[1] Suzuki N,Koussevitzky S,Mittler R,et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant Cell & Environment,2012,35(2):259-270 [2] Alam B,Jacob J. Overproduction of Photosynthetic Electrons is Associated with Chilling Injury in Green Leaves[J]. Photosynthetica,2002,40(1):91-95 [3] Kang H M,Saltveit M E. Reduced chilling tolerance in elongating cucumber seedling radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity[J]. Physiologia Plantarum,2002,115(2):244 [4] Kang H M,Saltveit M E. Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat-shocked rice (Oryza sativa L.) seedlings radicles[J]. Journal of Agricultural & Food Chemistry,2002,50(3):513 [5] 刘立军,陈为峰,张志华,等. 叶面喷施脱落酸对高羊茅抗寒性的影响[J]. 中国草地学报,2010,32(6):94-99 [6] Gill S S,Tuteja N. Polyamines and abiotic stress tolerance in plants[J]. Plant Signaling & Behavior,2010,5(1):26 [7] Alcázar R,Cuevas J C,Planas J,et al. Integration of polyamines in the cold acclimation response[J]. Plant Science,2011,180(1):31-38 [8] Zhang W P,Jiang B,Li W G,et al. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system[J]. Scientia Horticulturae,2009,122(2):200-208 [9] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:50-55 [10] 刘祖祺、张石城. 植物抗性生理学[M]. 北京:中国农业出版社,1992:372 [11] Dhindsa R S. Inhibition of protein synthesis by products of lipid peroxidation[J]. Phytochemistry,1982,21(2):309-313 [12] 刘家尧,刘新. 植物生理学实验教程[M]. 北京:高等教育出版社,2010:77-78 [13] 汤绍虎,罗充. 植物生理学实验教程[M]. 重庆:西南师范大学出版社,2012:153-214 [14] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:195-197 [15] 李合生. 植物生理生化实验原理和测定技术[M]. 北京:高等教育出版社,2003:164-167 [16] 刘俊,吉晓佳,刘友良. 检测植物组织中多胺含量的高效液相色谱法[J]. 植物生理学报,2002,38(6):596-598 [17] 简令成. 生物膜与植物寒害和抗寒性的关系[J]. 植物学报,1983,1(1):17-23 [18] 吴楚,王政权. 膜脂变化与植物抗寒性及H_Ⅱ相位形成的关系[J]. 湖北农学院学报,2000,20(1):84-89 [19] Guo Z,Ou W,Lu S,et al. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity[J]. Plant Physiology & Biochemistry,2006,44(11-12):828-836 [20] Chen J,Guo Z,Fang J,et al. Physiological Responses of a Centipedegrass Mutant to Chilling Stress[J]. Agronomy Journal,2013,105(6):1814-1820 [21] 刘明稀,卢少云,郭振飞. 假俭草耐寒变异体的筛选及其生理鉴定[J]. 草地学报,2011,19(4):652-656 [22] Piqueras A,Hernández J A,Olmos E,et al. Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress[J]. Plant Cell Tissue & Organ Culture,1996,45(1):53-60 [23] 黄锦文,陈冬梅,郑红艳,等. 暖季型结缕草对低温响应的生理生态特性[J]. 中国草地学报,2009,31(1):64-69 [24] 王丹,宣继萍,朱小晨,文民操,郭海林,刘建秀. 假俭草抗寒性与体内碳水化合物、脯氨酸、可溶性蛋白含量的关系[J]. 草地学报,2010,18(6):816-822 [25] 刘南清,林绍艳,沈益新. 假俭草叶片渗透调节物质含量对冬前低温的响应及其与低温伤害的关系[J]. 草业学报,2019,28(3):122-130 [26] 吕优伟,贺佳圆,白小明,董沁,雷娅伟. 9个野生早熟禾对低温胁迫的生理响应及苗期抗寒性评价[J]. 草地学报,2014,22(2):326-333 [27] Patton A J,Cunningham S M,Volenec J J,et al. Differences in Freeze Tolerance of Zoysiagrasses:Ⅱ. Carbohydrate and Proline Accumulation[J]. Crop Science,2007(47):2170-2181 [28] Ball S,Qian Y L,Stushnoff C. Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science,2002,127(1):1002-1005 [29] Shahba M A,Qian Y L,Hughes H G,et al. Relationships of soluble carbohydrates and freeze tolerance in saltgrass[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science,2002,127(1):1002-1005 [30] Trenholm L E,Dudeck A E,Sartain J B,et al. Bermudagrass growth,total nonstructural carbohyhrate concentration,and quality as influenced by N and K[J]. Crop Science,1998(38):168-174 [31] Cuevas J C,López-Cobollo R,Alcázar R,Zarza X,Koncz C,Altabella T,Salinas J,Tiburcio A F,Ferrando A. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature[J]. Plant Physiology,2008,148(2):1094-1105 [32] Wi S J,Kim W T,Park K Y. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants[J]. Plant Cell Reports,2006,25(10):1111-1121 [33] Kasukabe Y,He L,Nada K,et al. Overexpression of Spermidine Synthase Enhances Tolerance to Multiple Environmental Stresses and Up-Regulates the Expression of Various Stress-Regulated Genes in Transgenic Arabidopsis thaliana[J]. Plant & Cell Physiology,2004,45(6):712 [34] 罗健豪. 过表达CdSAMDC提高假俭草抗寒性[D]. 华南农业大学,2016:72-75 [35] Chen M,Chen J,Fang J,Guo Z,Lu S. Down-regulation of S-adenosylmethionine decarboxylase genes results in reduced plant length,pollen viability,and abiotic stress tolerance[J]. Plant Cell,Tissue and Organ Culture,2014,116(3):311-322 [36] Yamaguchi K,Takahashi Y,Berberich T,et al. The polyamine spermine protects against high salt stress in Arabidopsis thaliana[J]. Febs Letters,2006,580(30):6783-6788 [37] Racz M,Kovacs D,Lasztity,et al. Effects of short-term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance[J]. Journal Plant Physiol,1996(148):368-373 [38] Lee T M,Lur,H S,Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sati6a L.) seedlings. Ⅱ. Modulation of free polyamine levels[J]. Plant Science,1997(126):1-10 [39] Anjum N,Bano A,Sanaullah M. Effects of Spermine and Abscisic acid on growth and Biochemical contents of Vigna mungo L. under high temperature and salt-stress[J]. Pakistan Journal of Biological Sciences,1999,2(4):1375-1377 [40] Chattopadhayay M K,Tiwari B S,Chattopadhyay G,et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants[J]. Physiologia Plantarum,2002,116(2):192-199 [41] 贾永霞,郭世荣,王素平,等. 根际低氧胁迫下外源亚精胺对黄瓜幼苗多胺和抗氧化系统的影响[J]. 园艺学报,2007,34(6):1547-1550 [42] 王素平,贾永霞,郭世荣,等. 多胺对盐胁迫下黄瓜(Cucumis sativus L.)幼苗体内K+、Na+和Cl-含量及器官间分布的影响[J]. 生态学报,2007,27(3):1122-1129 [43] Saleethong P,Sanitchon J,Kongngern K,et al. Effects of exogenous spermidine (Spd) on yield,yield-related parameters and mineral composition of rice (Oryza sativa L. ssp. indica) grains under salt stress[J]. Australian Journal of Crop Science,2013,7(9):1293-1301 [44] Roychoudhury A,Basu S,Sengupta D N. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance[J]. Journal of Plant Physiology,2011,168(4):317 [45] Saleethong P,Sanitchon J,Kongngern K,et al. Pretreatment with Spermidine Reverses Inhibitory Effects of Salt Stress in Two Rice (Oryza sativa L.) Cultivars Differing in Salinity Tolerance[J]. Asian Journal of Plant Sciences,2011,10(4):245-254 [46] Verma S,Mishra S N. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system[J]. Journal of Plant Physiology,2005,162(6):669-677 [47] Liu N,Shen Y,Huang B. Osmoregulants Involved in Osmotic Adjustment for Differential Drought Tolerance in Different Bentgrass Genotypes[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science,2015,140(6):605-613 [48] Liu N,Lin S,Huang B. Differential Effects of Glycine Betaine and Spermidine on Osmotic Adjustment and Antioxidant Defense Contributing to Improved Drought Tolerance in Creeping Bentgrass[J]. Journal of the American Society for Horticultural Science American Society for Horticultural Science,2017,142(1):20-26 [49] Nayyar H,Chander S. Protective Effects of Polyamines against Oxidative Stress Induced by Water and Cold Stress in Chickpea[J]. Journal of Agronomy & Crop Science,2004,190(5):355-365 [50] Chen J,Fang J,Guo Z,et al. Polyamines and antioxidant defense system are associated with cold tolerance in centipedegrass[J]. Frontiers of Agricultural Science and Engineering,2018,5(1):129-138 |