[1] Intergovernmental Panel on Climate Change. Climate Change 2013-The Physical Science Basis [EB/OL]. https://doi.org/10.1017/CBO9781107415324,2014-06/2021-06-28 [2] 任国玉,柳艳菊,孙秀宝,等. 中国大陆降水时空变异规律——Ⅲ.趋势变化原因[J]. 水科学进展,2016,27(3):327-348 [3] NIELSEN U N,BALL B A. Impacts of Altered Precipitation Regimes on Soil Communities and Biogeochemistry in Arid and Semi-arid Ecosystems[J]. Global Change Biology,2015,21(4):1407-1421 [4] 刘海威. 黄土丘陵区草地群落生物学及生态化学计量学特征对降水改变的响应分析评价[D]. 杨凌:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2018:10-43 [5] ZENG Q C,LI X,DONG Y H,et al. Soil and Plant Components Ecological Stoichiometry in Four Steppe Communities in the Loess Plateau of China[J]. Catena,2016,147:481-488 [6] 聂明鹤,沈艳,陆颖,等. 宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征[J]. 草地学报,2021,29(1):131-140 [7] REN C J,ZHAO F Z,SHI Z,et al. Differential Responses of Soil Microbial Biomass and Carbon-Degrading Enzyme Activities to Altered Precipitation[J]. Soil Biology and Biochemistry,2017,115:1-10 [8] 苏卓侠,苏冰倩,上官周平. 黄土高原刺槐叶片-土壤生态化学计量参数对降雨量的响应特征[J]. 生态学报,2020,40(19):7000-7008 [9] 朱湾湾,许艺馨,王攀,等. 降水量及N添加对荒漠草原植物和土壤微生物C∶N∶P生态化学计量特征的影响[J]. 西北植物学报,2020,40(4):676-687 [10] 罗叙,王誉陶,张娟,等. 黄土高原典型草原优势种植物及其根际土壤化学计量对降雨变化的响应[J].生态学报,2022,42(3):1-13 [11] 黄菊莹,余海龙,刘吉利,等. 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响[J]. 生态学报,2018,38(15):5362-5373 [12] ZHANG H,WU H,YU Q,et al.Sampling Date,Leaf Age and Root Size:Implications for the Study of Plant C:N:P Stoichiometry[J]. Plos One,2013,8(4):1-8 [13] 高江平,赵锐锋,张丽华,等. 降雨变化对荒漠草原植物群落多样性与土壤C∶N∶P生态化学计量特征的影响[J]. 环境科学,2021,42(2):977-987 [14] NA X F,YU H L,WANG P,et al. Vegetation Biomass and Soil Moisture Coregulate Bacterial Community Succession Under Altered Precipitation Regimes in a Desert Steppe in Northwestern China[J]. Soil Biology and Biochemistry,2019,136:107520 [15] 李建平,谢应忠. 封育对黄土高原天然草地深层土壤碳、氮储量的影响[J]. 草业科学,2016,33(10):1981-1988 [16] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000:268 [17] TANG Z,XU W,ZHOU G. Patterns of Plant Carbon,Nitrogen,and Phosphorus Concentration in Relation to Productivity in China’s Terrestrial Ecosystems[J]. PNAS,2018,115(16):4033-4038 [18] 郑淑霞,上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展,2006,16(8):965-973 [19] 刘冬,张剑,包雅兰,等. 水分对敦煌阳关湿地芦苇叶片与土壤C、N、P生态化学计量特征的影响[J]. 生态学报,2020,40(11):3804-3812 [20] 张萍,章广琦,赵一娉,等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报,2018,38(14):5087-5098 [21] 岳喜元,左小安,庾强,等. 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响[J].中国沙漠,2013,8(5):1009-1016 [22] 丁小慧,罗淑政,刘金巍,等. 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化[J]. 生态学报,2012,32(11):3467-3476 [23] 姜沛沛,曹扬,陈云明. 陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征[J]. 应用生态学报,2016,27(2):365-372 [24] 曾昭霞,王克林,刘孝利,等. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报,2015,39(7):682-693 [25] KOERSELMAN W,MEULEMAN A F M. The Vegetation N:P Ratio:a New Tool to Detect the Nature of Nutrient Limitation[J]. Journal of Applied Ecology,1996,33(6):1441-1450 [26] HAN W X,FANG J Y,GUO D L,et al. Leaf Nitrogen and Phosphorus Stoichiometry Across 753 Terrestrial Plant Species in China[J]. New Phytologist,2005,168(2):377-385 [27] 温晨,杨智姣,杨磊,等. 半干旱黄土小流域不同植被类型植物与土壤生态化学计量特征[J]. 生态学报,2021,41(5):1824-1834 [28] 康扬眉. 降水量对荒漠草原凋落物碳氮磷生态化学计量特征的影响[D]. 银川:宁夏大学,2019:30-37 [29] 向元彬,周世兴,肖永翔,等. 模拟氮沉降和降雨对华西雨屏区常绿阔叶林凋落物分解的影响[J]. 生态学报,2017,37(2):455-463 [30] 潘复静,张伟,王克林,等. 典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征[J]. 生态学报,2011,31(2):335-343 [31] 崔超.人工增雨和布氏田鼠对内蒙古草原植物凋落物分解和群落结构的影响[D]. 扬州:扬州大学,2019:11-20 [32] 李明军,喻理飞,杜明凤,等. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系[J]. 生态学报,2018,38(21):7772-7781 [33] 赵晓单,曾全超,安韶山,等. 黄土高原不同封育年限草地土壤与植物根系的生态化学计量特征[J]. 土壤学报,2016,53(6):1541-1551 [34] GÜSEWELL S. N∶P Ratios in Terrestrial Plants:Variation and Functional Significance[J]. New Phytologist,2004,164(2):243-266 [35] 陈佳瑞,王国梁,孟敏,等. 干旱胁迫对3种灌木不同器官化学计量特征的影响[J]. 应用生态学报,2021,32(1):73-81 [36] YU Q,ELSER J J,HE N,et al. Stoichiometric Homeostasis of Vascular Plants in the Inner Mongolia grassland[J]. Oecologia,2011,166:1-10 [37] 赫凤彩,张婧斌,邢鹏飞,等. 围封对晋北赖草草地土壤碳氮磷生态化学计量特征的影响及其与植被多样性的关系[J]. 草地学报,2019,27(3):644-650 [38] 罗艳,贡璐,朱美玲,等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报,2017,37(24):8326-8335 [39] 田耀武,和武宇恒,翟淑涵,等. 陶湾流域草本植物土壤及土壤微生物量碳氮磷生态化学计量特征[J]. 草地学报,2019,27(6):1643-1650 [40] 王誉陶,李建平,井乐,等. 模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响[J]. 生态学报,2020,40(5):1517-1531 [41] HUANG J Y,YU H L,LI L H,et al. Water Supply Changes N and P Conservation in a Perennial Grass Leymus chinensis[J]. Journal of Integrative Plant Biology, 2009,51(11):1050-1056 [42] YU Z P,WANG M H,HUANG Z Q,et al. Temporal Changes in Soil C-N-P Stoichiometry Over the Past 60 Years Across Subtropical China[J]. Global Change Biology,2018,24(3):1308-1320 [43] MÜller M,OELMANN Y,SCHICKHOFF U,et al. Himalayan Treeline Soil and Foliar C∶N∶P Stoichiometry Indicate Nutrient Shortage with Elevation[J]. Geoderma,2017,291:21-32 [44] SUN J N,GAO P,LI C,et al. Ecological Stoichiometry Characteristics of the Leaf-Litter-Soil Continuum of Quercus Acutissima Carr. and Pinus Densiflora Sieb. In Northern China[J]. Environmental Earth Sciences,2019,78(1):20 [45] LIU R S,WANG D M. C∶N∶P Stoichiometric Characteristics and Seasonal Dynamics of Leaf-Root-Litter-Soil in Plantations on the Loess Plateau[J]. Ecological Indicators,2021,127 [46] ROBBINS C J,MATTHAEUS W J,COOK S C. Leaf Litter Identity Alters the Timing of Lotic Nutrient Dynamics[J]. Freshwater Biology,2019,64(12):2247-2259 [47] FRANKLIN O,ÅGREN G I. Leaf Senescence and Resorption As Mechanisms of Maximizing Photosynthetic Production During Canopy Development at N Limitation[J]. Functional Ecology,2002,16(6):727-733 [48] ZHANG J,ZHAO N,LIU C,et al. C∶N∶P Stoichiometry in China’s Forests:From Organs to Ecosystems[J]. Functional Ecology,2018,32(1):50-60 |