[1] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882 [2] 罗中, 崔乃然. 新疆豆科牧草植物种质资源[J]. 八一农学院学报, 1984(1): 38-49 [3] 沈忱. 不同苜蓿品种种子萌发及幼苗生长对温度和干旱的响应[D]. 长春: 吉林农业大学, 2018: 2 [4] 罗绍薇, 吴佳海, 钟理, 等. 温度对水城高羊茅种子萌发特性的影响[J]. 农业与技术, 2020, 40(2): 14-15 [5] 宫江平, 荆卫民, 张倩等. 温度对大叶补血草种子萌发特性的影响[J]. 北方园艺, 2020(2): 119-124 [6] 万茜, 刘伟, 陈禅友. 温度胁迫对豇豆种子萌发生理指标的影响[J]. 种子, 2007(10): 32-35 [7] 肖梦颖. 温度对高粱种子萌发的影响及其生理机制[D]. 沈阳: 沈阳农业大学, 2019: 38 [8] 敬雪敏, 刘香萍. 盐胁迫与低温胁迫对紫花苜蓿种子发芽的协同影响[J]. 黑龙江畜牧兽医, 2018, 12: 169-171, 250 [9] 菌吉祥, 李晓宇, 张兆军, 等. 温度与盐碱胁迫交互作用对羊草种子萌发与幼苗生长的影响[J]. 草地学报, 2011, 19(6): 1005-1009 [10] 伊风艳, 孙海莲, 哗蒂罕, 等. 温度和干早胁迫对乌拉特肋脉野豌豆种子萌发的影响[J]. 内蒙古农业大学学报(自然科版), 2019, 40(5): 43-49 [11] 张通颖, 盛军, 王柔懿, 等. 盐碱胁迫和温度对猪毛蒿种子萌发的影响[J]. 草地学报, 2019, 27(3): 581-588 [12] 侯龙鱼, 任立飞, 任丽昀. 紫花苜蓿低温萌发特征及指标筛选[J]. 西南民族大学学报(自然科学版), 2019, 45(6): 564-569 [13] 杨姝, 杜桂娟, 马凤江. 27份紫花苜蓿种质资源萌发期抗旱性评价[J]. 辽宁农业科学, 2019(3): 7-12 [14] 李雪, 沙栢平, 高雪芹, 等. 不同紫花苜蓿种质材料萌发期耐盐性鉴定与综合评价[J]. 草地学报, 2020, 28(2): 437-445 [15] 李诗琴, 于洪柱, 刘艺杉, 等. 混合盐碱胁迫对16个紫花苜蓿品种萌发期的影响[J]. 江苏农业科学, 2020, 48(3): 194-198 [16] 王爱国, 关云凌, 刘淑娴, 等. 水稻萌发过程的呼吸途径与器官生长关系[J]. 植物生理通讯, 1981(1): 31-34 [17] 宋松泉, 陈玲, 傅家瑞. 不同温度对甜菜种子吸胀过程中线粒体CCO和MDH活性的影响[J]. 种子, 1999(4): 6-8 [18] BURGUILLO P D L F, GREGORIO N. Appearance of an Alternate Pathway Cyanide-Resistant During Germination of Seeds of Cicer Arietinum[J]. Plant Physiology, 1977, 60(4): 524-527 [19] 欧阳光察, 薛应龙. 棉花种子萌发过程中抗氰呼吸的变化及乙烯的诱导作用[J]. 植物生理学通讯, 1986(3): 32-34 [20] LEOPOLD A C, MUSGRAVE M E. Respiratory Changes with Chilling Injury of Soybeans[J]. Plant Physiology, 1979, 64(5): 702-705 [21] 申玉华, 王嘉慧, 亢俊桦, 等. 酸碱胁迫下紫花苜蓿种子萌发期的抗逆性研究[J]. 种子, 2016, 35(9): 68-72 [22] 聂莹莹, 徐丽君, 辛晓平, 等. 赤霉素浓度对苜蓿种子萌发的影响[J]. 畜牧与饲料科学, 2020, 41(6): 72-77 [23] YOSHIDA K, NOGUCHI T K. Distinct Roles of the Cytochrome Pathway and Alternative Oxidase in Leaf Photosynthesis[J]. Plant & Cell Physiology, 2006, 47(1): 22-31 [24] DINAKAR C, ABHAYPRATAP V, YEARLA S R, et al. Importance of ROS and Antioxidant System During the Beneficial Interactions of Mitochondrial Metabolism with Photosynthetic Carbon Assimilation[J]. Planta, 2010, 231(2): 461-474 [25] 尚金程, 王铭凡, 戴思文, 等. PEG-6000模拟干旱胁迫对三种苜蓿种子萌发和幼苗生长的影响[J]. 黑龙江农业科学, 2021 (7): 92-96 [26] 张娜, 罗于洋, 马迎梅, 等. 盐胁迫对藜麦种子萌发的影响研究[EB/OL]. https: kns.cnki.net/kcms/detail/45.1134.Q.20210526.1727.008.html, 2021-05-27/2021-06-06 [27] 张彦, 窦明, 邹磊, 等. 不同微塑料赋存环境对小麦萌发与幼苗生长影响研究[J]. 中国环境科学, 2021, 41(8): 3867-3877 [28] 徐恒恒, 黎妮, 刘树君, 等. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(7): 1141-1156 [29] ATKIN O K, TJOELKER M G. Thermal Acclimation and the Dynamic Response of Plant Respiration to Temperature[J]. Trends in Plant Science, 2003, 8(7): 343-351 [30] VANLERBERGHE, GREG C. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants[J]. International Journal of Molecular Sciences, 2013, 14(4): 6805-6847 [31] MOLLER, I M, BERCZI A, LAMBERS H. Measurement of the Activity and Capacity of the Alternative Pathway in Intact Plant Tissues: Identification of Problems and Possible Solutions[J]. Physiologia Plantarum, 1988, 72(3): 642-649 [32] 李星星, 严青青, 王燕提, 等. 抗寒种衣剂对低温下棉花幼苗呼吸等生理代谢的影响[J]. 新疆农业大学学报, 2018, 41(1): 1-10 [33] 余璐璐, 徐飞. 交替氧化酶在番茄种子萌发中的作用研究[J]. 武汉生物工程学院报, 2014, 10(2): 117-121 [34] 吕朝燕, 黄露, 涂安敏, 等. 温度对5种豆科牧草种子萌发特性的影响[J]. 黑龙江畜牧兽医, 2019(11): 109-114 [35] ESASHI Y, ISHIHARA N, SAIJOH K, et al. A Bimodal Germination Response to Temperature in Cocklebur Seeds. I. Cyanide-Sensitive and Cyanide-Resistant Respirations[J]. Plant, Cell and Environment, 1982, 6(1): 47-54 [36] 陈满盈, 陆帼一. 种子萌动过程ATP含量的变化及其与种子活力的关系[J]. 种子, 1991, 6(12): 39-40 [37] MIZUNO N, SUGIE A, KOBAYASHI F, et al. Mitochondrial Alternative Pathway is Associated with Development of Freezing Tolerance in Common Wheat[J]. Journal of Plant Physiology, 2008, 165(4): 462-467 [38] JIA W, NIRUSAN R, SASAN A, et al. Impact of Mitochondrial Alternative Oxidase Expression on the Response of Nicotiana Tabacum to Cold Temperature[J]. Physiologia Plantarum, 2011(142): 339-351 [39] TAYLOR D K, RANK D R, KEISER D R, et al. Modelling Temperature Effects on Growth-Respiration Relations of Maize[J]. Plant Cell & Environment, 2010, 21(11): 1143-1151 [40] MATHUR S, AGRAWAL D, JAJOO A. Photosynthesis: Response to High Temperature Stress[J]. Journal of Photochemistry & Photobiology B Biology, 2014(137): 116-126 [41] OLGA A, BOROVIK, OLGA I, et al. Mitochondrial Alternative Cyanide-Resistant Oxidase is Involved in an Increase of Heat Stress Tolerance in Spring Wheat[J]. Journal of Plant Physiology, 2018(231): 310-317 [42] MOLLER I M. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001(52): 561-591 [43] KEISUK Y, ICHIRO T. Up-regulation of Mitochondrial Alternative Oxidase Concomitant with Chloroplast Over-reduction by Excess Light[J]. Plant & Cell Physiology, 2007(4): 606-614 [44] NUNESNESI A, ARAUJO W L, OBATA T, et al. Regulation of the Mitochondrial Tricarboxylic Acid Cycle[J]. Current Opinion in Plant Biology, 2013, 16(3): 335-343 |