero rRNA removal kitCIRI551Guo et al. 2018a
Magnaporthe oryzaeRibo-Zero gold kit/RNase RFind_circ8 848Yuan et al. 2018
Cryptococcus neoformansRibominusTM transcriptome
isolation kit/RNase R
CIRI73Huo et al. 2018
Nosema ceranaeRibo-Zero rRNA removal kitCIRI204Guo et al. 2018b
Ganoderma lucidumpolyA(-) and polyA(-)/RNase RCIRCexplorer2
circRNA_finder
CIRI2
250-2 193Shao et al. 2019

新窗口打开| 下载CSV


究其原因,缺乏成熟的真菌环状RNA富集分析流程是限制真菌环状RNA研究进展的重要原因。一方面,真菌具有基因组较小、外显子数量较少、压缩度较高等特点,因而其产生的环状RNA数目可能远少于人类等高等真核生物。此外,真菌细胞壁的存在增加了RNA提取的技术难度。这些因素都导致适用于人类等高等真核生物的环状RNA实验处理流程在真菌中并不能发挥理想的富集效果。而真菌环状RNA的富集水平较低则在一定程度上影响了后续流程中环状RNA鉴定以及差异分析的准确性。另一方面,目前环状RNA鉴定的生物信息学软件大部分需要依赖物种自身的基因组序列及其注释信息,而大部分真菌缺少高质量的基因组序列及其注释信息,特别是对于一些非模式真菌,其基因组序列和注释信息尚不完整,这也是限制诸多非模式真菌环状RNA研究的关键因素。

除上述因素外,真菌环状RNA的形成方式与哺乳动物也存在不同之处,在一定程度上也增加了真菌环状RNA的研究难度。由于内含子较长,人类或小鼠等哺乳动物在RNA加工过程中,剪接体主要采用“跨外显子”的组装方式来发挥剪接作用。因此,大部分人类环状RNA的形成依赖存在于内含子侧翼的反向重复互补序列(Kristensen et al. 2019)。该序列在前体RNA处理时诱导局部双链互补茎状结构产生,茎状结构被剪接体进一步剪接后即产生环状RNA。但真菌基因组具有压缩程度高、基因密集、内含子短而少的特点,剪接体则倾向采用“跨内含子”组装方式加工RNA。因此,基因结构的差异导致两者剪接体作用机制产生差别(Plaschka et al. 2018)。在酵母中,其主要是通过含有外显子的套索前体诱导产生环状RNA (Barrett et al. 2015)。套索前体模型可能通过减少环状RNA与线性转录本竞争剪接位点,从而促进环化。但这种套索诱导的环化方式是否普遍存在于其他真菌中则需要更多的研究来证明。

2 真菌环状RNA的筛选与鉴定

环状RNA的筛选与鉴定步骤大致分为实验富集、高通量测序、生物信息学分析以及实验验证4个环节。

2.1 环状RNA的实验富集方法

大部分环状RNA的表达量相对较低,除极少数环状RNA具有较高的表达水平外(You et al. 2015;Zheng et al. 2016),大多数环状RNA的丰度不超过相应线性转录本的10%(Salzman et al. 2013;Guo et al. 2014)。因此,环状RNA的富集过程是研究环状RNA表达及功能不可或缺的环节。由于大多数环状RNA没有特定的多聚腺苷酸尾修饰(Memczak et al. 2013),且长度一般在200-1 000bp之间,因此无法利用ploy(T)磁珠纯化或者小片段切胶回收的方式进行富集。由于大多数环状RNA缺乏自由末端而可以抵抗核酸酶RNase R降解,因此可以通过RNase R降解线性RNA,从而达到富集环状RNA的效果。此外,在去除核糖体RNA建库的基础上,利用ploy(T)磁珠去除多聚腺苷酸尾线性RNA (ploy(A)-),也可以提高环状RNA的比例。值得注意的是,最近有研究指出,环状RNA中存在部分对RNase R敏感或者具有ploy(A)尾的亚群(Szabo & Salzman 2016),因而上述富集方法可能会降低这些环状RNA的检出率,带来后续的分析偏差。

2.2 环状RNA的高通量测序

目前常用的系统性鉴定环状RNA的方法是将富集的RNA样本建库并进行高通量测序,从而通过识别测序数据中环状RNA特有的反向剪接区域来检测环状RNA。除常用的高通量测序技术外,还可以针对环状RNA反向剪接区域设计探针,从而利用微阵列(microarray)芯片技术检测环状RNA。研究策略可根据不同研究目的进行选择,并对接不同的下游分析流程。

通过第二代高通量测序平台产生单端或双端RNA-seq数据,并借助相应的生物信息学软件识别基因组序列中反向剪接区域,是目前鉴定环状RNA最为常用的方法。然而,相比于具有较高丰度的线性剪接区域,反向剪接区域的丰度则相对较低,在一定程度上限制了环状RNA的研究进展。因此,需要通过实验方法富集环状RNA,从而提升环状RNA的识别效率。此外,适当增加测序深度也是提高环状RNA检出率的主要方法。需要注意的是,测序平台和参数选择同样可能对环状RNA的识别产生影响(Liu et al. 2018;Xin et al. 2021;Zhang et al. 2021)。

除利用RNA-seq数据筛选鉴定环状RNA进行外,针对相应环状RNA的反向剪接部位设计微阵列芯片探针,同样可用于分析组织或者细胞中环状RNA的表达情况(Yang et al. 2020)。不同于RNA-seq,微阵列可以针对特定的环状RNA进行探针设计,从而靶向性的分析某类环状RNA的表达特点(Li et al. 2018)。由于微阵列技术成本相对较低,因而这种方法使得环状RNA成为一类具有较大应用潜力的临床诊断的分子标记物。但环状RNA微阵列受限于已知环状RNA种类,不适用于寻找和发现新的环状RNA。

2.3 环状RNA的生物信息学分析

CIRI2(Gao et al. 2018)、CIRCexplorer3 (Ma et al. 2019)、circRNA_finder (Westholm et al. 2014)、find_circ (Memczak et al. 2013)和KNIFE(Szabo et al. 2015)等工具是基于二代RNA-seq数据中反向剪接读段所开发的环状RNA预测软件。这些软件主要是利用物种注释文件信息建立反向剪接索引库,并识别测序数据中与之匹配的反向剪接区域,从而预测由反向剪接所形成的环状RNA。此外,常规GT-AG剪接位点的识别也有助于精确定位环状RNA的反向剪接部位。但某些环状RNA的剪接位点并非常规的GT-AG,例如剪接自内含子的环状RNA。因而,仅靠识别常规剪接位点会遗失特殊种类的环状RNA(Zhang et al. 2021)。同时,受限于二代RNA-seq数据读长限制,无法准确提供环状RNA的全长序列,因而限制了环状RNA的空间结构和可变剪接的相关研究。

对环状RNA的定量分析有利于功能性环状RNA的鉴定。然而,目前环状RNA的识别主要集中于反向剪接区域,对于非剪接区域的读段则难以排除来自其宿主基因的干扰。因此,包括FPKM和TPM在内的转录组定量指标通常不适用于环状RNA差异表达分析。为了降低环状RNA分析过程中宿主基因表达带来的影响,近年来的研究利用反向剪接读段与正向剪接读段的比值,即环状RNA与宿主基因表达量之比,来校正环状RNA的表达量(Zhang et al. 2020;Liu et al. 2021)。这种相对含量定量方式可以有效地降低环状RNA差异分析的假阳性率,从而提供更可靠的环状RNA候选集。但是由于环状RNA建库测序过程中通常会利用RNase R降解线性RNA,这也会导致这种相对定量的方法存在偏倚。CIRI-quant(Zhang et al. 2020)软件以及一些其他的分析流程(Vo et al. 2019)提供了校正RNase R处理偏倚的统计模型,可以通过对比RNase R处理组与RNase R非处理组,获得更准确的circRNA表达量。

2.4 环状RNA的分子生物学验证与定量

虽然基于RNA-seq的生物信息学分析可以基本满足不同样本间环状RNA差异分析的筛选需求,但其结果常常受到富集偏差、测序偏差、算法偏差等多方面因素的影响。因此,通常还需要从分子水平上对所预测的环状RNA进行验证,以评估生物信息学软件的预测效果。Northern印迹法是验证circRNA的金标准(Li et al. 2015b;Kristensen et al. 2019),但其较高的环状RNA投入量和具有标记探针的放射性限制了其应用范围。目前,针对反向剪接区域设计特异性的反向引物是验证环状RNA最为常用的验证手段之一,将RNase R处理与反向引物扩增相结合即可有效地验证环状RNA存在(Memczak et al. 2013)。此外,利用反向引物对环状RNA进行滚环复制(rolling circle amplification,RCA),可以得到环状RNA全长序列(You et al. 2015),不仅可验证反向剪接位点,也为进一步研究环状RNA的环化机制或者与其他分子的互作结合位点提供了基础。

在具体环状RNA分子的研究中,实验定量有助于进一步确定目标环状RNA的表达差异情况,为后续通过遗传操作等分子生物学手段研究其功能提供了实验基础。在分子水平上对环状RNA的定量可以采用基于反向引物的RT-qPCR方法。然而,由于环状RNA的PCR扩增过程中存在滚环复制和模板转换的现象,导致这种定量方法可能存在一定程度的偏倚(Szabo & Salzman 2016)。利用放射性反向探针则可以克服这种偏差(Hansen et al. 2013)。此外,使用SplintQuant (Conn & Conn 2019)等优化定量实验流程也可实现对环状RNA的精确定量。

3 真菌环状RNA的研究展望

真菌中关于环状RNA的研究尚处于起步阶段,目前还没有功能性环状RNA在真菌中被报道。现有研究中所发现的真菌环状RNA数目远少于其他物种:一方面,真菌基因组内含子少,基因排列紧密可能导致真菌产生的环状RNA总数较少;另一方面,缺少成熟的实验流程和分析流程,也限制了真菌环状RNA的研究。因此,建立成熟的实验流程以及高效、灵敏、准确的环状RNA分析方法,是进一步解析真菌环状RNA的重要环节。

现有的真菌环状RNA的研究显示,核糖体去除的RNA-seq建库方法可以明显提高环状RNA的检出数目(Guo et al. 2018a,2018b)。同时,RNase R以及ploy(A)-处理对于提高环状RNA的检出率也具有一定的附加效果(Huo et al. 2018;Yuan et al. 2018;Shao et al. 2019)。但是由于缺少相应的对照实验,尚不能评估最佳的富集流程。真菌环状RNA研究主要基于二代测序数据和主流环状RNA预测软件,如CIRI2等。然而,由于物种差异、前期实验处理不同以及筛选阈值的选择不同,难以就目前结果对真菌环状RNA进行准确的数量和质量评估。随着该领域的不断发展和数据的不断丰富,对于真菌环状RNA的评估也会实现质的飞跃。

目前,环状RNA的调节功能已在多个物种中得到证实,其充当RNA分子海绵、结合蛋白质、翻译微肽等功能在众多生理病理的发生发展过程中具有重要作用。以往研究证明,lncRNA、miRNA等非编码RNA参与了真菌的细胞分裂、营养感知、有性生殖等过程(Chacko et al. 2015;Zeng et al. 2019;Liu et al. 2020),考虑到相当数量的环状RNA具有miRNA结合位点(Memczak et al. 2013;Piwecka et al. 2017)或与蛋白的结合能力(Ashwal-Fluss et al. 2014;Abdelmohsen et al. 2017),环状RNA在真菌转录组的复杂调控网络中可能同样发挥重要作用。此外,一些病原真菌与宿主相互作用时会通过分泌miRNA实现免疫逃逸或毒力调控(Schorey et al. 2015;Cai et al. 2018)。而环状RNA的共价闭合结构使其较线性RNA更为稳定,因而可以在胞外稳定存在,或者在外泌体中明显富集(Li et al. 2015a)。但是,目前尚未有研究涉及真菌中分泌环状RNA领域。

环状RNA作为一类具有强大调节潜力的非编码RNA,在真核生物界具有广泛的调控作用。对真菌环状RNA的功能研究有助于深入解析某些复杂生命过程,例如有性生殖和毒力增强等。这些不仅可以为抗真菌药物的研究提供新的靶点,而且也为真菌基因表达调控机制的研究提供数据基础。

参考文献

Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M, 2017.

Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1

RNA Biology, 14:361-369

DOI:10.1080/15476286.2017.1279788      PMID:28080204      [本文引用: 1]

HuR influences gene expression programs and hence cellular phenotypes by binding to hundreds of coding and noncoding linear RNAs. However, whether HuR binds to circular RNAs (circRNAs) and impacts on their function is unknown. Here, we have identified en masse circRNAs binding HuR in human cervical carcinoma HeLa cells. One of the most prominent HuR target circRNAs was hsa_circ_0031288, renamed CircPABPN1 as it arises from the PABPN1 pre-mRNA. Further analysis revealed that HuR did not influence CircPABPN1 abundance; interestingly, however, high levels of CircPABPN1 suppressed HuR binding to PABPN1 mRNA. Evaluation of PABPN1 mRNA polysomes indicated that PABPN1 translation was modulated positively by HuR and hence negatively by CircPABPN1. We propose that the extensive binding of CircPABPN1 to HuR prevents HuR binding to PABPN1 mRNA and lowers PABPN1 translation, providing the first example of competition between a circRNA and its cognate mRNA for an RBP that affects translation.

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S, 2014.

circRNA biogenesis competes with pre-mRNA splicing

Molecular Cell, 56:55-66

DOI:10.1016/j.molcel.2014.08.019      PMID:25242144      [本文引用: 1]

Circular RNAs (circRNAs) are widely expressed noncoding RNAs. However, their biogenesis and possible functions are poorly understood. Here, by studying circRNAs that we identified in neuronal tissues, we provide evidence that animal circRNAs are generated cotranscriptionally and that their production rate is mainly determined by intronic sequences. We demonstrate that circularization and splicing compete against each other. These mechanisms are tissue specific and conserved in animals. Interestingly, we observed that the second exon of the splicing factor muscleblind (MBL/MBNL1) is circularized in flies and humans. This circRNA (circMbl) and its flanking introns contain conserved muscleblind binding sites, which are strongly and specifically bound by MBL. Modulation of MBL levels strongly affects circMbl biosynthesis, and this effect is dependent on the MBL binding sites. Together, our data suggest that circRNAs can function in gene regulation by competing with linear splicing. Furthermore, we identified muscleblind as a factor involved in circRNA biogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

Barrett SP, Wang PL, Salzman J, 2015.

Circular RNA biogenesis can proceed through an exon-containing lariat precursor

eLife, 4:e07540

DOI:10.7554/eLife.07540      URL     [本文引用: 1]

Blasi B, Tafer H, Tesei D, Sterflinger K, 2015.

From glacier to sauna: RNA-Seq of the human pathogen black fungus Exophiala dermatitidis under varying temperature conditions exhibits common and novel fungal response

PLoS One, 10:e0127103

DOI:10.1371/journal.pone.0127103      URL     [本文引用: 2]

Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H, 2018.

Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes

Science, 360:1126-1129

DOI:10.1126/science.aar4142      URL     [本文引用: 1]

Chacko N, Zhao Y, Yang E, Wang L, Cai JJ, Lin X, 2015.

The lncRNA RZE1 controls Cryptococcal morphological transition

PLoS Genetics, 11:e1005692

DOI:10.1371/journal.pgen.1005692      URL     [本文引用: 1]

Chen LL, 2020.

The expanding regulatory mechanisms and cellular functions of circular RNAs

Nature Reviews Molecular Cell Biology, 21:475-490

DOI:10.1038/s41580-020-0243-y      URL     [本文引用: 2]

Conn V, Conn SJ, 2019.

SplintQuant: a method for accurately quantifying circular RNA transcript abundance without reverse transcription bias

RNA (New York), 25:1202-1210

[本文引用: 1]

Gao Y, Zhang J, Zhao F, 2018.

Circular RNA identification based on multiple seed matching

Briefings in Bioinformatics, 19:803-810

DOI:10.1093/bib/bbx014      URL     [本文引用: 1]

Guo JU, Agarwal V, Guo H, Bartel DP, 2014.

Expanded identification and characterization of mammalian circular RNAs

Genome Biology, 15:409

DOI:10.1186/s13059-014-0409-z      URL     [本文引用: 1]

Guo R, Chen D, Chen H, Fu Z, Xiong C, Hou C, Zheng Y, Guo Y, Wang H, Du Y, Diao Q, 2018a.

Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae

Gene, 678:17-22

DOI:10.1016/j.gene.2018.07.076      URL     [本文引用: 3]

Guo R, Chen D, Chen H, Xiong C, Zheng Y, Hou C, Du Y, Geng S, Wang H, Dingding Z, Yilong G, 2018b.

Genome-wide identification of circular RNAs in fungal parasite Nosema ceranae

Current Microbiology, 75:1655-1660

DOI:10.1007/s00284-018-1576-z      URL     [本文引用: 2]

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J, 2013.

Natural RNA circles function as efficient microRNA sponges

Nature, 495:384-388

DOI:10.1038/nature11993      URL     [本文引用: 1]

Huang C, Liang D, Tatomer DC, Wilusz JE, 2018.

A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs

Genes & Development, 32:639-644

DOI:10.1101/gad.314856.118      URL     [本文引用: 1]

Huo L, Zhang P, Li C, Rahim K, Hao X, Xiang B, Zhu X, 2018.

Genome-wide identification of circRNAs in pathogenic basidiomycetous yeast Cryptococcus neoformans suggests conserved circRNA host genes over kingdoms

Genes (Basel), 9:118-130

DOI:10.3390/genes9030118      URL     [本文引用: 3]

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J, 2019.

The biogenesis, biology and characterization of circular RNAs

Nature Reviews Genetics, 20:675-691

DOI:10.1038/s41576-019-0158-7      PMID:31395983      [本文引用: 4]

Circular RNAs (circRNAs) are covalently closed, endogenous biomolecules in eukaryotes with tissue-specific and cell-specific expression patterns, whose biogenesis is regulated by specific cis-acting elements and trans-acting factors. Some circRNAs are abundant and evolutionarily conserved, and many circRNAs exert important biological functions by acting as microRNA or protein inhibitors ('sponges'), by regulating protein function or by being translated themselves. Furthermore, circRNAs have been implicated in diseases such as diabetes mellitus, neurological disorders, cardiovascular diseases and cancer. Although the circular nature of these transcripts makes their detection, quantification and functional characterization challenging, recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of state-of-the-art approaches for their identification, and novel approaches to functional characterization are emerging.

Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu Z J, Guo Y, Zhu Q, Wang D, 2018.

Microarray is an efficient tool for circRNA profiling

Briefings in Bioinformatics, 20:1420-1433

DOI:10.1093/bib/bby006      URL     [本文引用: 1]

Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S, 2015a.

Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis

Cell Research, 25:981-984

DOI:10.1038/cr.2015.82      URL     [本文引用: 1]

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G, 2015b.

Exon-intron circular RNAs regulate transcription in the nucleus

Nature Structural & Molecular Biology, 22:256-264

DOI:10.1038/nsmb.2959      URL     [本文引用: 1]

Liu M, Zhang Z, Ding C, Wang T, Kelly B, Wang P, 2020.

Transcriptomic analysis of extracellular RNA governed by the endocytic adaptor protein Cin1 of Cryptococcus deneoformans

Frontiers in Cellular and Infection Microbiology, 10:256

DOI:10.3389/fcimb.2020.00256      URL     [本文引用: 1]

Liu YC, Chiu YJ, Li JR, Sun CH, Liu CC, Huang HD, 2018.

Biclustering of transcriptome sequencing data reveals human tissue-specific circular RNAs

BMC Genomics, 19:958

DOI:10.1186/s12864-017-4335-9      URL     [本文引用: 1]

Liu Z, Ding H, She J, Chen C, Zhang W, Yang E, 2021.

DEBKS: a tool to detect differentially expressed circular RNA

Genomics, Proteomics & Bioinformatics, Doi: 10.1101/2020.10.14.336982

[本文引用: 1]

Ma XK, Wang MR, Liu CX, Dong R, Carmichael GG, Chen LL, Yang L, 2019.

CIRCexplorer3: a clear pipeline for direct comparison of circular and linear RNA expression

Genomics, Proteomics & Bioinformatics, 17:511-521

[本文引用: 1]

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Le Noble F, Rajewsky N, 2013.

Circular RNAs are a large class of animal RNAs with regulatory potency

Nature, 495:333-338

DOI:10.1038/nature11928      URL     [本文引用: 5]

Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kühn R, Rosenmund C, Birchmeier C, Rajewsky N, 2017.

Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function

Science, 357:eaam8526

DOI:10.1126/science.aam8526      URL     [本文引用: 1]

Plaschka C, Lin PC, Charenton C, Nagai K, 2018.

Prespliceosome structure provides insights into spliceosome assembly and regulation

Nature, 559:419-422

DOI:10.1038/s41586-018-0323-8      URL     [本文引用: 1]

Poyntner C, Blasi B, Arcalis E, Mirastschijski U, Sterflinger K, Tafer H, 2016.

The transcriptome of Exophiala dermatitidis during ex-vivo skin model infection

Frontiers in Cellular and Infection Microbiology, 6:136-154

[本文引用: 2]

Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO, 2013.

Cell-type specific features of circular RNA expression

PLoS Genetics, 9:e1003777

DOI:10.1371/journal.pgen.1003777      URL     [本文引用: 1]

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO, 2012.

Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types

PLoS One, 7:e30733

DOI:10.1371/journal.pone.0030733      URL     [本文引用: 1]

Schorey JS, Cheng Y, Singh PP, Smith VL, 2015.

Exosomes and other extracellular vesicles in host-pathogen interactions

EMBO Reports, 16:24-43

DOI:10.15252/embr.201439363      URL     [本文引用: 1]

Shao J, Wang L, Liu X, Yang M, Chen H, Wu B, Liu C, 2019.

Identification and characterization of circular RNAs in Ganoderma lucidum

Scientific Reports, 9:16522-16534

DOI:10.1038/s41598-019-52932-w      URL     [本文引用: 4]

Shao T, Pan YH, Xiong XD, 2021.

Circular RNA: an important player with multiple facets to regulate its parental gene expression. Molecular Therapy-

Nucleic Acids, 23:369-376

[本文引用: 1]

Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J, 2015.

Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development

Genome Biology, 16:126

DOI:10.1186/s13059-015-0690-5      URL     [本文引用: 1]

Szabo L, Salzman J, 2016.

Detecting circular RNAs: bioinformatic and experimental challenges

Nature Reviews Genetics, 17:679-692

DOI:10.1038/nrg.2016.114      URL     [本文引用: 2]

Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, Robinson DR, Nesvizhskii AI, Chinnaiyan AM, 2019.

The landscape of circular RNA in cancer

Cell, 176:869-881

DOI:10.1016/j.cell.2018.12.021      URL     [本文引用: 1]

Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J, 2014.

Circular RNA is expressed across the eukaryotic tree of life

PLoS One, 9:e90859

DOI:10.1371/journal.pone.0090859      URL     [本文引用: 2]

Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC, 2014.

Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation

Cell Reports, 9:1966-1980

DOI:S2211-1247(14)00931-0      PMID:25544350      [本文引用: 1]

Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and coding conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Xin R, Gao Y, Gao Y, Wang R, Kadash-Edmondson KE, Liu B, Wang Y, Lin L, Xing Y, 2021.

isoCirc catalogs full-length circular RNA isoforms in human transcriptomes

Nature Communications, 12:266

DOI:10.1038/s41467-020-20459-8      URL     [本文引用: 1]

Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, Tang Y, Du L, Xu L, Wu F, Zuo L, Chen X, Lin Y, Liu K, Ye Q, Chen B, Li B, Tang T, Wang Y, Shen L, Wang G, Ju M, Yuan M, Jiang W, Zhang JH, Hu G, Wang J, Yao H, 2020.

Extracellular vesicle-mediated delivery of circular RNA scmh1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models

Circulation, 142:556-574

DOI:10.1161/CIRCULATIONAHA.120.045765      PMID:32441115      [本文引用: 1]

Stroke is a leading cause of adult disability that can severely compromise the quality of life of patients, yet no effective medication currently exists to accelerate rehabilitation. A variety of circular RNA (circRNA) molecules are known to function in ischemic brain injury. Lentivirus-based expression systems have been widely used in basic studies of circRNAs, but safety issues with such delivery systems have limited exploration of the potential therapeutic roles for circRNAs.Circular RNA SCMH1 (circSCMH1) was screened from the plasma of patients with acute ischemic stroke by using circRNA microarrays. Engineered rabies virus glycoprotein-circSCMH1-extracellular vesicles were generated to selectively deliver circSCMH1 to the brain. Nissl staining was used to examine infarct size. Behavioral tasks were performed to evaluate motor functions in both rodent and nonhuman primate ischemic stroke models. Golgi staining and immunostaining were used to examine neuroplasticity and glial activation. Proteomic assays and RNA-sequencing data combined with transcriptional profiling were used to identify downstream targets of circSCMH1.CircSCMH1 levels were significantly decreased in the plasma of patients with acute ischemic stroke, offering significant power in predicting stroke outcomes. The decreased levels of circSCMH1 were further confirmed in the plasma and peri-infarct cortex of photothrombotic stroke mice. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that circSCMH1 treatment improved functional recovery after stroke in both mice and monkeys, and we discovered that circSCMH1 enhanced the neuronal plasticity and inhibited glial activation and peripheral immune cell infiltration. CircSCMH1 binds mechanistically to the transcription factor MeCP2 (methyl-CpG binding protein 2), thereby releasing repression of MeCP2 target gene transcription.Rabies virus glycoprotein-circSCMH1-extracellular vesicles afford protection by promoting functional recovery in the rodent and the nonhuman primate ischemic stroke models. Our study presents a potentially widely applicable nucleotide drug delivery technology and demonstrates the basic mechanism of how circRNAs can be therapeutically exploited to improve poststroke outcomes.

You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W, 2015.

Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity

Nature Neuroscience, 18:603-610

DOI:10.1038/nn.3975      [本文引用: 2]

You, Xintian; Babic, Ana; Quedenau, Claudia; Wang, Xi; Hou, Jingyi; Liu, Hongyu; Sun, Wei; Chen, Tao; Chen, Wei Max Delbruck Ctr Mol Med, Berlin Inst Med Syst Biol, Berlin, Germany. Vlatkovic, Irena; Will, Tristan; Epstein, Irina; Tushev, Georgi; Akbalik, Gueney; Wang, Mantian; Glock, Caspar; Sambandan, Sivakumar; Schuman, Erin M. Max Planck Inst Brain Res, Dept Synapt Plast, Frankfurt, Germany.

Yuan J, Wang Z, Xing J, Yang Q, Chen XL, 2018.

Genome-wide identification and characterization of circular RNAs in the rice blast fungus Magnaporthe oryzae

Scientific Reports, 8:6757-6762

DOI:10.1038/s41598-018-25242-w      URL     [本文引用: 3]

Zeng J, Gupta VK, Jiang Y, Yang B, Gong L, Zhu H, 2019.

Cross-Kingdom small RNAs among animals, plants and microbes

Cells, 8:371

DOI:10.3390/cells8040371      URL     [本文引用: 1]

Zhang J, Chen S, Yang J, Zhao F, 2020.

Accurate quantification of circular RNAs identifies extensive circular isoform switching events

Nature Communications, 11:90

DOI:10.1038/s41467-019-13840-9      URL     [本文引用: 2]

Zhang JY, Hou LL, Zuo ZQ, Ji PF, Zhang XR, Xue YC, Zhao FQ, 2021.

Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long

Nature Biotechnology, 39:836-845

DOI:10.1038/s41587-021-00842-6      URL     [本文引用: 2]

Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S, 2016.

Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs

Nature Communications, 7:11215

DOI:10.1038/ncomms11215      URL     [本文引用: 1]

/