药用植物内生真菌研究现状和发展趋势

郭顺星

菌物学报 ›› 2018, Vol. 37 ›› Issue (1) : 1-13.

PDF(980 KB)
中文  |  English
PDF(980 KB)
菌物学报 ›› 2018, Vol. 37 ›› Issue (1) : 1-13. DOI: 10.13346/j.mycosystema.170252 CSTR: 32115.14.j.mycosystema.170252

药用植物内生真菌研究现状和发展趋势

作者信息 +

The recent progress and prospects of research on endophytic fungi in medicinal plants

Author information +
文章历史 +

摘要

药用植物内生真菌普遍存在于健康植物组织和器官中,种类繁多,分布广泛。到目前为止,人们已从大量药用植物中分离出不同类型的内生真菌,这些植物广泛分布于除南极洲以外的各种陆地生态系统中。随着现代科学技术的迅速发展,药用植物内生真菌的研究也取得了长足的进步。由于内生真菌对于药用植物的重要性,其相关研究也受到了世界各国学者的高度关注。本文总结现阶段药用植物内生真菌相关研究,并对未来研究的发展趋势做出展望。

Abstract

Endophytic fungi are ubiquitous in the health tissues and organs of medicinal plants, with a great number of species and a wide range of distribution. To date, a large number of species have been isolated from diverse medicinal plants distributed in various ecological environments in the world, except Antarctica. With the rapid development of modern science and technology, the research on endophytic fungi in medicinal plants has achieved remarkable progress. In this paper, research progress on endophytic fungi in medicinal plant is summarized, and the future development trend in this field is expected and predicted.

关键词

药用植物 / 内生真菌 / 菌根真菌

Key words

medicinal plants / endophytic fungi / mycorrhizal fungi

引用本文

导出引用
郭顺星. 药用植物内生真菌研究现状和发展趋势[J]. 菌物学报, 2018, 37(1): 1-13 https://doi.org/10.13346/j.mycosystema.170252
GUO Shun-Xing. The recent progress and prospects of research on endophytic fungi in medicinal plants[J]. Mycosystema, 2018, 37(1): 1-13 https://doi.org/10.13346/j.mycosystema.170252
光照是食用菌生长发育过程中一个重要的环境因素(Corrochano & Luis 2007;Tisch & Schmoll 2010),食用菌在菌丝体和子实体阶段均受到光照的影响(刘文科和杨其长 2013)。适宜的光照是食用菌实现完整生长所必需的条件,不同品种的食用菌对光照的敏感度不同,同一品种在其生长发育的不同时期对光照的需求量也有差异(Jia et al. 2002;李玉等 2011;段庆虎等 2014)。近年来,研究人员主要从光质、光照强度、光照周期3个方面研究了对食用菌生长发育的影响。侯占山(2020)探究了光照时间与强度对杏鲍菇生长发育及生理的影响,发现子实体菌盖直径随光照时间增加有逐渐增大的趋势,子实体菌柄长度随光照时间增加有逐渐缩短的趋势。郭征(2018)发现红蓝光能缩短秀珍菇原基形成时间,使其产量提高,子实体农艺性状最好。宋寒冰等(2020)研究得出真姬菇菌丝在红光和黑暗环境下生长速度最快,在蓝光下形成的原基数目最多,产量最高。陈岗等(2016)研究了不同LED光质对银耳生长发育的影响,发现经过白光处理后,银耳的单耳质量最高,多糖含量最高,黄光处理后蛋白质含量最高。佟希丹(2012)以金针菇为试验材料,发现红光有利于金针菇原基的形成,且在子实体生长阶段使用蓝光照射能提高其产量。
香菇Lentinula edodes (Berk.) Pegler,俗称香蕈、花菇、冬菇等,属真菌界、担子菌门、伞菌纲、伞菌目、光茸菌科、香菇属,是世界第一大宗食用真菌(Royse et al. 2017),也是目前国内进行规模化生产的主要食用菌之一(刘春如 2001)。目前,香菇栽培已实现工厂化生产。光质在香菇良种选育、生物转化、农业栽培等方面的研究较少,唐利华(2014)研究了环境因子光对香菇菌丝转色的影响,挖掘了光诱导香菇菌丝转色相关的关键候选基因,并在RNA和蛋白质的水平上分析了光诱导香菇菌丝转色形成的生理和遗传机制。卢阳阳(2019)探究了LED光质对香菇胞外酶活性的影响,指出红光处理下香菇菌丝生物量积累最高,胞外酶酶活最大,白光会抑制菌丝生长,绿光、蓝光有利于促进香菇转色,并且对香菇多糖、可溶性蛋白和多酚含量的积累起着积极作用。
现阶段,随着香菇工厂化生产逐渐规模化、周年化、标准化,香菇工厂对环境的集约化及智能化控制的要求也越来越高,越来越精细。在以往的香菇生产中,栽培技术人员主要依靠传统经验进行光照调节,没有系统的理论支撑。在香菇生产栽培中至少可以分为4个重要阶段,分别为营养菌丝生长阶段、菌丝转色形成阶段、原基形成阶段以及子实体生长阶段(唐利华 2014)。不同阶段对光照的需求不同,因此,适宜的光照条件才能对香菇的高产和优产起到促进作用。本试验探究了香菇原基形成阶段及子实体生长阶段不同光质光照对香菇子实体农艺性状与质构品质的影响,旨在为香菇工厂化高效生产提供理论依据,促进香菇产业的快速健康发展。

1 材料与方法

1.1 材料

1.1.1 供试菌株和培养基:供试香菇菌株‘沪香F2',保藏于上海市农业科学院食用菌研究所菌种保藏中心。PDA培养基:马铃薯(去皮)200g,葡萄糖20g,琼脂20g,蒸馏水定容至1L,121℃灭菌20min,pH自然。栽培料配方:86%木屑,13%麸皮,1%碳酸钙(W/W),加水拌匀,含水量54%-56%,pH 5.8-6.2。
1.1.2 主要仪器和设备:透光率0lux的遮光布,青岛绿生生物科技有限公司;不同光质的LED灯,武汉中利源生物科技有限公司;游标卡尺,北京中科捷瑞生物科技有限公司;NR200便携式精密色差仪,湖北图索科技有限公司;质构仪,美国Isenso智能科技有限公司;栽培床架以及培养室由上海国森生物科技有限公司提供。
1.1.3 菌棒制作和培养出菇:采用15cm×33cm(折幅×长度)的聚乙烯塑料袋,使用冲压机装袋,每袋装栽培料(1.0±0.1)kg,121℃灭菌3h,待菌棒冷却后在无菌条件下进行接种,接种后置于25℃培养室避光培养,当菌丝发满菌棒后对其刺孔增氧,并且给予光照进行转色。待菌棒转色完成,菌丝体完成后熟后,将菌棒内袋脱掉出菇。由于培养过程中菌棒中的水分会不断散失,出菇时应适当补充水分。出菇过程中,培养室温度控制在15-20℃,湿度控制在80%-90%,CO2浓度保持在500-800mg/kg。

1.2 培养方法

试验设置8组处理(图1),分别为红光(R)、绿光(G)、蓝光(B)、红绿光(RG)、红蓝光(RB)、绿蓝光(GB)、红绿蓝(RGB)光以及黑暗环境(CK),每组处理准备一个栽培床架,用透光率0lx遮光布从四周将栽培床架围住,在每个栽培床架的上方中部分别安装2根不同光质的LED灯,调节光源的高度,使光源位于香菇菌棒上方50cm处,光照强度为600lx,每天24h照射。
图1 不同光质光照处理

G、GB、B、RG、RB、R、RGB分别为绿光、绿蓝光、蓝光、红绿光、红蓝光、红光、红绿蓝光光照环境下处理,CK为黑暗环境下处理. 下同

Fig. 1 Different light illumination treatment.

G, GB, B, RG, RB, R and RGB are respectively green light, green-blue light, blue light, red-green light, red-blue light, red light, red-green-blue light; CK is treatment under the dark environment. The same below.

Full size|PPT slide

分别为将转色后的香菇菌棒置于红光、绿光、蓝光、红绿光、红蓝光、绿蓝光、红绿蓝光7种光线下全天照射培养,对照组菌棒在完全黑暗的环境下培养,每组处理6个重复(图1)。待子实体达到采收标准(汪勇和赵洪梅 2011)后进行采收,分别称量统计每个香菇菌棒子实体的蕾数和产量,记录其农艺性状,利用色差仪对子实体菌盖和菌柄的颜色进行测定,使用质构仪测定香菇子实体的质构指标。

1.3 香菇子实体农艺性状测定

参考中华人民共和国农业行业标准NY/T2560-2014,植物新品种特异性、一致性和稳定性测试指南——香菇,对子实体农艺性状进行测定。每个处理随机挑选10个香菇子实体,测定不同光质处理的单个菌棒的蕾数和产量、香菇子实体的单菇重量、菌盖重量、菌柄重量、菌盖直径、菌盖厚度、菌柄长度、菌柄直径、菌盖直径与菌柄长度的比值、菌盖直径与菌柄直径的比值。

1.4 香菇子实体颜色测定

选取成熟期的香菇子实体,用便携式精密色差仪分别对香菇菌盖和菌柄颜色进行测定,每个处理选取10个子实体进行测量,每次测量重复3次取平均值得到其L、a、b和c值。

1.5 香菇子实体质构指标测定

采用质构仪(Food Technology Corporation TMS-Pro,USA)检测香菇子实体的硬度(hardness)、粘附度(adhesiveness)、弹性(springiness)、咀嚼性(chewiness)、胶着性(gumminess)和黏聚性(cohesiveness)6个指标。测试参考沈颖越等(2021)的方法。质构仪测定模式:质地多面分析(texture profile analysis,TPA),测试参数如下:利用TA/5直径5mm探头对香菇子实体菌盖顶部进行全质构分析,测前速度1.00mm/s,测试速度2.00mm/s,测后上行速度10.00mm/s,形变量60%,间隔时间2.00s,接触点类型为压力,接触点数值为10.00gf。得到香菇子实体的质地参数:硬度、黏附性、弹性、咀嚼性、胶着性、黏聚性。每组处理分别挑取10个香菇子实体菌盖进行测试,每个菌盖测试1次,最终结果取平均值。

1.6 数据处理及分析

使用IBM SPSS Statistics 22.0软件进行差异显著性分析,采用Duncan法进行多重比较分析。

2 结果与分析

2.1 不同光质光照对香菇菌棒蕾数和产量的影响

不同光质光照条件下,香菇菌棒蕾数和单棒产量见图2。不同光质光照对香菇菌棒蕾数和产量均有较大的影响,整体而言,随着香菇菌棒蕾数的减少,单棒产量呈现降低的趋势。蓝光(B)照射下单棒产量最高,为228.12g,蕾数20.00个;其次是红绿蓝光(RGB),单棒产量220.82g,蕾数24.33个;绿蓝光(GB)处理单棒产量219.40g,蕾数19.83个;红光(R)和完全黑暗(CK)的条件下,菌棒形成的原基少、菇蕾少、产量低,单棒产量分别为173.53g、176.03g。
图2 不同光质光照对香菇子实体蕾数和产量的影响

A:不同光质光照下子实体个数;B:不同光质光照下单棒产量;每组处理数据小写字母完全不同的,表示两组数据差异显著(P<0.05);有任何相同小写字母表示两组数据差异不显著. 下同

Fig. 2 Effects of different light illumination on the number of fruiting bodies and yield of Lentinula edodes.

A: Number of fruiting bodies per cultivated log under different light illumination; B: Yield of per cultivated log under different light illumination; Lowercase letters showing completely different indicate that two sets of data are significantly different (P<0.05); any same lowercase letter indicates that two sets of data are not significantly different. The same below.

Full size|PPT slide

2.2 不同光质光照对香菇子实体颜色的影响

利用色差仪分别测试香菇子实体菌盖和菌柄的颜色(图3图4),“L”表示物体的明亮度,0-100表示从黑色到白色;“a”代表物体的红绿色,正值表示红色,负值表示绿色;“b”表示物体的黄蓝色,正值表示黄色,负值表示蓝色;“c”表示颜色的饱和度,其值越高彩度越高,其值越低越接近灰色。红光(R)和黑暗环境(CK)下,香菇子实体菌盖和菌柄相较于其他处理组L值高,颜色偏白色,说明红光(R)会诱使子实体颜色变淡变白(图3图4)。不同光质光照下,菌盖的a值没有显著差异,b值都为正值,表明香菇子实体菌盖主要是以黄色为主色;菌盖的b值和c值在红光(R)和黑暗环境(CK)下较高,表明红光和黑暗处理下菌盖彩度更高,颜色更纯;菌柄的b、c值在红绿蓝光(RGB)处理下最高,红光(R)处理下最低。
图3 不同光质光照处理条件下香菇子实体颜色比较

A:不同光质光照下子实体颜色;B:不同光质光照下菌盖颜色

Fig. 3 Comparison of the coloration of fruiting bodies of Lentinula edodes under different light illumination.

A: Coloration of fruiting bodies of Lentinula edodes under different light illumination; B: Coloration of pileus of Lentinula edodes under different light illumination.

Full size|PPT slide

图4 不同光质光照对香菇子实体颜色的影响

A-D:不同光质光照下香菇菌盖明亮度(A)、红绿值(B)、黄蓝值(C)和色彩饱和度(D);E-H:不同光质光照下香菇菌柄明亮度(E)、红绿值(F)、黄蓝值(G)和色彩饱和度(H)

Fig. 4 Effects of different light illumination on the coloration of fruiting bodies of Lentinula edodes.

A-D: Pileus luminance (A), red-green values (B), yellow-blue values (C) and color saturation (D) under different light illumination; E-H: Stipe luminance (E), red-green values (F), yellow-blue values (G) and color saturation (H) under different light illumination.

Full size|PPT slide

2.3 不同光质光照对香菇子实体农艺性状的影响

经过8种不用光质光照处理的香菇子实体形态分析结果见图5图6。不同光质光照处理的单菇重量、菌盖重量、菌柄重量、菌柄长度、菌盖直径、菌盖厚度和菌柄直径等农艺性状均存在显著差异(P<0.05)。蓝光(B)和绿光(G)处理下香菇子实体单菇重量较大,分别达到13.47g和13.27g,菌盖重量占整个子实体的比例大,菌盖直径与菌柄长度的比值大,菇型适宜,更受市场的欢迎;其次是蓝绿光(GB)和黑暗环境(CK)下,单菇重量均在12g以上。红光(R)和黑暗条件(CK)下菌柄长度较长,分别达到54.55mm和53.39mm,菌柄质量较大,菌盖直径与菌柄长度的比值小,表明红光(R)和黑暗环境(CK)能促使香菇子实体菌柄的生长,但菇型较差。综上所述,经蓝光(B)和绿光(G)照射的香菇子实体农艺性状最优。
图5 不同光质光照处理条件下香菇子实体形态比较

A:不同光质光照下香菇子实体形态;B:不同光质光照下香菇菌盖形态

Fig. 5 Comparison of fruiting body morphology of Lentinula edodes under different light illumination.

A: Fruiting body morphology of L. edodes under different light illumination; B: Pileus morphology of L. edodes under different light illumination.

Full size|PPT slide

图6 不同光质光照对香菇子实体农艺性状的影响

A:不同光质光照下单菇重量;B:不同光质光照下菌盖重量;C:不同光质光照下菌柄重量;D:不同光质光照下菌盖直径;E:不同光质光照下菌盖厚度;F:不同光质光照下菌柄长度;G:不同光质光照下菌柄直径;H:不同光质光照下菌盖直径与菌柄长度的比值;I:不同光质光照下菌盖直径与菌柄直径的比值

Fig. 6 Effects of different light illumination on agronomic characters of Lentinula edodes fruiting bodies.

A: Single fruiting body weight under different light illumination; B: Pileus weight under different light illumination; C: Stipe weight under different light illumination; D: Pileus diameter under different light illumination; E: Pileus thickness under different light illumination; F: Stipe length under different light illumination; G: Stipe diameter under different light illumination; H: Ratio of pileus diameter to stipe length under different light illumination; I: Ratio of pileus diameter to stipe diameter under different light illumination.

Full size|PPT slide

2.4 不同光质光照对香菇子实体品质的影响

香菇子实体质地是衡量其商品性状好坏的重要指标,影响香菇的货架期、品质和食用口感(易琳琳等 2012;吕明亮等 2020)。香菇采摘后呼吸强度提高,容易出现子实体开伞、软化、腐烂等问题,严重影响香菇的食用价值。用质构仪对香菇子实体的硬度、粘附度、弹性、咀嚼性、胶着性和粘聚性进行测量分析。硬度是样品材料抵抗压入其表面的最大力,体现了香菇内部不发生形变时的受力大小,是最直接反应口感的一项指标。粘附度是样品经过加压变形之后,样品表面若有黏性,会产生负向的力量,在食品领域可以解释为黏牙性口感。弹性是食物在第一咬结束与第二口开始之间可以恢复的高度。咀嚼性为胶着性×弹性,可解释为咀嚼固体食物所需的能量,胶着性为硬度×凝聚力。黏聚性为第一压缩与第二压缩正受力面积的比值。
不同光质光照处理组的香菇子实体在硬度、粘附度、咀嚼性和胶着性指标上存在差异,而在弹性和黏聚性方面无明显差异。绿光(G)和蓝光(B)照射下子实体硬度大、耐咀嚼以及胶着性好。红光(R)和黑暗环境(CK)下香菇子实体硬度、咀嚼性和胶着性较其他处理组偏低,粘附度较高,品质不佳。综合各项指标,绿光和蓝光处理下,香菇子实体的品质最佳(图7)。
图7 不同光质光照对香菇子实体品质的影响

A:不同光质光照下子实体硬度;B:不同光质光照下子实体粘附度;C:不同光质光照下子实体弹性;D:不同光质光照下子实体咀嚼性;E:不同光质光照下子实体胶着性;F:不同光质光照下子实体粘聚性

Fig. 7 Effects of different illumination light on the texture of fruiting bodies of Lentinula edodes.

A: Hardness of fruiting body under different light illumination; B: Adhesiveness of fruiting body under different light illumination; C: Springiness of fruiting body under different light illumination; D: Chewiness of fruiting body under different light illumination; E: Gumminess of fruiting body under different light illumination; F: Cohesiveness of fruiting body under different light illumination.

Full size|PPT slide

3 讨论

本研究选用LED灯作为新型半导体光源,其具有光效高、发热低、寿命长等优点,被广泛应用于农业照明系统中(Watling 2001;谢正林等 2019),同时LED灯也适用于香菇工厂化生产。目前,大部分香菇工厂对出菇环境的调控大多根据自身经验,相关理论的研究较少。关于光照对于香菇生长影响的研究主要集中在菌丝生长阶段以及培养转色阶段(唐利华 2014;卢阳阳 2019),然而菌棒转色的好坏会导致出菇的差异,转色完成后的阶段也是至关重要的环节,直接影响香菇的产量和品质。本研究选取了转色完成后,转色状态一致的菌棒作为试验材料,排除菌棒转色不一致对试验的影响,控制不同处理下的温度、水分含量、CO2浓度,探究香菇菌棒完成转色后,不同光质光照对香菇子实体农艺性状与质构品质的影响,通过调控出菇阶段的光照,达到提高子实体农艺性状以及品质的目的。
本研究表明香菇子实体在蓝光照射下,单菇重量最大,这与刺芹侧耳(李巧珍等 2014)、草菇(余昌霞等 2021)在蓝光环境下子实体单重较大的结果一致。佟希丹(2012)研究表明,金针菇在子实体生长阶段使用蓝光照射能提高其产量,与本研究在蓝光处理下,单棒子实体产量最高的结果类似。
香菇菌棒子实体的产量是评价香菇农艺性状优劣重要指标,产量一般与子实体蕾数呈正相关关系,蕾数越多,产量往往越高。但单个菌棒的蕾数并不是越多越好,一般控制在20-25个左右,蕾数太多,会导致子实体的生长受影响,相互挤压,导致畸形,影响其形态及品质,不利于市场销售,因此合适的蕾数是子实体生长的必要条件。本研究发现,黑暗环境下香菇子实体产量最低,说明香菇出菇阶段与菌丝生长阶段不同,需要一定的光照,并且在蓝光照射下,香菇单棒产量最高,蕾数为20个,符合工厂化生产的要求。
光质对食用菌子实体形态的形成以及色泽的变化有着非常重要的影响(Wu et al. 2013)。本研究根据《中华人民共和国农业行业标准》NY/T2560-2014香菇标准,对香菇子实体的单菇重量、菌盖重量、菌柄重量、菌盖直径、菌盖厚度、菌柄长度、菌柄直径、菌盖直径与菌柄长度的比值、菌盖直径与菌柄直径的比值进行测定分析,参考中华人民共和国农业行业标准——香菇等级规格,结果发现蓝光和绿光条件下,子实体特级和一级比例较高,更能满足消费者的需求;红光处理下,香菇菌柄较其他处理组长,子实体菌盖颜色淡,其原因可能是光照影响香菇相关酶活性水平及营养代谢情况。
质地是鲜香菇品质及耐储藏能力的主要品质指标。质构仪质地多面分析(TPA)检测是模拟人牙齿咀嚼食物的机械过程,该过程能够测定探头对试样的压力及其他相关质地参数,目前在食用菌中逐渐成为品质性状的重要指标。本研究通过使用质构仪对不同处理组的子实体进行质地评价,通过具体的数据得出蓝光和绿光照射下香菇品质最佳,避免了以往利用感官评价可能造成的误差,提高了试验的精准性和科学性。
综上所述,香菇菌棒转色完成后,选用红绿蓝光照射可提高菌棒蕾数,选用蓝光照射可提高香菇子实体产量,并且蓝光照射的香菇子实体农艺性状好,质构品质最佳,因此,可将蓝光作为香菇工厂化生产出菇阶段的首选光质。

参考文献

[1]
Abdel-Motaal FF, Nassar MSM, El-Zayat SA, El-Sayed MA, Ito SI, 2010. Antifungal activity of endophytic fungi isolated from egyptian henbane (Hyoscyamus muticus L.).Pakistan Journal of Botany, 42(4): 2883-2894
[2]
Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C, 2010. Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa.Phytochemistry, 71(1): 110-116
[3]
Albrectsen BR, Bjorken L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S, 2010. Endophytic fungi in European aspen (Populus tremula) leaves-diversity, detection, and a suggested correlation with herbivory resistance.Fungal Diversity, 41(1): 17-28
[4]
Aly AH, Debbab A, Kjer J, Proksch P, 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products.Fungal Diversity, 41(1): 1-16
[5]
Aly AH, Debbab A, Proksch P, 2011. Fungal endophytes: unique plant inhabitants with great promises.Applied Microbiology and Biotechnology, 90(6): 1829-1845
[6]
Beekman AM, Barrow RA, 2013. Stereochemical assignment of the fungal metabolites pestalotiopsones D and E through enantiopure synthesis.Journal of Natural Products, 76(11): 2054-2059
[7]
Chen J, Hu KX, Hou XQ, Guo SX, 2011. Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae).World Journal of Microbiology & Biotechnology, 27(5): 1009-1016
[8]
Chen J, Liu SS, Kohler A, Yan B, Luo HM, Chen XM, Guo SX, 2017. Itraq and RNA-seq analyses provide new insights into regulation mechanism of symbiotic germination of Dendrobium officinale seeds (orchidaceae).Journal of Proteome Research, 16(6): 2174
[9]
Chen J, Zhang LC, Xing YM, Wang YQ, Xing XK, Zhang DW, Liang HQ, Guo SX, 2013. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae).PLoS One, 8(3): e58268
[10]
Chen J, Zhu J, Yan B, Li JM, Guo SX, 2018. Preliminary identification of endophytic fungi colonized in the root of Saussurea involucrata and Rhodiola rosea from Xinjiang region.Mycosystema, 37(1): 110-119 (in Chinese)
[11]
Chen L, Zhang QY, Jia M, Ming QL, Yue W, Rahman K, Qin LP, Han T, 2016. Endophytic fungi with antitumor activities: their occurrence and anticancer compounds.Critical Reviews in Microbiology, 42(3): 454-473
[12]
Chen SJ, Liu JJ, Yang DL, Yuan Y, 2018. A study on tremorgen with antitumor activity of endophytic fungus isolated from Taxus chinensis var. mairei.Mycosystema, 37(1): 120-125 (in Chinese)
[13]
Chen YH, Xing XK, Guo SX, 2018. The endophytic fungal community composition of Gymnadenia conopsea in Beijing.Mycosystema, 37(1): 35-42 (in Chinese)
[14]
Cheng MJ, Wu MD, Yanai H, Su YS, Chen IS, Yuan GF, Hsieh SY, Chen JJ, 2012b. Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity.Phytochemistry Letters, 5(3): 467-472
[15]
Cheng MJ, Wu MD, Yuan GF, Chen YL, Su YS, Hsieh MT, Chen IS, 2012a. Secondary metabolites and cytotoxic activities from the endophytic fungus Annulohypoxylon squamulosum.Phytochemistry Letters, 5(1): 219-223
[16]
Ding CH, Du XW, Xu Y, 2013. Progress of study on function of endophytic fungi from medicinal plants.Acta Chinese Medicine and Pharmacology, 41(3): 168-171 (in Chinese)
[17]
Ding HE, Yang ZD, Shu ZM, Shi Y, 2013. Isolation of endophytic fungi from medicinal plants and the biological activity of their secondary metabolites.Acta Chinese Medicine and Pharmacology, 41(6): 16-19 (in Chinese)
[18]
Dos SIP, Silva da LC, Silva da MV, Araujo de JM, Cavalcanti MS, Lima VL, 2015. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae).Front Microbiolgy, 6: 350
[19]
Ebrahim W, Aly AH, Mandi A, Totzke F, Kubbutat MHG, Wray V, Lin WH, Dai HF, Proksch P, Kurtan T, Debbab A, 2012. Decalactone derivatives from Corynespora cassiicola, an endophytic fungus of the mangrove plant Laguncularia racemosa.European Journal of Organic Chemistry, 18: 3476-3484
[20]
Gazis R, Chaverri P, 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru.Fungal Ecology, 3(3): 240-254
[21]
Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, Kumar A, 2012. Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India.Mycoscience, 53(2): 113-121
[22]
Gupta S, Kaul S, Singh B, Vishwakarma RA, Dhar MK, 2016. Production of gentisyl alcohol from Phoma herbarum endophytic in Curcuma longa L. and its antagonistic activity towards leaf spot pathogen Colletotrichum gloeosporioides.Applied Biochemistry and Biotechnology, 180(6): 1093-1109
[23]
He XH, Duan YH, Chen YL, Xu MG, 2012. A 60-year journey of mycorrhizal research in China: past, present and future directions.Science China Life Science, 42(6): 431-454 (in Chinese)
[24]
Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP, 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review.Front Microbiolgy, 7: 906
[25]
Jin Z, Gao L, Zhang L, Liu T, Yu F, Zhang Z, Guo Q, Wang B, 2017. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng.Natural Product Research, 31(22): 2700-2703
[26]
Katoch M, Pull S, 2017. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential.Pharmaceutical Biology, 55(1): 1528-1535
[27]
Kaur A, Raja HA, Swenson DC, garwal RA, Deep G, Falkinham JO, Oberlies NH, 2016. Talarolutins A-D: meroterpenoids from an endophytic fungal isolate of Talaromyces minioluteus. Phytochemistry, 126: 4-10
[28]
Kharwar RN, Gond SK, Kumar A, Mishra A, 2010. A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook, and their antimicrobial activity.World Journal of Microbiology and Biotechnology, 26(11): 1941-1948
[29]
Kharwar RN, Maurya AL, Verma VC, Kumar A, Gond SK, Mishra A, 2012. Diversity and antimicrobial activity of endophytic fungal community isolated from medicinal plant Cinnamomum camphora.Proceedings of the National Academy of Sciences India Section B-Biological Sciences, 82(4): 557-565
[30]
Kharwar RN, Verma SK, Mishra A, Gond SK, Sharma VK, Afreen T, Kumar A, 2011. Assessment of diversity, distribution and antibacterial activity of endophytic fungi isolated from a medicinal plant Adenocalymma alliaceum Miers.Symbiosis, 55(1): 39-46
[31]
Kusari P, Kusari S, Spiteller M, Kayser O, 2013. Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens.Fungal Diversity, 60(1): 137-151
[32]
Li LY, Zhang XY, SUN BD, Deng H, Zou ZM, Ding G, 2018. Phenolic compounds of endohpytic fungus Embellisia chlamydospora from desert medicinal plant Artemisia desertorum.Mycosystema, 37(1): 103-109
[33]
Li P, Luo H, Meng J, Sun W, Wang X, Lu S, Peng Y, Zhou L, 2014. Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures. Electronic Journal of Biotechnology, 17(4): 156-161
[34]
Lin X, Lu CH, Huang YJ, Zheng ZH, Su WJ, Shen Y, 2007. Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity.World Journal of Microbiology and Biotechnology, 23(7): 1037-1040
[35]
Lin YQ, Hong W, 2012. Research and future application of plant endophytic fungi.Journal of Fujian Forestry Science and Technology, 39(3): 186-193 (in Chinese)
[36]
Liu JS, Xie XC, Luo YL, Wang J, Yang YM, 2018. Isolation and identification of high yield escin C from strain EA-LJS80 and its biological activities.Mycosystema, 37(1): 79-87 (in Chinese)
[37]
Liu SS, Chen J, Li SC, Zeng X, Meng ZX, Guo SX, 2015. Comparative transcriptome analysis of genes involved in ga-gid1-della regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae). International Journal of Molecular Sciences, 16(12): 30190
[38]
Luo JG, Xu YM, Sandberg DC, Arnold AE, Gunatilaka AA, 2017. Montagnuphilones A-G, Azaphilones from Montagnulaceae sp. DM0194, a gungal endophyte of submerged roots of Persicaria amphibia.Journal of Nature Product, 80(1): 76-81
[39]
Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde DK, 2011. Pestalotiopsis-morphology, phylogeny, biochemistry and diversity.Fungal Diversity, 50(1): 167-187
[40]
Monggoot S, Popluechai S, Gentekaki E, Pripdeevech P, 2017. Fungal endophytes: an alternative source for production of volatile compounds from agarwood oil of Aquilaria subintegra.Microbial Ecology, 74(1): 54-61
[41]
Murali M, Mahendra C, Hema P, Rajashekar N, Nataraju A, Sudarshana MS, Amruthesh KN, 2017. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant.Pharmaceutical Biology, 55(1): 1623-1630
[42]
Noumeur SR, Helaly SE, Jansen R, Gereke M, Stradal TEB, Harzallah D, Stadler M, 2017. Preussilides A-F, bicyclic polyketides from the endophytic fungus Preussia similis with antiproliferative activity.Journal of Nature Product, 80(5): 1531-1540
[43]
Orlandelli RC, Corradi da SML, Vasconcelos AFD, Almeida IV, Vicentini VEP, Prieto A, DHernandez MD, Azevedo JL, Pamphile JA, 2017. beta-(1-3,1-6)-d-glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells.International Journal of Biological Macromolecules, 94: 431-437
[44]
Pandi M, Kumaran RS, Choi YK, Kim HJ, Muthumary J, 2011. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia.African Journal of Biotechnology, 10(8): 1428-1435
[45]
Paul NC, Lee HB, Lee JH, Shin KS, Ryu TH, Kwon HR, Kim YK, Youn YN, Yu SH, 2014. Endophytic fungi from Lycium chinense Mill. and characterization of two new Korean records of Colletotrichum.International Journal of Molecular Sciences, 15(9): 15272-15286
[46]
Qiao LJ, Zhou SX, Wen TC, Kang JC, Lei BX, 2018. Diversity of endophytic fungi from Nothapodytes pittosporoides in Guizhou province.Mycosystema, 37(1): 43-51 (in Chinese)
[47]
Ramasamy K, Lim SM, Bakar HAB, Ismail N, Ismail MS, Ali MF, Weber JFF, Cole ALJ, 2010. Antimicrobial and cytotoxic activities of Malaysian endophytes.Phytotherapy Research, 24(5): 640-643
[48]
Rivera-Chavez J, Gonzalez-Andrade M, Gonzalez MD, Glenn AE, Mata R, 2013. Thielavins A, J and K: alpha-glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora.Phytochemistry, 94: 198-205
[49]
Rivera-Orduna FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB, 2011. Diversity of endophytic fungi of Taxus globosa (Mexican yew).Fungal Diversity, 47(1): 65-74
[50]
Rosa LH, Queiroz SCN, Moraes RM, Wang XN, Techen N, Pan ZQ, Cantrell CL, Wedge DE, 2013. Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic tissue cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae).Symbiosis, 60(3): 133-142
[51]
Rosa LH, Tabanca N, Techen N, Pan ZQ, Wedge DE, Moraes RM, 2012. Antifungal activity of extracts from endophytic fungi associated with Smallanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse.Canadian Journal of Microbiology, 58(10): 1202-1211
[52]
Savitha J, Bhargavi SD, Praveen VK, 2016. Complete genome sequence of the endophytic gungus Diaporthe (Phomopsis) ampelina. Genome Announcements, 4(3): doi: 10.1128/genomeA.00477-16
[53]
Shah A, Rather MA, Hassan QP, Aga MA, Mushtaq S, Shah AM, Hussain A, Baba SA, Ahmad Z, 2017. Discovery of anti-microbial and anti-tubercular molecules from Fusarium solani: an endophyte of Glycyrrhiza glabra.Journal of Applied Microbiology, 122(5): 1168-1176
[54]
Shan T, Tian J, Wang X, Mou Y, Mao Z, Lai D, Dai J, Peng Y, Zhou L, Wang M, 2014. Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp.Journal of Natural Products, 77: 2151-2160
[55]
Shiono Y, Shibuya F, Murayama T, Koseki T, Poumale HMP, Ngadjui BT, 2013. A polyketide metabolite from an endophytic Fusarium equiseti in a medicinal plant. Zeitschrift Fur Naturforschung Section B, 68(3): 289-292
[56]
Sim JH, Khoo CH, Lee LH, Cheah YK, 2010. Molecular diversity of fungal endophytes isolated from Garcinia mangostana and Garcinia parvifolia.Journal of Microbiology and Biotechnology, 20(4): 651-658
[57]
Siriwach R, Kinoshita H, Kitani S, Igarashi Y, Pansuksan K, Panbangred W, Nihira T, 2014. Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34.Journal of Antibiotics, 67(2): 167-170
[58]
Smith SE, Read DJ, 2008. Mycorrhizal symbiosis. Academic Press, San Diego. 419-457
[59]
Stierle A, Stroble G, Stierle D, 1993. Taxol and taxane production by Taxomycetes andreanae, an endophytic fungus of Pacific yew.Science, 260: 214-216
[60]
Sun JY, Awakawa T, Noguchi H, Abe I, 2012. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L.Bioorganic & Medicinal Chemistry Letters, 22(20): 6397-6400
[61]
Sun K, 2010. Advances of research on the endophytic fungus resources of medicine plants.Science and Technology of Qinghai Agriculture and Forestry, 2010(1): 26-28 (in Chinese)
[62]
Sun SS, Zeng X, Zhang D, Guo SX, 2015. Diverse fungi associated with partial irregular heartwood of Dalbergia odorifera. Scientific Report, 5: 8464
[63]
Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J, 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii.PLoS One, 8(8): e72520
[64]
Suwannarach N, Bussaban B, Nuangmek W, McKenzie EHC, Hyde KD, Lumyong S, 2012. Diversity of endophytic fungi associated with Cinnamomum bejolghota (Lauraceae) in Northern Thailand.Chiang Mai Journal of Science, 39(3): 389-398
[65]
Suwannarach N, Kumla J, Bussaban B, Hyde KD, Matsui K, Lumyong S, 2013. Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand.Annals of Microbiology, 63(4): 1341-1351
[66]
Tanapichatsakul C, Monggoot S, Gentekaki E, Pripdeevech P, 2017. Antibacterial and antioxidant metabolites of Diaporthe spp.isolated from flowers of Melodorum fruticosum. Current Microbioloy,
[67]
Tawfike AF, Abbott G, Young L, Edrada-Ebel R, 2017. Metabolomic-guided isolation of bioactive natural products from Curvularia sp., an endophytic fungus of Terminalia laxiflora. Planta Med.
[68]
Teiten MH, Mack F, Debbab A, Aly AH, Dicato M, Proksch P, Diederich M, 2013. Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and anti-invasive potential via the inhibition of NF-kappa B activity.Bioorganic & Medicinal Chemistry, 21(13): 3850-3858
[69]
Thanabalasingam D, Kumar NS, Jayasinghe L, Fujimoto Y, 2015. Endophytic fungus Nigrospora oryzae from a medicinal plant Coccinia grandis, a high yielding new source of phenazine-1-carboxamide.Natural Product Communications, 10(10): 1659-1660
[70]
Tian J, Fu L, Zhang Z, Dong X, Xu D, Mao Z, Liu Y, Lai D, Zhou L, 2017. Dibenzo-a-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, strucutre elucidation, and their antibacterial and antioxidant activities.Natural Product Research, 31(4): 387-396
[71]
Tong WY, Darah I, Latiffah Z, 2011. Antimicrobial activities of endophytic fungal isolates from medicinal herb Orthosiphon stamineus Benth.Journal of Medicinal Plants Research, 5(5): 831-836
[72]
Vieira MLA, Hughes AFS, Gil VB, Vaz ABM, Alves TMA, Zani CL, Rosa CA, Rosa LH, 2012. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae).Canadian Journal of Microbiology, 58(1): 54-66
[73]
Vieira MLA, Johann S, Hughes FM, Rosa CA, Rosa LH, 2014. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah.Canadian Journal of Microbiology, 60(12): 847-856
[74]
Wang LW, Zhang YL, Lin FC, Hu YZ, Zhang CL, 2011. Natural products with antitumor activity from endophytic fungi.Mini Reviews in Medicinal Chemistry, 11(12): 1056-1074
[75]
Wang MZ, Liu SS, Li YY, Xu R, Lu CH, Shen YM, 2010. Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp. TF5 to produce new compounds.Current Microbiology, 61(4): 254-260
[76]
Wu MD, Cheng MJ, Chen IS, Su YS, Hsieh SY, Chang HS, Chang CW, Yuan GF, 2013. Phytochemical investigation of Annulohypoxylon ilanense, an endophytic fungus derived from Cinnamomum species.Chemistry and Biodiversity, 10(3): 493-505
[77]
Xie XC, Chen WQ, Deng BW, Peng H, Zhang XW, Zhang M, 2013. Research status and prospect on endophytic fungi from medicinal gymnosperms.Jiangsu Agricultural Sciences, 41(2): 10-14 (in Chinese)
[78]
Xu FF, Jin B, Ding ZH, 2010. Recent studies on the secondary metabolites produced by medicinal plant endophytic fungi.Medical Recapitulate, 16(17): 2667-2669 (in Chinese)
[79]
Yang JW, Ling H, Zhang Y, Zeng X, Guo SX, 2018. Effects of endophytic fungi on the course of seed germination of medicinal plants of Orchidaceae: a review.Mycosystema, 37(1): 22-34 (in Chinese)
[80]
Yuan J, Sun K, Dengwang MY, Dai CC, 2016. The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea.Frontiers in Plant Science, 7: 361
[81]
Zaher AM, Moharram AM, Davis R, Panizzi P, Makboul MA, Calderon AI, 2015. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC-MS/MS.Natural Product Research, 29(24): 2275-2281
[82]
Zeng PY, Wu JZ, 2010. Research progress of active components from endophytic fungi in foreign plants.Strait Pharmaceutical Journal, 22(11): 9-13 (in Chinese)
[83]
Zeng X, Li YY, Ling H, Liu SS, Liu MM, Chen J, Guo SX, 2017. Transcriptomic analyses reveal clathrin-mediated endocytosis involved in symbiotic seed germination of Gastrodia elata.Botanical Studies, 58(1): 31
[84]
Zeng X, Yang JW, Ling H, Zhang Y, Chen J, Guo SX, 2018a. Proteome changes during the germination of the fungus-symbiotic seed of Gastrodia elata.Mycosystema, 37(1): 64-72 (in Chinese)
[85]
Zeng X, Yang JW, Ling H, Zhang Y, Guo SX, 2018b. RNA-Seq analysis of Gastrodia elata seed germination infected with Mycena dendrobii.Mycosystema, 37(1): 52-63 (in Chinese)
[86]
Zhang HH, Tang M, Chen H, Wang YJ, 2012. Effects of a dark-septate endophytic isolate LBF-2 on the medicinal plant Lycium barbarum L.Journal of Microbiology, 50(1): 91-96
[87]
Zheng R, Zhang ZB, Yan RM, Wang Y, Xiao YW, Zhu D, 2018. Isolation of secondary metabolites with acetylcholinesterase inhibitory activity of endophytic fungus Pezicula sp. JR14 from Huperzia serrata.Mycosystema, 37(1): 102-109 (in Chinese)
[88]
Zhong ZM, Lai X, Huang S, Zhang GF, 2018. Optimization of DNA extraction methods and molecular identification of endophytic Xylaria from Dendrobium.Mycosystema, 37(1): 73-78 (in Chinese)
[89]
Zhou LS, Tang K, Guo SX, 2018. Study on active endophytic fungus Cladosporium sp. promoting growth and increasing salvianolic acid content of effective component of Salvia miltiorrhiza.Mycosystema, 37(1): 95-101 (in Chinese)
[90]
Zhou YQ, Chen YP, Liu DD, Gao N, Lin JH, Chen Q, Wang B, Wang Q, 2014. Research on activities of medicinal plant endophytic fungal metabolites.Information on Traditional Chinese Medicine, 31(3): 158-161 (in Chinese)
[91]
陈娟,朱军,阎波,李佳梅,郭顺星,2018. 新疆药用植物天山雪莲及红景天内生真菌的分离与初步鉴定. 菌物学报,37(1): 110-119
[92]
陈淑娟,刘佳佳,杨栋梁,袁遥,2018. 南方红豆杉内生真菌的抗肿瘤产物震颤毒素的研究. 菌物学报,37(1): 120-125
[93]
陈艳红,邢晓科,郭顺星,2018. 北京地区手参内生真菌的区系组成分析. 菌物学报,37(1): 35-42
[94]
丁常宏,都晓伟,徐莹,2013. 药用植物内生真菌的功能研究进展. 中医药学报,41(3): 168-171
[95]
丁海娥,杨中铎,舒宗美,师音,2013. 药用植物内生真菌的分离及其次生代谢产物的生物活性研究. 中医药学报,41(6): 16-19
[96]
何新华,段英华,陈应龙,徐明岗,2012. 中国菌根研究60年:过去、现在和将来. 中国科学:生命科学,42(6): 431-454
[97]
解修超,陈文强,邓百万,彭浩,张晓伟,张曼,2013. 药用裸子植物内生真菌研究现状与展望. 江苏农业科学,41(2): 10-14
[98]
林燕青,洪伟,2012. 植物内生真菌研究及应用前景. 福建林业科技,39(3): 186-193
[99]
刘军生,解修超,罗阳兰,王娇,杨玉梅,2018. 产七叶皂苷C菌株EA-LJS80的分离鉴定及生物活性研究. 菌物学报,37(1): 79-87
[100]
谯利军,周思旋,文庭池,康冀川,雷帮星,2018. 贵州马比木内生真菌的多样性研究. 菌物学报,37(1): 43-51
[101]
孙奎,2010. 药用植物内生真菌的研究进展. 青海农林科技,2010(1): 26-28
[102]
徐范范,金波,丁志山,2010. 药用植物内生真菌产次生代谢产物的研究进展. 医学综述,16(17): 2667-2669
[103]
杨建文,凌鸿,张盈,曾旭,郭顺星,2018. 内生真菌对兰科药用植物种子萌发作用研究进展. 菌物学报,37(1): 22-34
[104]
曾培源,吴锦忠,2010. 国外植物内生真菌活性物质的研究进展. 海峡药学,22(11): 9-13
[105]
曾旭,杨建文,凌鸿,张盈,陈娟,郭顺星,2018a. 天麻种子与真菌共生萌发的蛋白组学研究. 菌物学报,37(1): 64-72
[106]
曾旭,杨建文,凌鸿,张盈,郭顺星,2018b. 石斛小菇促进天麻种子萌发的转录组研究. 菌物学报,37(1): 52-63
[107]
郑瑞,张志斌,颜日明,汪涯,肖依文,朱笃,2018. 蛇足石杉内生真菌Pezicula sp. JR14中抑制乙酰胆碱酯酶的次级代谢产物分离. 菌物学报,37(1): 102-109
[108]
钟志敏,赖小平,黄松,张桂芳,2018. 石斛内生炭角菌DNA提取方法优化及分子鉴定. 菌物学报,37(1): 73-78
[109]
周丽思,唐坤,郭顺星,2018. 内生真菌枝孢属Cladosporium sp.对丹参生长和丹酚酸含量的影响. 菌物学报,37(1): 95-101
[110]
周永强,程玉鹏,刘丹丹,高宁,林进华,陈琦,王博,王强,2014. 药用植物内生真菌代谢产物的活性研究进展. 中医药信息,31(3): 158-161
PDF(980 KB)

Accesses

Citation

Detail

段落导航
相关文章

/