中文  |  English

菌物学报, 2022, 41(4): 647-657 doi: 10.13346/j.mycosystema.210307

研究论文

芳香杯伞生物学特性及驯化栽培

顾丹丹,#, 史玲玉,#, 刘红霞1, 张金秀1, 姚清国2, 王立安,1,*

1 河北师范大学生命科学学院,河北 石家庄 050024

2 石家庄学院化工学院,河北 石家庄 050035

Biological characteristics and cultivation of Clitocybe fragrans

GU Dandan,#, SHI Lingyu,#, LIU Hongxia1, ZHANG Jinxiu1, YAO Qingguo2, WANG Li'an,1,*

1 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China

2 College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, Hebei, China

收稿日期: 2021-08-4   接受日期: 2021-08-25  

基金资助: 河北省重点研发计划项目(21326315D)
河北省重点研发计划项目(19226910D)
石家庄学院博士科研启动基金项目(18BS011)

Corresponding authors: * wlian1965@126.com ORCID: WANG Lian (0000-0003-0318-9956)

First author contact:

#Co-first author.

Received: 2021-08-4   Accepted: 2021-08-25  

Fund supported: Key Research and Development Planning Project in Science and Technology of Hebei Province(21326315D)
Key Research and Development Planning Project in Science and Technology of Hebei Province(19226910D)
Doctoral Scientific Research Foundation of Shijiazhuang University(18BS011)

作者简介 About authors

ORCID:GUDandan(0000-0002-1091-7336) 。

摘要

以采自于河北省平泉市的一株野生食用菌Clitocybe fragrans的菌丝体为材料,对其营养及环境特性进行研究。检测了不同碳源、氮源、C/N、无机盐在固体培养条件下对芳香杯伞菌丝生长的影响,单因素及正交试验结果表明,实验范围内,芳香杯伞最适碳源为蔗糖、最适氮源为酵母浸粉、最适C/N为40:1、最适无机盐为硫酸镁。正交试验筛选适宜培养基配方为:蔗糖17.3 g,酵母浸粉1.8 g,磷酸二氢钾3 g,无水硫酸镁1.5 g,琼脂20 g,水1 L。对菌丝生长所需的温度、pH及光照条件进行研究,结果显示,适宜菌丝生长的温度范围为19-25 ℃,pH值范围为5-5.5,光照条件为黑暗。对获得的菌种进行了驯化栽培研究,结果表明,适宜的母种扩繁培养基为:粪草培养料100 g (煮汁),马铃薯200 g (煮汁),葡萄糖20 g,磷酸二氢钾3 g,蛋白胨3 g,无水硫酸镁1.5 g,琼脂20 g,水1 L;原种培养基为:高粱粒98%,葡萄糖1%,石膏1%;栽培培养基质为:粪草培养料98%,石膏1%,葡萄糖1%,含水量55%。栽培袋接菌后35-40 d满袋,8-10 d后现原基,7-8 d原基分化成子实体。

关键词: 芳香杯伞; 菌丝体; 营养特性; 培养基; 驯化栽培

Abstract

The nutritional and environmental characteristics of a wild Clitocybe fragrans obtained from Pingquan City in Hebei Province were studied. The effects of carbon source, nitrogen source, C/N, and inorganic salt on the mycelial growth were investigated by single factor test and optimized by orthogonal experiments. The results revealed that the optimum carbon source, nitrogen source, C/N and inorganic salt were sucrose, yeast extract, 40:1, and magnesium sulphate respectively. The culture medium formula was as follows: sucrose 17.3 g, yeast extract 1.8 g, potassium dihydrogen phosphate 3 g, anhydrous magnesium sulfate 1.5 g, agar 20 g, and water 1 L. The mycelia grew well at pH 5.0-5.5 and incubation temperature of 19-25 °C under dark condition. The domestic cultivation of the mushroom was executed successfully. The suitable stock culture medium for propagated cultivation was composed of 100 g of compost substrate (boiled juice), 200 g of potato (boiled juice), 20 g of glucose, 3 g of potassium dihydrogen phosphate, 3 g of peptone, 1.5 g of anhydrous magnesium sulfate, 20 g of agar and 1 L of water. The mother spawn medium was composed of sorghum 98%, glucose 1%, and gypsum 1%. The spawn substrate was composed of 98% compost substrate, 1% gypsum and 1% glucose with 55% moisture capacity. Using method of sack cultivation, the mycelia were sackful in 35-40 days after inoculation. The primordia were formed 8-10 days later, and grew into fruit bodies after 7-8 days.

Keywords: Clitocybe fragrans; mycelium; nutritional characteristics; medium; domestication and cultivation

PDF (746KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

顾丹丹, 史玲玉, 刘红霞, 张金秀, 姚清国, 王立安. 芳香杯伞生物学特性及驯化栽培[J]. 菌物学报, 2022, 41(4): 647-657 doi:10.13346/j.mycosystema.210307

GU Dandan, SHI Lingyu, LIU Hongxia, ZHANG Jinxiu, YAO Qingguo, WANG Li'an. Biological characteristics and cultivation of Clitocybe fragrans[J]. Mycosystema, 2022, 41(4): 647-657 doi:10.13346/j.mycosystema.210307

杯伞属Clitocybe为世界广布属,为多系群(Moncalvo et al. 2000,2002;Matheny 2006),全球约有300种(Kirk 2008),有些可食用(戴玉成等2010),有5种为药用真菌(戴玉成和杨祝良 2008),有些具有毒性(图力古尔等 2014)。1871年Kummer首次提出杯伞属,近些年,通过分子系统学分析,国内外许多分类学家对其进行了研究(丁玉香2017)。中国境内1937年首次报道发现该属真菌,此后,全国共报道了该属110个分类群,其中包括7个中国新记录的分类群(魏铁铮和姚一建2015)。该属真菌物种丰度较低,对其研究相对较少。

芳香杯伞Clitocybe fragrans属于真菌界、担子菌门、伞菌纲、伞菌目、白蘑科。主要分布在我国的高原地区,在黑龙江、吉林、河北、山西、云南等多地均有分布(魏铁铮和姚一建2015)。我国对野生蕈菌驯化已有近千年的历史,是世界上最早对食用菌进行栽培研究的国家之一,曾经首先对香菇、木耳、银耳等野生蕈菌驯化栽培成功(王建瑞和图力古尔2006;王刚等2006)。近几年,冷杉侧耳Pleurotus abieticola R.H. Petersen & K.W. Hughes、絮缘蘑菇 Agaricus subfloccosus (J.E. Lange) Hlaváček、脆木耳 Auricularia fibrillifera Kobayasi等先后被驯化成功(张晓宇等2019;梁倩倩等2020;罗智檜等2020)。芳香杯伞属于白蘑科,但是目前对于白蘑科的驯化栽培报道较少(香永田等1987;李晓华等2004),白蘑科里菌种的驯化栽培一直是业界难点。杯伞属仅有大杯伞Clitocybe maxima和漏斗形杯伞Clitocybe infundibuliformis有驯化成功报告(曾金凤1985,1991;颜振兰2001),而芳香杯伞作为白蘑科的一个野生菌种,至今未见驯化栽培的研究报道。

本研究以野生芳香杯伞子实体组织分离获得的菌种为材料,对其进行了形态学和ITS鉴定(刘红霞2014),随后,对其菌丝生长的生物学特性和驯化栽培进行了系统研究,筛选出适宜的母种、原种、栽培种培养基,明确了其生长条件及驯化栽培技术。研究结果对河北省野生蘑菇资源的保护利用、丰富我国食用菌栽培品种具有重要意义。

1 材料与方法

1.1 供试菌株

供试菌株采自于河北省平泉市,组织分离培养后获得菌种,经形态学及ITS鉴定为芳香杯伞Clitocybe fragrans,现保存于河北师范大学应用真菌学实验室。

1.2 菌丝体营养特性研究

1.2.1 不同碳源对菌丝体生长的影响

固定基础培养基中的碳素含量,碳源更换为与葡萄糖等量碳素的10种不同碳源。基础培养基配方为:葡萄糖20 g,蛋白胨3 g,磷酸二氢钾3 g,无水硫酸镁1.5 g,琼脂20 g,加水定容至1 L。以无碳培养基作为对照,在平板上进行培养,用直径6 mm的打孔器打孔,取菌丝接种至平板,每种碳源进行5个重复处理,25 ℃培养箱恒温暗培养。十字划线法在相同时间段内测量菌丝体直径,当有一个菌丝即将满板时,结束培养。

菌丝生长速度(mm/d)=菌落半径(mm)/生长天数(d)

1.2.2 不同氮源对菌丝体生长的影响

固定基础培养基中的氮素含量,氮源更换为与蛋白胨等量氮素的10种氮源,以无氮培养基作为对照。其他步骤同碳源影响实验。

1.2.3 不同C/N对菌丝体生长的影响

固定基础培养基中葡萄糖的含量,改变蛋白胨的含量,配制成C/N比不同的9种培养基。其他步骤同碳源影响实验。

1.2.4 不同无机盐对菌丝体生长的影响

以基础培养基作为对照,将无机盐硫酸镁更换为等质量浓度的9种不同的无机盐。其他步骤同碳源影响实验。

1.2.5 正交试验

以筛选出的菌丝体碳源、氮源、C/N、无机盐为4个单因素,分别挑选出最佳的3个水平,进行L9(34)正交试验,共9组。

1.3 菌丝体生长环境条件研究
1.3.1 不同温度对菌丝体生长的影响

根据最适正交配方制作固体培养基用于温度筛选。在19-43 ℃间以3 ℃为一个梯度设定不同的温度梯度。

1.3.2 初始pH值对菌丝体生长的影响

在pH 4.5-8.5间以0.5为一个梯度设定不同初始pH梯度。

1.3.3 不同光照条件对菌丝体生长的影响

分别设定24 h连续黑暗、12 h光照+12 h黑暗、24 h连续光照,3个不同光照处理方案。

1.4 芳香杯伞菌种培养基研究
1.4.1 母种培养基

根据相关参考文献及菌丝体营养特性,设计以下11种母种培养基配方(初始pH自然):A:PDA+木屑煮汁培养基:CPDA培养基+木屑100 g (取煮汁);B:大豆饼粉培养基:CPDA培养基中马铃薯替换为大豆饼粉20 g;C:马铃薯蔗糖培养基:CPDA培养基中葡萄糖替换为蔗糖;D:CPDA培养基:马铃薯200 g (去皮切片煮汁),葡萄糖20 g,磷酸二氢钾3 g,蛋白胨3 g,无水硫酸镁1.5 g,琼脂20 g,水1 L;E:玉米粉培养基:CPDA培养基中马铃薯替换为玉米粉20 g;F:牛粪煮汁培养基:CPDA培养基中葡萄糖替换为牛粪100 g (取煮汁);G:麦粒煮汁培养基:CPDA培养基中马铃薯和葡萄糖替换为小麦粒200 g (取煮汁);H:粪草培养料培养基:CPDA培养基中葡萄糖替换为发酵后粪草料100 g (取煮汁);I:PDA+麸皮煮汁培养基:CPDA培养基+麸皮100 g (取煮汁);J:PDA培养基:马铃薯200 g (去皮切片煮汁),葡萄糖20 g,琼脂20 g,水1 L;K:正交配方(见2.1)。

1.4.2 原种培养基

根据相关参考文献及菌丝体营养特性,设计以下5种原种培养基配方,配方如下:高粱粒培养基:高粱98%,石膏1%,糖1%;玉米粒培养基:玉米粒98%,石膏1%,糖1%;荞麦培养基:荞麦98%,石膏1%,糖1%;麦粒培养基:小麦98%,石膏1%,糖1%;小米培养基:小米98%,石膏1%,糖1%。

1.5 驯化栽培 1.5.1 原种制备

将高粱粒用冷水浸泡12 h后,加热蒸煮至八分熟时,按比例加入石膏粉及葡萄糖,搅拌均匀后装入单头大试管(3 cm×20 cm),121 ℃高压灭菌1 h。待试管温度降至室温,接入直径为12 mm的菌丝块。22 ℃培养箱培养,当菌丝长满试管时可作为原种。

1.5.2 栽培试验

栽培料配方为粪草培养料98%,石膏1%、糖1%。使用前需对其进行人工二次发酵处理,处理方法为,将粪草培养料进行预湿,含水量保持在60%-65%,按比例加入石膏和糖,搅拌均匀后于55-60 ℃烘箱中进行二次发酵3-5 d,期间每天早晚进行翻料处理,待发酵臭味消失后,即发酵完成。将长好的原种接至发酵好的栽培料菌袋中(菌袋规格140 mm×280 mm×0.045 mm),于22 ℃、湿度60%的发菌培养室,在黑暗条件下进行发菌处理。将发菌完成的菌袋进行覆土出菇,出菇温度为20-25 ℃,湿度为80%-90%,并给予一定的散射光;昼夜温差10 ℃左右刺激原基发生,保持1 d两次通风;当原基形成后,加大通风,直至子实体发育成熟。

2 结果与分析

2.1 芳香杯伞菌丝体生物学特性

菌丝体对碳源的利用广泛,在不同碳源的培养基上菌丝均可生长,但是菌丝的菌落形态及长势差异较大。在山梨糖醇培养基生长最快,在蔗糖培养基长势最好,且生长速度仅次于山梨糖醇,在半乳糖培养基生长最慢(表1图1)。综合分析,适宜芳香杯伞菌丝生长的碳源为蔗糖,其次为山梨糖醇、甘露醇。

表1   不同营养物质对芳香杯伞菌丝生长的影响

Table 1  Effects of different nutritional sources on the mycelial growth of Clitocybe fragrans

培养条件
Conditions
不同因素
Different nutritional factors
菌丝长势
Mycelial growth vigor
生长速度
Mycelial growth rate (mm/d)
显著性差异
Significance
levels
0.050.01
碳源
Carbon source
乳糖Lactose+0.39±0.02gG
果糖Fructose+0.79±0.02fE
葡萄糖Glucose++1.32±0.03eD
木糖Xylose+0.77±0.03FE
半乳糖Galactose+0.20±0.02hG
山梨糖醇Sorbitol++2.09±0.03aA
蔗糖Sucrose+++1.86±0.03bB
甘露醇Mannitol+++1.80±0.05bB
麦芽糖Maltose++1.50±0.03dC
可溶性淀粉Starch++1.62±0.05cC
空白CK+++1.70±0.09cC
氮源
Nitrogen
source
钼酸铵Ammonium molybdate++1.33±0.06dDEF
氯化铵Ammonium chloride++1.39±0.09dD
硝酸铵Ammonium nitrate+++1.86±0.07aAB
尿素Urea+1.08±0.12eF
亮氨酸Leucine+++1.56±0.03bcCD
蛋白胨Peptone+++1.42±0.12cdCDE
牛肉膏Beef extract+++1.64±0.03bBC
硫酸铵Ammonium sulfate+++1.64±0.07bBC
空白CK+1.28±0.09dEF
酵母浸粉Yeast extract powder+++2.03±0.07aA
碳氮比酵母膏Yeast extract paste+0.72±0.0fG
C/N10:1+1.03±0.03dC
15:1+1.17±0.06bcBC
20:1++1.17±0.06bcBC
25:1++1.19±0.03bBC
30:1++1.25±0.06bAB
35:1++1.42±0.06aA
40:1++1.14±0.07bcdBC
45:1++1.06±0.03cdC
50:1++1.03±0.03dC
无机盐
Mineral salt
氯化钾Potassium chloride++0.98±0.02bBC
氯化镁Magnesium chloride++0.65±0.02dD
硫酸镁Magnesium sulfate++1.15±0.10aAB
碳酸钠Sodium carbonate+0.39±0.03eE
硫酸钠Sodium sulphate+++1.27±0.11aA
硫酸钾Potassium sulphate++0.80±0.06cdCD
空白CK++0.93±0.06bcBC
硫酸锰Manganese sulphate--
硫酸铜Cupric sulfate--
硫酸锌Zinc sulphate--
硝酸钠Sodium nitrate--

注:“+++”表示菌丝生长势较强,“++”表示菌丝生长势一般,“+”表示菌丝生长势弱,下同

Note: “+++” indicates vigorous growth, “++” indicates moderate growth, “+” indicates weak growth. The same below.

新窗口打开| 下载CSV


图1

图1   不同培养条件对芳香杯伞菌丝生长的影响

Fig. 1   Effects of different culture condition on mycelial growth of Clitocybe fragrans.


菌丝体对不同氮源的利用差异较大,虽然在不同氮源培养基上菌丝均可生长,但是在有机氮源培养基上菌丝菌落形态(除酵母膏)要优于无机氮源(表1图1)。综合分析,适宜芳香杯伞菌丝生长的氮源为酵母浸粉,其次为牛肉膏、蛋白胨。

菌丝体在不同C/N条件下均可以正常生长,但是不同C/N对菌丝菌落形态影响较大(表1图1)。综合分析,适宜芳香杯伞菌丝生长的C/N条件为35:1,其次为30:1、40:1。

菌丝体对不同无机盐利用差异较大,在硫酸锰、硫酸锌、硫酸铜、硝酸钠上均不生长,在剩余无机盐培养基上可以生长,但是菌丝生长速度、菌丝色泽浓密度、长势等差异较大(表1图1)。综合分析,适宜芳香杯伞菌丝生长的无机盐为硫酸钠,其次为硫酸镁、氯化钾。

以筛选的适宜芳香杯伞菌丝生长的碳源、氮源、C/N、无机盐为单因素,进行4因素3水平L9(34)正交试验(表2表3)。不同正交配方对芳香杯伞菌丝菌落形态以及生长速度、菌丝干重影响差异较大,从极差R与r看出,菌丝生长速度各因素的影响顺序为D<C<A<B,菌丝生物量各因素的影响顺序为C<D<B<A (表3)。综合分析,适宜菌丝生长的最佳组合为A3B1C3D2,即7号培养基,在此配方下,芳香杯伞菌丝生长速度与菌丝体干重均极显著(P<0.01)高于其他组。据此分析适宜芳香杯伞的碳源为蔗糖、氮源为酵母浸粉、C/N为40:1、无机盐为硫酸镁。正交配方为:蔗糖17.3 g,酵母浸粉1.8 g,磷酸二氢钾3 g,无水硫酸镁1.5 g,琼脂20 g,水1 L。

表2   芳香杯伞培养基配方优化正交试验因素水平表

Table 2  Factors and levels of orthogonal experiment for optimizing culture medium formula of Clitocybe fragrans

水平
Level
因素
Factor
碳源
Carbon source
氮源
Nitrogen source
C/N无机盐
Mineral salt
1山梨糖醇Sorbitol酵母浸粉Yeast extract powder35:1硫酸钠Sodium sulphate
2甘露醇Mannitol牛肉膏Beef extract30:1硫酸镁Magnesium sulfate
3蔗糖Sucrose蛋白胨Peptone40:1氯化钾Potassium chloride

新窗口打开| 下载CSV


表3   芳香杯伞培养基配方优化正交试验结果

Table 3  The results of orthogonal experiment for optimizing culture medium formula of Clitocybe fragrans

试验号
Text number
A:碳源
Carbon source
B:氮源
Nitrogen source
C:C/ND:无机盐
Mineral salt
菌丝生长速度
Mycelial growth rate (mm/d)
菌丝干重
Mycelial dry weight (g/d)
111110.96±0.03cd17.10±1.39c
212220.86±0.08cd12.93±0.39de
313330.55±0.02d9.50±0.21f
421230.9±0.04cd16.57±2.16c
522311.12±0.07bc11.50±0.35ef
623120.95±0.06cd10.90±0.32ef
731321.56±0.04a28.90±1.85a
832131.24±0.04b25.00±0.42b
933210.73±0.26d14.93±0.66cd
K10.7901.1401.0500.937
K20.9901.0730.8301.123
K31.1770.7431.0770.897
R0.3870.3970.2470.226
k113.17720.85717.66714.510
k212.99016.47714.81017.577
k322.94311.77716.63317.023
r9.9539.0802.8573.067

注:数据为6次的平均值和标准差;Kn和kn分别代表n水平的菌丝平均生长速度和菌丝平均干重;R和r为该因素的极差

Note: The data were average value of six replicates; Kn and kn indicate the average of mycelial growth rate and mycelial dry weight respectively at n level. R and r are ranges.

新窗口打开| 下载CSV


2.2 芳香杯伞菌丝体生长环境条件

不同温度条件对芳香杯伞菌丝体生长具有明显差异。随着温度升高,菌丝生长速度出现先升后降的趋势,适宜生长温度范围为19-25 ℃。在22 ℃时,菌丝生长速度最快,显著高于其他温度组;在31 ℃时,菌丝不生长(图1图2A),此温度为菌丝致死温度。

图2

图2   不同温度和初始pH对芳香杯伞菌丝生长的影响

A:温度;B:初始pH

Fig. 2   Effects of different temperature and initial pH on the mycelial growth of Clitocybe fragrans.

A: Temperature; B: Initial pH.


不同pH条件对菌丝体生长具有明显差异。随着pH升高,菌丝生长速度出现先升后降的趋势,在初始pH为5时,菌丝生长速度最快。但随着pH升高,菌丝的洁白、浓密程度却随之下降(图1图2B)。综合分析,芳香杯伞菌丝体最适生长初始pH为5,适宜菌丝生长初始pH范围为5-5.5。

不同光照条件处理下,菌丝体生长速度差异不大。但在黑暗处理下,菌丝生长速度及菌落形态略优于其他处理条件(图1)。

2.3 芳香杯伞菌种培养基

2.3.1 母种培养基

菌丝体(菌种)在11种母种培养基上均可以正常生长,但是在不同培养基上菌丝的菌落形态具有明显差异,在K (正交配方)培养基上菌丝长势较差,菌丝不粗壮,浓密度较差,生长速度较慢。在E (玉米粉培养基)上菌丝长势较好,菌丝粗壮浓密,但是菌落边缘不整齐,因此选择菌落形态较好,菌丝边缘整齐,菌丝粗壮洁白的H (粪草培养料培养基),在此培养基上菌丝生长速度最快(表4图3)。综合分析,H (粪草培养料培养基)为适宜芳香杯伞菌丝生长的母种培养基。

表4   不同培养基对芳香杯伞菌丝生长的影响

Table 4  Effects of different culture medium on the mycelial growth of Clitocybe fragrans

培养基
Medium
培养基名称
Medium name
菌丝长势
Mycelial
growth vigor
生长速度
Mycelial growth
rate (mm/d)
显著性差异
Significance
levels
0.050.01
母种培养基
Stock culture media
A:PDA+木屑煮汁Boiled sawdust juice+++1.24±0.04deCD
B:大豆饼粉培养基Soybean meal medium+++1.49±0.05cB
C:马铃薯蔗糖培养基Potato sucrose medium+++1.02±0.01fEF
D:CPDA+++1.26±0.10deCD
E:玉米粉培养基Corn flour medium+++1.79±0.07bA
F:牛粪煮汁培养基Boiled cow dung juice medium++1.32±0.07dBCD
G:麦粒煮汁培养基Boiled wheat juice medium++1.17±0.05eDE
H:粪草培养料培养基Compost substrate medium++1.96±0.04aA
I:PDA+麸皮煮汁Boiled bran juice++1.78±0.04bA
J:PDA++1.38±0.04cdBC
K:正交配方Orthogonal formula++0.97±0.05fF
原种培养基
Mother spawn media
高粱Sorghum+++2.44±0.02aA
玉米粒Corn++1.34±0.07bB
荞麦Buckwheat+0.4±0.02dD
小麦Wheat++1.07±0.04cC
小米Millet++1.32±0.04bB

新窗口打开| 下载CSV


图3

图3   不同培养基对芳香杯伞菌丝生长和菌落形态的影响

A-K:不同母种培养基

Fig. 3   Effects of different culture medium on the mycelial growth and colonial morphology of Clitocybe fragrans.

A-K: Different stock culture medium.


2.3.2 原种培养基

菌丝体在5种原种培养基上均可以正常生长,但是不同培养基上菌丝长势差异较大,在荞麦培养基上菌丝生长速度较慢,在小米粒培养基上菌丝较纤弱,浓密度较差(表4)。综合分析,选择菌丝洁白浓密,长势较好,且生长速度最快的高粱粒培养基作为芳香杯伞适宜原种培养基。

2.4 驯化栽培

原种接种后22 ℃暗培养,发菌时间为30-35 d。栽培袋接菌后,35-40 d满袋,后移入出菇房,芳香杯伞的原基发生时间较短,为8-10 d,经过7-8 d原基分化成子实体,子实体成熟时菌盖厚度0.25-0.41 cm,菌盖直径1.87-2.93 cm,菌盖向上翻折生长,呈倒伞状;菌盖边缘呈波浪形或圆形;菌盖颜色为白色;菌柄长度3.61-4.08 cm,菌柄中空,扁平;单菇重量范围为1.75-2.51 g,单个子实体重量较轻,菇质较软且易碎,子实体香味浓郁(图4)。

图4

图4   芳香杯伞驯化栽培

A:菌袋出菇;B:单个子实体形态

Fig. 4   The fruit bodies of Clitocybe fragrans obtained by domestic cultivation.

A: Fruiting in sack cultivation; B: Separate fruit body morphology.


3 讨论

芳香杯伞属于白蘑科,白蘑科中的杯伞属、口蘑属、香蘑属等很多野生种类均为优良野生蕈菌,但其人工驯化栽培一直是业界公认难题。而且杯伞属仅有大杯伞Clitocybe maxima和杯蕈Clitocybe infundibuliformis驯化成功,对于芳香杯伞国内外至今未见驯化栽培研究报道。

本研究对野生芳香杯伞菌种分离后,发现其菌丝生长缓慢、纤弱、长势较差,因此对其菌丝生长所需的营养条件进行了研究。芳香杯伞适宜的碳源为蔗糖、山梨糖醇和甘露醇。这与大杯伞的最适碳源是蔗糖相同,与白霜杯伞Clitocybe dealbata的最适碳源是葡萄糖不同。芳香杯伞适宜的氮源为酵母浸粉、牛肉膏和蛋白胨,均为有机氮源,该真菌更偏好有机氮源,可能是有机氮源更有利于菌丝的利用吸收。这与大杯伞最适氮源是尿素不同。不同蘑菇的营养需求不同,如白霜杯伞在无氮的情况下生长最好(冀瑞卿等2005;牛长满等2007)。菌丝体对不同无机盐利用差异较大,培养基中添加硫酸锰、硫酸锌、硫酸铜、硝酸钠菌丝均不生长,不生长的原因是无机盐的浓度不合适还是这4种无机盐的加入抑制了菌丝生长,有待设计试验验证。正交试验结果表明,硫酸镁为菌丝生长最适无机盐,其最适浓度有待进一步筛选确定。

芳香杯伞最适的母种培养基为粪草培养料培养基,可能因为芳香杯伞属于草腐菌,粪草培养料含有的营养物质更有利于菌丝吸收,因此粪草培养料培养基最适宜芳香杯伞菌丝生长;而在正交配方上菌丝生长较弱,可能因为正交配方的营养物质过于单一,而其他配方都添加了天然基质,所含营养丰富。

芳香杯伞属于低温品种,在较低的发菌温度下菌丝生长速度较快(刘都才等1984;张介驰等2014),随着温度的逐渐升高,菌丝生长速度也随之下降。因此在进行芳香杯伞栽培时应尽量在其最适发菌温度下发菌,有利于菌丝迅速生长,降低染菌率,缩短菌丝生长周期,以便快速完成发菌。本文从芳香杯伞的生物学特性入手,进行驯化栽培研究,并成功出菇,填补了芳香杯伞人工驯化栽培的空白,为大量人工栽培提供科学基础,同时为后续白蘑科真菌资源的开发研究和可持续利用提供了参考。

参考文献

Bau T, Bao HY, Li Y, 2014.

A revised checklist of poisonous mushrooms in China

Mycosystema, 33(3): 517-548 (in Chinese)

Dai YC, Yang ZL, 2008.

A revised checklist of medicinal fungi in China

Mycosystema, 27: 801-824 (in Chinese)

Dai YC, Zhou LW, Yang ZL, Wen HA, Bau T, Li TH, 2010.

A revised checklist of edible fungi in China

Mycosystema, 29(1): 1-21 (in Chinese)

Ding YS, 2017.

Taxonomy of Tricholoma and Clitocybe and related genera in Northeast of China

Jilin Agricultural University, Changchun. 1-80 (in Chinese)

Ji RQ, Qi JY, Song RQ, 2005.

Cultural and physiological characters of 8 strains of toxic mushroom

Journal of Fungal Research, 2005(2): 23-27 (in Chinese)

Kirk PM, Cannon PF, Minter DW, Stalpers JA, 2008. Ainsworth & Bisby's dictionary of the fungi. 10th ed. CAB International, Wallingford. 1-771

[本文引用: 1]

Li XH, Zhao B, Mo SF, 2004.

Preliminary report on artificial domestication and cultivation techniques of Lepista sordida (Fr.) Sing

Edible Fungi, 2004(3): 12-13 (in Chinese)

Liang QQ, Song LR, Niu X, Xi YL, Feng JH, Cao XL, He YS, Zhu JX, Wei SL, 2020.

Biological characteristics and domestic cultivation of Agaricus subfloccosus

Mycosystema, 39(7): 1301-1311 (in Chinese)

Liu DC, Zhang Q, 1984.

Studies on characteristics of Flammulina velutipes varieties and cultivation with different media

Journal of Hunan Agricultural University (Natural Sciences), 1984(1): 63-72 (in Chinese)

Liu HX, 2014.

Studies on identification of macrofungi by ITS technique and domestication of 8 species of wild fungi

Master Thesis, Hebei Normal University, Shijiazhuang. 1-124 (in Chinese)

Luo ZH, Niu X, Wei SL, Yu HP, Zhang B, Li Y, 2020.

Biological characteristics and cultivation conditions of Pleurotus abieticola from Qilian Mountain, northwestern China

Mycosystema, 39(9): 1741-1749 (in Chinese)

Matheny PB, Curtis JM, Hofstetter V, Catherine AM, 2006.

Major clades of Agaricales: a multilocus phylogenetic overview

Mycologia, 98(6): 982-995

DOI:10.1080/15572536.2006.11832627      URL     [本文引用: 1]

Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R, 2000.

Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences

Systematic Biology, 49(2): 278-305

PMID:12118409      [本文引用: 1]

Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets.

Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, Miller OK, 2002.

One hundred and seventeen clades of euagarics

Molecular Phylogenetics & Evolution, 23(3): 357-400

Niu CM, Yang XJ, Cui XY, Jiao TY, 2007.

Study on nutrient formula of mother culture medium of Clitocybe maxima

Edible Fungi, 2007(3): 25-26 (in Chinese)

Wang G, Guo YH, Liu B, Xiong YS, Ma SB, Gui MY, 2006.

Chinese edible fungi species of domestication and introduction

Edible Fungi of China, 2006(6): 5-9 (in Chinese)

Wang JR, Bau T, 2006.

Survey on introduction and domestication of Chinese wild edible fungi in recent 20 years

Edible Fungi of China, 2006(1): 8-11 (in Chinese)

Wei TZ, Yao YJ, 2015.

A checklist of Clitocybe s.l. in China

Journal of Fungal Research, 13(2): 79-95 (in Chinese)

Xiang YT, WU ES, Lan Z, Li M, Liu SH, Han ZJ, 1987.

Domestication of Clitocybe gigantea

Journal of Hebei Agricultural University, 1987(4): 24-33 (in Chinese)

Yan ZL, 2001.

Key points of cultivation techniques of Clitocybe maxima

Edible Fungi, 2001(4): 35 (in Chinese)

Zeng JF, 1991.

Casing soil cultivation of Clitocybe maxima in bag

Edible Fungi, 1991(4): 32 (in Chinese)

Zeng JF, 1985.

Domestic cultivation of Clitocybe infundibuliformis

Edible Fungi, 1985(4): 9-10 (in Chinese)

Zhang JC, Han ZH, Zhang NP, Ma YP, Wang YW, Chen H, 2014.

Effects of cultivation temperature on Auricularia auricula-judae mycelial growth and fruit body development

Acta Edulis Fungi, 21(2): 36-40 (in Chinese)

Zhang XY, Bau T, Li Y, 2019.

Biological characteristics and cultivation of Auricularia fibrillifera

Mycosystema, 38(7): 1099-1110 (in Chinese)

戴玉成, 周丽伟, 杨祝良, 文华安, 图力古尔, 李泰辉, 2010.

中国食用菌名录

菌物学报, 29(1): 1-21

[本文引用: 1]

戴玉成, 杨祝良, 2008.

中国药用真菌名录及部分名称的修订

菌物学报, 27: 801-824

[本文引用: 1]

丁玉香, 2017.

东北地区口蘑属和杯伞属及其相关属的分类学研究

吉林农业大学硕士论文, 长春. 1-80

[本文引用: 1]

冀瑞卿, 祁金玉, 宋瑞清, 2005.

8个毒蘑菇菌株培养特性及生理学习性

菌物研究, 2005(2): 23-27

[本文引用: 1]

梁倩倩, 宋利茹, 牛鑫, 席亚丽, 冯九海, 曹选莉, 贺宇杉, 祝建烜, 魏生龙, 2020.

絮缘蘑菇生物学特性及驯化栽培

菌物学报, 39(7): 1301-1311

[本文引用: 1]

李晓华, 赵兵, 莫绍芬, 2004.

花脸香蘑人工驯化栽培技术初报

食用菌, 2004(3): 12-13

[本文引用: 1]

刘都才, 张青, 1984.

金针菇品种特性和不同培养料栽培的研究

湖南农学院学报, 1984(1): 63-72

[本文引用: 1]

刘红霞, 2014.

大型真菌ITS鉴定及8种野生蕈菌的驯化研究

河北师范大学硕士论文, 石家庄. 1-124

[本文引用: 1]

罗智檜, 牛鑫, 魏生龙, 于海萍, 张波, 李玉, 2020.

采自祁连山的冷杉侧耳生物学特性及栽培条件探索

菌物学报, 39(9): 1741-1749

[本文引用: 1]

牛长满, 杨晓菊, 崔颂英, 矫天育, 2007.

大杯伞母种培养基营养配方的研究

食用菌, 2007(3): 25-26

[本文引用: 1]

图力古尔, 包海鹰, 李玉, 2014.

中国毒蘑菇名录

菌物学报, 33(3): 517-548

[本文引用: 1]

王刚, 郭永红, 刘蓓, 熊永生, 马绍宾, 桂明英, 2006.

我国驯化、引种栽培的食用菌种类

中国食用菌, 2006(6): 5-9

[本文引用: 1]

王建瑞, 图力古尔, 2006.

近20年我国野生食用菌引种驯化概况

中国食用菌, 2006(1): 8-11

[本文引用: 1]

魏铁铮, 姚一建, 2015.

中国广义杯伞属真菌名称(英文)

菌物研究, 13(2): 79-95

[本文引用: 2]

香永田, 吴尔生, 兰忠, 李明, 刘世卉, 韩占军, 1987.

雷蘑的驯化

河北农业大学学报, 1987(4): 24-33

[本文引用: 1]

颜振兰, 2001.

大杯蕈栽培技术要点

食用菌, 2001(4): 35

[本文引用: 1]

曾金凤, 1991.

大杯伞袋式覆土栽培

食用菌, 1991(4): 32

[本文引用: 1]

曾金凤, 1985.

松蕈的人工栽培

食用菌, 1985(4): 9-10

[本文引用: 1]

张介驰, 韩增华, 张丕奇, 马银鹏, 王玉文, 陈鹤, 2014.

发菌温度对黑木耳菌丝和子实体生长的影响

食用菌学报, 21(2): 36-40

[本文引用: 1]

张晓宇, 图力古尔, 李玉, 2019.

脆木耳生物学特性及驯化栽培

菌物学报, 38(7): 1099-1110

[本文引用: 1]

/