
优良性状蚕蛹虫草的筛选及高产虫草素液态发酵条件优化
Screening of Cordyceps militaris with excellent traits and optimization of liquid fermentation conditions for highly yielding cordycepin
蛹虫草是重要的食药用真菌,虫草素为其主要活性成分,在抗肿瘤、抗菌、降血糖等方面具有较为突出的功效。蛹虫草菌株间的形态及环境条件差异,对菌株次级代谢产物虫草素产生影响显著。本研究对不同来源的6株蛹虫草菌株(YCC-B、YCC-C、YCC-H、YCC-W、YCC-Y、CGMCC 3.4655),从蚕蛹体培养子实体性状,液体发酵条件(培养天数、培养方式、外源金属离子等)和传代稳定性等方面筛选优良性状菌株,提高其发酵合成虫草素的能力及稳定性。结果表明,蛹虫草菌株YCC-W在蚕蛹子实体出草及菌体液体发酵产虫草素上综合表现优良,传代稳定;液体发酵培养基中添加外源金属离子Mn2+作为酶的辅基,可以促进虫草素合成;采用振荡-静置相结合的混合发酵培养方式,可以避免单纯振荡培养溶氧量大、菌丝体生长旺盛,而虫草素产生不佳的问题。先振荡培养3d后静置培养至25d时,菌株YCC-W合成虫草素含量最高,可达(874.13±24.25)μg/mL,且稳定性良好。为进一步开发菌种及扩大规模生产提供参考。
Cordyceps militaris is an important edible and medicinal fungus, having active ingredient with outstanding effects in anti-tumor, anti-bacteria, reducing blood sugar and other functions. The differences of morphological characters and growth environment of C. militaris strains significantly influence the production of secondary metabolites. In this study, six strains of C. militaris (YCC-B, YCC-C, YCC-H, YCC-W, YCC-Y and CGMCC 3.4655) from different sources were selected based on properties of stromata on tussah pupae, liquid fermentation conditions (culture duration, culture methods, exogenous metal ions, etc.) and reproduction stability for screening the most excellent strain to improve ability and stability of fermentation and synthesis of cordycepin. The results showed that C. militaris YCC-W fruiting body properties performed well on tussah pupae and cordycepin production was promoted in liquid fermentation, showing stable reproduction in subculture. The synthesis of cordycepin was greatly improved by adding the metal ion Mn2+ to the liquid fermentation medium as a coenzyme. The mixed culture method (shaking + standing) can avoid the poor production of cordycepin caused by the strong growth of mycelium with large dissolved oxygen in the simple shaking culture. On the conditions of 3d shake culture proceeded with 22d static culture, production of cordycepin of strain YCC-W reached the highest yield of (874.13±24.25)μg/mL. The results provide reference for further development of the strains and expanding cordycepin production.
金属离子 / 活性产物 / 腺苷 / 传代培养 {{custom_keyword}} /
metal ions / active product / adenosine / subculture {{custom_keyword}} /
表1 分子对接所使用的受体Table 1 Receptors used for molecular docking |
PDB ID | 缩写 Abbreviation | 名称 Name | 功能 Function |
---|---|---|---|
2XOW | p53 | p53蛋白 p53 protein | 防止癌变,修复缺陷 Prevent cancer and repair defects |
IYSI | Bcl-xl | 抗凋亡蛋白 Anti-apoptotic proteins | 阻止凋亡 Prevent apoptosis |
5HG5 | EGFR | 表皮生长因子受体 Epidermal growth factor receptor | 加速促进细胞异常生长和分裂,最终导致肿瘤诞生 Accelerate the abnormal growth and division of cells, and eventually lead to the birth of tumors |
1M48 | IL-2 | 白细胞介素-2 Interleukin-2 | 促进淋巴细胞生长、增殖、分化,能诱导和增强细胞毒活性 Promote the growth, proliferation and differentiation of lymphocyte, induce and enhance cytotoxic activity |
1Y6B | VEGFR2 | 血管内皮细胞生长因子受体2 Vascular endothelial growth factor receptor 2 | 调节淋巴管内皮细胞和血管内皮细胞,促进淋巴管和血管的生成,还有调节淋巴细胞的迁移等作用 Regulate lymphatic endothelial cells and vascular endothelial cells, promote the production of lymphatic vessels and blood vessels, and regulate the migration of lymphocytes, etc. |
图1 不同类型羊毛甾烷型三萜化合物的结构通式Fig. 1 General structural formula of lanostane triterpenes with different types. |
表2 灵芝子实体酸性三萜化合物对L1210细胞增殖的抑制作用Table 2 Inhibition of acidic triterpenes from fruiting bodies of Ganoderma lingzhi to L1210 cell proliferation |
灵芝子实体酸性三萜 Acidic triterpenes from fruiting bodies of G. lingzhi | 母环 Female ring | R1 | R2 | R3 | R4 | R5 | R6 | R7 | IC50 (μmol/L) |
---|---|---|---|---|---|---|---|---|---|
Ganoderic acid I | A | β-OH | β-OH | =O | -H | =O | β-OH | =O | 39.54 |
Ganoderic acid ε | A | β-OH | β-OH | =O | -H | =O | -H | β-OH | - |
Ganoderenic acid C | B | β-OH | β-OH | =O | -H | α-OH | =O | - | - |
Ganoderic acid C2 | A | β-OH | β-OH | =O | -H | α-OH | -H | =O | 520.54 |
Ganoderic acid C6 | A | β-OH | =O | =O | β-OH | =O | -H | =O | 2 793.27 |
Ganoderic acid G | A | β-OH | β-OH | =O | β-OH | =O | -H | =O | 58.26 |
Ganoderic acid B | A | β-OH | β-OH | =O | -H | =O | -H | =O | 77.32 |
Ganoderenic acid B | B | β-OH | β-OH | =O | -H | =O | =O | - | 58.81 |
Ganoderenic acid A | B | =O | β-OH | =O | -H | α-OH | =O | - | 351.85 |
Ganoderic acid A | A | =O | β-OH | =O | -H | α-OH | -H | =O | 104.19 |
Ganoderic acid K | A | β-OH | β-OH | =O | β-OAc | =O | -H | =O | 116.97 |
Ganoderenic acid E | B | =O | β-OH | =O | β-OH | =O | =O | 135.46 | |
Ganoderic acid H | A | β-OH | =O | =O | β-OH | =O | -H | =O | 417.07 |
Ganoderenic acid H | B | β-OH | =O | =O | -H | =O | =O | - | 108.75 |
Lucidenic acid A | - | - | - | - | - | - | - | - | 103.41 |
Ganoderic acid N | A | =O | β-OH | =O | -H | =O | -H | =O | - |
Ganoderic acid D | A | =O | β-OH | =O | -H | =O | -H | =O | 3.67 |
Ganoderenic acid D | B | =O | β-OH | =O | -H | =O | =O | 27 094.48 | |
Ganoderic acid Z | C | β-OH | =O | =O | -H | -H | 2 289.44 | ||
Ganoderic acid F | A | =O | =O | =O | β-OAc | =O | -H | =O | 265.35 |
Ganoderenic acid F | B | =O | =O | =O | -H | =O | =O | - | 72.91 |
Ganoderic acid DM | C | =O | =O | -H | -H | -H | - | - | 75.48 |
Ganoderic acid Y | D | β-OH | -H | - | - | - | - | - | - |
Ganoderic acid TN | D | β-OH | β-OAc | - | - | - | - | - | 57.75 |
注:“-”表示在受试浓度下化合物对L1210无作用,下同 | |
Note: “-” indicates that the compound has no effect on L1210 at the tested concentration, the same below. |
表3 灵芝子实体中性三萜化合物对L1210细胞增殖的抑制作用Table 3 Inhibition of neutral triterpenes from fruiting bodies of Ganoderma lingzhi to L1210 cell proliferation |
灵芝子实体中性三萜 Neutral triterpenes from fruiting bodies of G. lingzhi | 母环 Female ring | R1 | R2 | R3 | R4 | IC50 (μmol/L) |
---|---|---|---|---|---|---|
Ganodermanontriol | F | =O | α-OH | -CH2OH | β-OH | 51.05 |
Ganoderiol A | F | β-OH | -OH | -CH2OH | -OH | 30.30 |
Ganodermanondiol | F | =O | α-OH | -CH3 | -OH | 137.38 |
Ganoderiol F | E | =O | -CH2OH | -CH2OH | - | 147.92 |
Ganoderol A | E | =O | -CH3 | -CH2OH | - | 65.21 |
Ganoderal A | E | =O | -CH3 | -CHO | - | 28.44 |
Ganoderol B | E | β-OH | -CH3 | -CH2OH | - | 54.28 |
表4 灵芝菌丝体三萜化合物对L1210细胞增殖的抑制作用Table 4 Inhibition of triterpenes from mycelia of Ganoderma lingzhi to L1210 cell proliferation |
灵芝菌丝体三萜 Mycelial triterpenes | 母环 Female ring | R1 | R2 | R3 | IC50 (μmol/L) |
---|---|---|---|---|---|
Ganoderic acid T | G | α-OAc | α-OAc | β-OAc | 1.92 |
Ganoderic acid S | G | α-OH | -H | β-OAc | 19.33 |
Ganoderic acid P | G | α-OH | α-OAc | β-OAc | 26.66 |
Ganoderic acid T1 | G | α-OAc | α-OAc | β-OH | 21.12 |
Ganoderic acid Mk | G | α-OAc | α-OH | β-OAc | 16.71 |
Ganoderic acid Me | G | α-OAc | α-OAc | -H | 9.66 |
Lanosta-7,9(11),24-trien-3α-hydroxy-26-oic acid | G | α-OH | -H | -H | 29.97 |
Ganoderic acid R | G | α-OAc | -H | β-OAc | 31.69 |
表5 层迭树舌子实体三萜化合物对L1210细胞增殖的抑制作用Table 5 Inhibition of triterpenes from fruiting bodies of Ganoderma lobatum to L1210 cell proliferation |
树舌环氧酸三萜 Applanoxidic acids | 母环 Female ring | R1 | R2 | R3 | R4 | IC50 (μmol/L) |
---|---|---|---|---|---|---|
Applanoxidic acid H | H | β-OH | α-OH | =O | -OH | 10 083.46 |
Applanoxidic acid A | I | =O | =O | α-OH | - | 272.52 |
Applanoxidic acid G | H | =O | =O | β-OH | -OH | 3 477.67 |
Applanoxidic acid C | H | =O | =O | =O | -OH | 1 507.38 |
Applanoxidic acid E | I | =O | =O | β-OH | - | 84.64 |
Applanoxidic acid F | I | =O | =O | =O | - | 166.01 |
表6 配体与靶蛋白对接Table 6 Docking of ligand to target protein |
配体 Ligand | p53 | Bcl-xl | EGFR | IL-2 | VEGFR2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Poses | Score | Poses | Score | Poses | Score | Poses | Score | Poses | Score | |
Ganoderic acid P | 10 | 115.52 | 10 | 142.42 | 5 | 123.16 | 5 | 118.39 | 10 | 133.25 |
Ganoderma acid T1 | 3 | 106.89 | 10 | 140.52 | 22 | 111.43 | 1 | 102.88 | 10 | 135.49 |
Ganoderic acid S | 6 | 113.64 | 10 | 131.19 | 3 | 119.55 | 10 | 145.95 | 10 | 123.33 |
Ganoderic acid T | 10 | 119.76 | 10 | 152.44 | 4 | 132.70 | 2 | 116.23 | 10 | 126.43 |
Ganoderic acid Me | 10 | 112.97 | 10 | 141.92 | 3 | 105.81 | 10 | 115.93 | 10 | 131.55 |
Ganoderic acid R | 10 | 112.53 | 10 | 142.54 | 2 | 121.23 | 10 | 142.28 | 10 | 125.44 |
Ganoderic acid Mk | 2 | 104.29 | 10 | 136.51 | - | - | 9 | 127.94 | 10 | 127.44 |
Lanosta-7,9(11),24-trien-3α-hydroxy-26-oic acid | 2 | 108.04 | 10 | 129.37 | 2 | 114.60 | 10 | 131.04 | 10 | 118.92 |
Ganoderic acid I | 2 | 113.87 | 10 | 134.51 | - | - | 9 | 119.06 | 5 | 105.76 |
Ganoderic acid D | 2 | 106.48 | 10 | 140.06 | - | - | 10 | 123.40 | 10 | 111.06 |
Ganoderiol A | 1 | 101.96 | 10 | 141.78 | 2 | 122.61 | 10 | 122.90 | 10 | 116.80 |
Ganodera A | 1 | 110.40 | 10 | 129.12 | 3 | 104.15 | 10 | 129.88 | 10 | 107.94 |
注:化合物的众多对接Poses中只给出LibDock打分最高值 | |
Note: Only the highest LibDock score is given among many poses. |
图2 灵芝羊毛甾烷型三萜与靶蛋白分子对接A:Ganoderic acid T与p53蛋白对接;B:Ganoderic acid T与Bcl-xl蛋白对接;C:Ganoderic acid T与EGFR蛋白对接;D:Ganoderic acid S与IL-2蛋白对接;E:Ganoderic acid T1与VEGFR2蛋白对接 Fig. 2 Molecular docking of lanostane triterpenes from Ganoderma spp. to target proteins. A: Docking of ganoderic acid T to p53 protein; B: Docking of ganoderic acid T to Bcl-xl protein; C: Docking of ganoderic acid T to EGFR protein; D: Docking of ganoderic acid S to IL-2 protein; E: Docking of ganoderic acid T1 to VEGFR2 protein. |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
The biosynthesis of 3'-deoxyadenosine (cordycepin) by Cordyceps militaris has been investigated using [U-14C]adenosine and [3-3H]ribose. Crystallization of the resulting radioactive 3'-deoxyadenosine to a constant specific activity showed incorporation of both labeled compounds. A control showed that the 3H:14C ratio of the AMP isolated from the RNA was the same as the 3H:14C ratio in the 3'-deoxyadenosine. The 14C ratio in the adenine: ribose of the [U-14C]adenosine added to the 3'-deoxyadenosine producing cultures of C. militaris and of the isolated 3'-deoxyadenosine was the same, e.g. 50:50. These data provide strong evidence that adenosine in converted to 3'-deoxyadenosine without hydrolysis of the N-riboside bond. Degradation of the 3-deoxyribose from 3'-deoxyadenosine showed that the 3H was retained on carbon-3. These results suggest that the formation of 3'-deoxyadenosine may proceed by a reductive mechanism similar to that for the formation of 2'-deoxynucleotides.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
is an entomopathogenic fungus which is often used in Asia as a traditional medicine developed from age-old wisdom. Presently, cordycepin from is a great interest in medicinal applications. However, cellular growth of and the association with cordycepin production remain poorly understood. To explore the metabolism of as potential cell factories in medical and biotechnology applications, this study developed a high-quality genome-scale metabolic model of, NR1329, based on its genomic content and physiological data. The model included a total of 1329 genes, 1821 biochemical reactions, and 1171 metabolites among 4 different cellular compartments. Its growth simulation results agreed well with experimental data on different carbon sources. NR1329 was further used for optimizing the growth and cordycepin overproduction using a novel approach, POPCORN, for rational design of synthetic media. In addition to the high-quality GEM NR1329, the presented POPCORN approach was successfully used to rationally design an optimal synthetic medium with C:N ratio of 8:1 for enhancing 3.5-fold increase in cordycepin production. This study thus provides a novel insight into physiology and highlights a potential GEM-driven method for synthetic media design and metabolic engineering application. The NR1329 and the POPCORN approach are available at the GitHub repository: https://github.com/sysbiomics/-GEM.© 2019 The Authors.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
陈丽冰, 吴光旭, 程薇, 范秀芝, 史德芳, 石猛, 高虹, 2016. 北虫草培养残基中虫草素的提取纯化及抗肿瘤活性. 食品科学技术学报, 34(4):73-79
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
董宏鸿, 李建军, 周行, 姜艳霞, 2016. 蛹虫草中虫草素的提取及药理活性研究进展. 吉林医药学院学报, 37(6):465-467
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
李兵, 2016. 蛹虫草中虫草素和腺苷的提取分离及其对糖尿病小鼠肾脏氧化应激的影响. 合肥工业大学硕士论文,合肥. 1-73
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
李晖, 孙佳瑜, 廖康汉, 王喆, 单爱云, 2016. 虫草素抗炎作用及机制研究. 天津中医药, 33(5):303-306
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
罗巍, 刘东波, 吴郑武, 夏志兰, 谢红旗, 2011. 蛹虫草液态发酵过程中有效成分的动态积累变化. 食品与发酵工业, 37(10):96-99
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
刘希文, 汤佳鹏, 2021. 蛹虫草丝瓜络半固态发酵产虫草素的工艺优化. 食品工业科技, 42(6):118-124
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
马婕馨, 2020. 蛹虫草液体发酵虫草素纯化及抗菌抑癌活性分析. 北京林业大学硕士论文,北京. 91
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
孟小丽, 李翠新, 2017. 蛹虫草菌种退化的检测方法和影响因素. 安徽农业科学, 45(13): 133-134+156
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
宁宝云, 薛姗姗, 刘慧, 刘康, 郝继伟, 2020. 蛹虫草菌种复壮方法探讨. 食用菌, 42(3): 24-26+28
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
王长文, 王忠, 王锦锋, 吴鸿雪, 2019. 蛹虫草虫草素研究进展. 福建农业科技, 50(2):66-70
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
王延明, 2013. 九州虫草基因组改组育种与体外抗氧化活性研究. 山东大学硕士论文,济南. 1-101
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |