
油酸促进灵芝三萜液态深层发酵的工艺研究及规模化验证
苏晓薇,唐庆九,张劲松,冯娜,王金艳,周帅,冯杰,俞苓
菌物学报 ›› 2021, Vol. 40 ›› Issue (9) : 2445-2460.
油酸促进灵芝三萜液态深层发酵的工艺研究及规模化验证
Synthesis of triterpenes in liquid submerged fermentation of Ganoderma lingzhi promoted by oleic acid
灵芝三萜是灵芝中主要的活性成分之一,前期研究发现油酸可以促进灵芝三萜液态深层发酵下的发酵合成。本研究主要对油酸促进灵芝三萜液态深层发酵的工艺进行优化,并进行3L发酵罐规模的验证。通过单因素实验考察油酸的添加方式、添加时间和添加浓度对灵芝三萜的影响,结合响应面实验,获得最优工艺条件并进行验证:在发酵第32h添加1.21%高温灭菌油酸,最高灵芝三萜含量为42.69mg/g;在发酵第7h添加1.35%过滤除菌油酸,最高三萜含量为43.38mg/g,分别比对照提高2.04倍和2.08倍。在1 000mL摇瓶中添加高温灭菌油酸和过滤除菌油酸,灵芝三萜含量分别为32.18和32.48mg/g,为对照的1.96倍和1.95倍;在3L发酵罐规模下灵芝三萜含量分别为28.66和25.13mg/g,为对照的1.62倍和1.42倍。本研究系统优化了油酸促进灵芝三萜液态深层发酵的工艺条件,并在与工业生产相对应的3L发酵罐上进行验证。该研究可为灵芝三萜的规模化发酵提供重要参考和借鉴。
Triterpene is one of the most important active ingredients in Ganoderma lingzhi. Previous studies found that oleic acid could promote the biosynthesis of triterpenes in liquid submerged fermentation of Ganoderma lingzhi. In this study, the process of liquid submerged fermentation for synthesis of triterpenes by using oleic acid as promoter was optimized and verified on the scale of a 3L fermenter. The effects of the additive method, time for addition and concentration of oleic acid on triterpene synthesis were investigated by single factor experiment. The optimal process conditions were obtained and verified by response surface experiment. The highest triterpene content reaching 42.69mg/g was obtained by adding 1.21% moist heat sterilized oleic acid at 32h of fermentation, and by adding 1.35% filtered sterilized oleic acid at the 7h of fermentation, the highest triterpene content was 43.38mg/g, being 2.04 times and 2.08 times higher than triterpene content of the control, respectively. The triterpenes content was 32.18mg/g and 32.48mg/g respectively by adding moist heat sterilized and filterer sterilized oleic acid at 1 000mL scale of shake culture, being 1.96 times and 1.95 times higher as compared with the control. The triterpene content in 3L fermenter was 28.66mg/g and 25.13mg/g, 1.62 times and 1.42 times higher than that of the control. The technological conditions of liquid submerged fermentation of triterpenes promoted by oleic acid were successfully optimized and verified in a 3L fermenter, corresponding to industrial production. This study provide an important reference for large-scale fermentation of Ganoderma lingzhi for production of triterpenes.
灵芝三萜 / 工艺优化 / 响应面 / 油酸 / 规模化 {{custom_keyword}} /
Ganoderma triterpenes / process optimization / response surface / oleic acid / scaled {{custom_keyword}} /
表1 响应面实验因素水平表Table 1 Factors and levels of response surface design |
因素 Factors | 代码 Code | 水平Levels | ||||
---|---|---|---|---|---|---|
-a | -1 | 0 | +1 | +a | ||
时间 Fermentation time (h) | A | 0 | 7 | 24 | 41 | 48 |
浓度 Concentration of oleic acid (%, V/V) | B | 0.5 | 0.65 | 1 | 1.35 | 1.5 |
表2 添加高温灭菌油酸和过滤除菌两种方式下的响应面实验方案及结果Table 2 Design and results of adding oleic acid moist heat sterilized and filtered sterilized |
试验点 Run No. | 时间 Time (h) | 浓度 Concentration (%, V/V) | 高温灭菌油酸条件下三萜含量 Triterpene content under the condition of adding moist heat sterilized oleic acid (mg/g) | 过滤除菌油酸条件下三萜含量 Triterpene content under the condition of adding filtered sterilized oleic acid (mg/g) |
---|---|---|---|---|
1 | 0 | 1 | 33.35±0.88 | 40.41±1.75 |
2 | 7 | 1.35 | 40.91±1.38 | 45.74±0.09 |
3 | 7 | 0.65 | 26.21±2.28 | 31.64±1.16 |
4 | 24 | 1 | 42.28±1.50 | 40.35±1.50 |
5 | 24 | 0.5 | 31.25±1.31 | 35.31±0.69 |
6 | 24 | 1 | 41.49±1.35 | 43.36±0.75 |
7 | 24 | 1.5 | 43.70±1.19 | 47.21±1.37 |
8 | 24 | 1 | 47.80±0.50 | 42.08±1.85 |
9 | 41 | 1.35 | 45.53±0.47 | 44.59±0.34 |
10 | 41 | 0.65 | 42.23±1.63 | 37.12±0.22 |
11 | 48 | 1 | 36.56±1.79 | 43.39±1.09 |
表3 响应面方差分析结果Table 3 Analyses of variance for CCD |
来源 Source | 平方和 Sum of squares | 自由度 Df | 均方 Mean square | F value | P value |
---|---|---|---|---|---|
模型Model | 365.01 | 7 | 52.14 | 123.94 | 0.0011 |
A | 17.53 | 1 | 17.53 | 41.67 | 0.0075 |
B | 66.26 | 1 | 66.26 | 157.49 | 0.0011 |
AB | 1.44 | 1 | 1.44 | 3.43 | 0.1609 |
A² | 58.47 | 1 | 58.47 | 138.98 | 0.0013 |
B² | 21.62 | 1 | 21.62 | 51.40 | 0.0056 |
A3 | 6.28 | 1 | 6.28 | 14.93 | 0.0306 |
B3 | 11.05 | 1 | 11.05 | 26.25 | 0.0144 |
残差Residual | 1.26 | 3 | 0.4207 | ||
失拟项 Lack of fit | 0.1294 | 1 | 0.1294 | 0.2285 | 0.6798 |
误差 Pure error | 1.13 | 2 | 0.5664 | ||
总误差 Cor total | 366.27 | 10 | |||
R2 | 0.9966 | R2Adj | 0.9885 |
表4 响应面方差分析结果Table 4 A analysis of variance for CCD |
来源 Source | 平方和 Sum of squares | 自由度 Df | 均方 Mean square | F value | P value |
---|---|---|---|---|---|
模型Model | 276.33 | 5 | 55.27 | 46.19 | 0.0003 |
A | 9.14 | 1 | 9.14 | 7.64 | 0.0397 |
B | 242.50 | 1 | 242.50 | 202.67 | < 0.0001 |
AB | 11.01 | 1 | 11.01 | 9.20 | 0.0290 |
A² | 0.2672 | 1 | 0.2672 | 0.2233 | 0.6564 |
B² | 13.35 | 1 | 13.35 | 11.16 | 0.0205 |
残差Residual | 5.98 | 5 | 1.20 | ||
失拟项 Lack of fit | 1.42 | 3 | 0.4747 | 0.2083 | 0.8839 |
误差 Pure error | 4.56 | 2 | 2.28 | ||
总误差 Cor total | 282.31 | 10 | |||
R2 | 0.9788 | R2Adj | 0.9576 |
表5 250mL摇瓶规模的响应面摇瓶验证Table 5 Response surface validation at the scale of 250mL shaking flask |
类别 Category | 高温灭菌 Moist heat sterilization | 过滤除菌 Filtration sterilization | |||
---|---|---|---|---|---|
三萜含量 Triterpene content (mg/g) | 菌丝体生物量 Mycelial biomass (g/L) | 三萜含量 Triterpene content (mg/g) | 菌丝体生物量 Mycelial biomass (g/L) | ||
对照组 Control | 20.89±0.30 | 10.12±0.78 | 20.89±0.30 | 10.12±0.78 | |
响应面优化组 Optimal response surface group | 42.69±0.19 | 14.42±0.06 | 43.38±0.30 | 20.79±0.35 | |
响应面中心组 Response surface center group | 39.38±0.10 | 13.50±0.59 | 38.78±0.04 | 14.30±0.33 | |
单因素优化组 Optimal single factor group | 浓度 Concentration of oleic acid | 37.65±1.62 | 13.89±0.19 | 37.96±0.61 | 19.03±0.16 |
时间 Time of fermentation | 30.08±0.18 | 13.69±0.75 | 28.27±0.58 | 14.19±0.97 |
表6 放大规模的响应面验证Table 6 Response surface validation at large scales of fermentation |
规模 Scale | 类别 Category | 高温灭菌 Moist heat sterilization | 过滤除菌 Filtration sterilization | ||
---|---|---|---|---|---|
三萜含量 Triterpene content (mg/g) | 菌丝体干重 Mycelial dry weight (g/L) | 三萜含量 Triterpene content (mg/g) | 菌丝体干重 Mycelial dry weight (g/L) | ||
1 000mL摇瓶 1 000mL shaking flask | 对照组 Control | 16.62±0.22 | 7.22±0.12 | 16.62±0.22 | 7.22±0.12 |
响应面优化组 Optimal response surface group | 32.18±0.89 | 13.63±0.14 | 32.43±0.17 | 14.01±0.01 | |
响应面中心组 Response surface center group | 29.84±0.85 | 11.64±0.11 | 32.35±0.87 | 12.78±0.06 | |
3L发酵罐 3L fermenter | 对照组 Control | 17.67±0.29 | 7.76±0.15 | 17.67±0.29 | 7.76±0.15 |
响应面优化组 Optimal response surface group | 28.66±0.44 | 11.67±0.29 | 25.13±0.47 | 13.20±0.04 |
图7 250mL摇瓶(左)、1 000mL摇瓶(中)和3L发酵罐(右)规模的灵芝三萜HPLC图Fig. 7 HPLC fingerprint of fermented Ganoderma triterpenes in the scales of 250mL shaking flask (left), 1 000mL shaking flask (medium) and 3L fermenters (right) under the condition of adding moist heat sterilized and filtered sterilized oleic acid. |
表7 不同发酵规模下的灵芝三萜HPLC图的峰面积Table 7 Peak area of fermentation parameters in different fermentation scales |
规模 Scale | 250mL摇瓶 250mL shaking flask | 1 000mL摇瓶 1 000mL shaking flask | 3L发酵罐 3L fermenter | ||||||
---|---|---|---|---|---|---|---|---|---|
名称 Name | 对照 Control | 高温灭菌 Moist heat sterilized oleic acid | 过滤除菌 Filtered sterilized oleic acid | 对照 Control | 高温灭菌 Moist heat sterilized oleic acid | 过滤除菌 Filtered sterilized oleic acid | 对照 Control | 高温灭菌 Moist heat sterilized oleic acid | 过滤除菌 Filtered sterilized oleic acid |
主要出峰数 The number of main peaks | 4 | 6 | 6 | 4 | 5 | 5 | 6 | 7 | 8 |
总面积 Total area (mAU·min) | 40 841 | 184 009 | 223 336 | 83 725 | 687 430 | 236 126 | 352 088 | 545 365 | 792 093 |
表8 不同培养规模下的灵芝菌丝体发酵参数比较Table 8 Fermentation parameters in different fermentation scales |
参数名称 Parameters | 发酵规模 Fermentation scales | ||||||||
---|---|---|---|---|---|---|---|---|---|
250mL摇瓶 250mL shaking flask | 1 000mL摇瓶 1 000mL shaking flask | 3L发酵罐 3L fermenter | |||||||
对照 Control | 高温灭菌 Moist heat sterilized oleic acid | 过滤除菌 Filtered sterilized oleic acid | 对照 Control | 高温灭菌 Moist heat sterilized oleic acid | 过滤除菌 Filtered sterilized oleic acid | 对照 Control | 高温灭菌 Moist heat sterilized oleic acid | 过滤除菌 Filtered sterilized oleic acid | |
初始还原糖浓度 Initial reducing sugar concentration (g/L) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
最终还原糖浓度 Final reducing sugar concentration (g/L) | 5.4 | 11.2 | 11.5 | 3.2 | 12.25 | 13.65 | 15 | 15.4 | 15.5 |
发酵时间 Fermentation time (h) | 168 | 168 | 168 | 168 | 168 | 168 | 168 | 168 | 168 |
最大菌丝体生物量 Maximum mycelial biomass (g/L) | 10.12 | 14.42 | 20.79 | 7.22 | 13.63 | 14.01 | 7.76 | 11.67 | 13.20 |
灵芝三萜得率 Triterpene yield (g/L) | 0.212 | 0.610 | 0.886 | 0.120 | 0.463 | 0.461 | 0.137 | 0.334 | 0.332 |
还原糖消耗速率 Reducing sugar consumption rate [g/(L·h)] | 0.087 | 0.052 | 0.051 | 0.100 | 0.046 | 0.038 | 0.030 | 0.027 | 0.027 |
菌丝体对还原糖得率 Mycelial yield on reducing sugar (g/g) | 0.693 | 1.639 | 2.446 | 0.430 | 1.759 | 2.206 | 1.552 | 2.537 | 2.933 |
灵芝三萜对还原糖得率 Triterpene yield on reducing sugar (×10-2g/g) | 1.449 | 6.933 | 10.421 | 0.715 | 5.971 | 7.254 | 2.740 | 7.261 | 7.378 |
菌丝体生产强度 Mycelial productivity [g/(L·h)] | 0.060 | 0.086 | 0.124 | 0.043 | 0.081 | 0.083 | 0.046 | 0.069 | 0.079 |
灵芝三萜生产强度 Triterpene productivity [10-3g/(L·h)] | 1.259 | 3.632 | 5.273 | 0.715 | 2.754 | 2.742 | 0.816 | 1.991 | 1.975 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
A novel enhanced triterpenes fermentation production process by G0119 with the addition of oleic acid in the medium has been developed and optimized. All of the six exogenous additives tested were found to exhibit stimulatory effect on mycelial growth and triterpenes biosynthesis by. The results show that oleic acid addition had significant role in promoting triterpenes production. The optimal concentration and time of oleic acid addition were determined to be 30 mL/L and 0 h, respectively. Furthermore, three significant factors influencing triterpenes production were identified as glucose, magnesium sulfate and temperature using the Plackett-Burman design. The optimized conditions by central composite design were 27.83 g/L glucose, 1.32 g/L magnesium sulfate, 26.2°C temperature. The triterpenes fermentation yield with the optimized medium based on actual confirmatory experimental data in 6 L fermentor was 1.076 g/L versus the statistical model predicted value of 1.080 g/L. Our innovatively developed triterpenes fermentation production technology and process has been proven to produce high triterpenes productivity and yield conceivably useful for industrial production.© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Mushrooms are considered one of the richest sources of natural antibiotics, and various species of them inhibit the growth of a wide diversity of microorganisms. Ganoderma lucidum, a well-known medicinal mushroom. has many pharmacological and biological activities including an antimicrobial effect, although few studies have investigated the antibacterial and antifungal effects of its purified compounds. The chemical structure of the purified compounds from the hexane fraction was elucidated as ergosta-7,22-dien-3β-yl acetate, ergosta-5,7,22-trien-3β-yl acetate (isopyrocalciferol acetate), ergosta-7,22-dien-3-one, ergosta-7,22-dien-3β-ol, and ergosta-5,7,22-trien-3β-ol (ergostrol). In addition, the structure of ganodermadiol was demonstrated after purification from the chloroform fraction. The fractions inhibited Gram-positive bacteria and yeast, with minimum inhibitory concentration values of 6.25 mg/mL, but were ineffective against Gram-negative bacteria in the tested concentrations. The results were comparable for isolated compounds, whereas the mixture of ergosta-7,22-dien-3β-yl acetate and isopyrocalciferol acetate was weakly effective against Escherichia coli (minimum inhibitory concentration, 10 mg/mL). It could be assumed that the antimicrobial effect of crude fractions is the consequence of mixing triterpenoid and steroid compounds.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
Fatty acids were added into the media to investigate their effects on the mycelial growth and polysaccharide formation by Ganoderma lucidum. The experiments were carried out in freely suspended cultures or immobilized cultures using shake flasks. The results indicate that the extent of stimulation or inhibition were associated with the types and levels of fatty acids. Oleic acid at the level of 0.15 g/100 ml led to a significant increase in cell concentration from 0.20 to 0.46 g/100 ml in a suspended culture and palmitic acid was of great advantage to polysaccharide production. In contrast, linoleic acid (0.1 g/100 ml) drastically suppressed both mycelial growth and polysaccharide formation. In immobilized cultures with fatty acids, the stimulation of mycelial growth remained the same level, but the enhancement of polysaccharide production became less. In addition, the growth of G. lucidum in the pattern of immobilization might be beneficial to the production of mycelia and polysaccharide.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
陈慧, 杨海龙, 刘高强, 2015. 灵芝三萜的生物合成和发酵调控. 菌物学报, 34(1):1-9
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
戴玉成, 曹云, 周丽伟, 吴声华, 2013. 中国灵芝学名之管见. 菌物学报, 32(6):947-952
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
冯杰, 张劲松, 杨焱, 贾薇, 冯娜, 刘方, 2014. 一种提高灵芝液体深层发酵菌丝体中灵芝三萜含量的方法. 上海:CN104017852A
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
孔维威, 袁瑞奇, 孔维丽, 韩玉娥, 段亚魁, 康源春, 张玉亭, 2015. 油脂对食药用菌生长影响的研究进展. 食药用菌, 23(6):355-358
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
黎李平, 2017. 薏苡仁油对灵芝三萜液体发酵的影响. 中南林业科技大学硕士论文,长沙. 14-27
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
亓小妮, 谢苗, 吴杨洋, 张鑫, 杜秀菊, 2021. 灵芝三萜化合物的制备与药理活性研究进展. 安徽农业科学, 49(5):38-42
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
孙冰沁, 2017. 基于油酸诱导的高产三萜灵芝菌丝体生物合成途径中关键酶编码基因研究. 浙江大学硕士论文,杭州. 27-48
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
谭洪升, 李翔, 巩伯梁, 李刚, 2018. 灵芝子实体和孢子粉三萜含量的测定及体外抗肿瘤活性的评价. 微生物学免疫学进展, 46(1):43-48
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
唐庆九, 季哲, 郝瑞霞, 刘艳芳, 杨焱, 张劲松, 2010. 灵芝中性三萜类成分的抗肿瘤作用. 食用菌学报, 17(1):60-64
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
王明宇, 刘强, 车庆明, 林志彬, 2000. 灵芝三萜类化合物对3种小鼠肝损伤模型的影响. 药学学报, 2000(5):326-329
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
韦朝阳, 贺亮, 邵双双, 冯依力, 李卫旗, 程俊文, 2015. 外源添加物对食药用菌液体发酵影响的研究进展. 食品科学, 36(7):245-250
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
杨志空, 韩伟, 冯娜, 张劲松, 王晨光, 周靖, 王金艳, 唐庆九, 2020. HPLC法测定灵芝孢子粉中三萜含量. 菌物学报, 39(1):184-192
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
姚强, 高兴喜, 宫志远, 孔明, 任鹏飞, 刘岩, 韩建东, 任海霞, 2010. 不同脂肪酸对灵芝液体发酵的影响. 食用菌学报, 17(3):55-59
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
衣艳君, 徐承水, 2001. 灵芝降血脂作用的实验研究. 安徽师范大学学报(自然科学版), 24(1):52-53
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
翟双星, 冯杰, 唐庆九, 冯娜, 杨焱, 刘艳芳, 唐传红, 周帅, 张劲松, 2018. 复合有机氮源对灵芝三萜液态深层发酵的影响. 菌物学报, 37(12):1761-1770
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
张倩倩, 黄青, 2018. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正. 菌物学报, 37(12):1792-1801
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
朱会霞, 2013. 灵芝真菌发酵产灵芝酸培养基优化研究. 北方园艺, 22:154-155
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |