[1] GEDDES B A,KEARSLEY J V S,HUANG J,et al. Minimal gene set from Sinorhizobium (Ensifer) meliloti pSymA required for efficient symbiosis with Medicago[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(2):e2018015118 [2] ARAUJO J,URBANO B,GONZALEZ-ANDRES F. Comparative environmental life cycle and agronomic performance assessments of nitrogen fixing rhizobia and mineral nitrogen fertiliser applications for pulses in the Caribbean region[J]. Journal of Cleaner Production,2020,267:e122065 [3] SESSITSCH A,HOWIESON JG,PERRET X,et al. Advances in rhizobium research[J]. Critical Reviews in plant Sciences,2002,21(4):323-378 [4] KELLER K R,LAU J A. When mutualisms matter:Rhizobia effects on plant communities depend on host plant population and soil nitrogen availability[J]. Journal of Ecology,2018,106(3):1046-1056 [5] JI Z J,YAN H,CUI Q G,et al. Competition between rhizobia under different environmental conditions affects the nodulation of a legume[J]. Systematic and Applied Microbiology,2017,40(2):114-119 [6] HEATH K D,PODOWSKI J C,HENIFF S,et al. Light availability and rhizobium variation interactively mediate the outcomes of legume-rhizobium symbiosis[J]. American Journal of Botany,2020,107(2):229-238 [7] WIELBO J,KIDAJ D,KOPER P,et al. The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum[J]. Central European Journal of Biology,2012,7(1):13-24 [8] BOGINO P,BANCHIO E,RINAUDI L,et al. Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina[J]. Annals of Applied Biology,2006(148):207-212 [9] DEAKER R,ROUGHLEY R J,KENNEDY I R. Legume seed inoculation technology-a review[J]. Soil Biology & Biochemistry,2004(36):1275-1288 [10] IRISARRI P,CARDOZO G,TARTAGLIA C,et al. Selection of competitive and efficient rhizobia strains for white clover[J]. Frontiers in Microbiology,2019(10):1-11 [11] DE SOUZA B,EDUARDO J,FERREIRA B. Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla[J]. Agriculture,Ecosystems and Environment,2017(237):250-257 [12] KORIR H,MUNGAI N W,THUITA M,et al. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil[J]. Frontiers in Plant Science,2017(8):e141 [13] 于跃,刘静,邓波,等.外源根系分泌物对紫花苜蓿根瘤菌共生体系的影响[J].草地学报,2020,28(1):88-94 [14] WEAVER W R,FREDERICK L R. Effect of inoculum rate on competitive nodulation of Glycine max L. Merrill. I. Greenhouse Studies[J]. Agronomy Journal,1974,66(2):233-236 [15] MCDERMOTT T R,GRAHAM P H. Bradyrhizobium japonicum inoculant mobility,nodule occupancy,and acetylene reduction in the soybean root system[J]. Applied and Environmental Microbiology,1989,55(10):2493-2498 [16] BOGINO P,BANCHIO E,BONFIGLIO C,et al. Competitiveness of a Bradyrhizobium sp strain in soils containing indigenous rhizobia[J]. Current Microbiology,2008,56(1):66-72 [17] BOGINO P,NIEVAS F,BANCHIO E,et al. Increased competitiveness and efficiency of biological nitrogen fixation in peanut via in-furrow inoculation of rhizobia[J]. European Journal of Soil Biology,2011,47(3):188-193 [18] VICARIO J C,DARDANELLI M S,GIORDANO W. Swimming and swarming motility properties of peanut-nodulating rhizobia[J]. FEMS Microbiology Letters,2015,362(2):1-6 [19] MI G H,CHEN F J,WU Q P,et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems[J].Science China-Life Science,2010,53(12):1369-1373 [20] 陈文新,汪恩涛. 中国根瘤菌[M]. 北京:科学出版社,2011:477-490 [21] 李佳欢. 接种方式及数量对苜蓿根瘤菌定殖与结瘤的影响[D].北京:中国农业大学,2016:22 [22] ROPER W R,DUCKWORTH O W,GROSSMAN J M,et al. Rhizobium leguminosarum strain combination effects on nodulation and biological nitrogen fixation with Vicia villosa[J]. Applied Soil Ecology,2020(156):e103703 [23] 韩可,孙彦,张昆,等.接种不同根瘤菌对紫花苜蓿生产力的影响[J].草地学报,2018,26(3):639-644 [24] BHUVANESWARI T V,BHAGWAT A A,BAUER W D. Transient susceptibility of root cells in four common legumes to nodulation by rhizobia[J]. Plant Physiology,1981,68(5):1144-1149 [25] JONES K M,KOBAYASHI H,DAVIES B W,et al. How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model[J]. Nature Reviews Microbiology,2007,5(8):619-633 [26] ZHENG H,MAO Y,TENG J,et al. Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction:study of an flgE mutant[J]. Current Microbiology,2015,70(2):219-227 [27] COVELLI J M,ALTHABEGOITI M J,LOPEZ M F,et al. Swarming motility in Bradyrhizobium japonicum[J]. Research in Microbiology,2013,164(2):136-144 [28] MADSEN E L,ALEXANDER M. Transport of rhizobium and pseudomonas through Soil1[J]. Soil Science Society America Journal,1982,46(3):557-560 [29] DENTON M D,PHILLIPS L A,PEOPLES M B,et al. Legume inoculant application methods:effects on nodulation patterns,nitrogen fixation,crop growth and yield in narrow-leaf lupin and faba bean[J]. Plant and Soil,2017,419(1-2):25-39 [30] JIANG J,MOORE J A M,PRIYADARSHI A,et al. Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand[J]. Ecology,2017,98(1):187-197 [31] SCHUMPP O,DEAKIN W J. How inefficient rhizobia prolong their existence within nodules[J]. Trends in Plant Science,2010,15(4):189-195 |