[1] 呼天明, 苗彦军. 西藏野生优质牧草繁育技术研究述评[J]. 草学, 2020(2):75-79 [2] BATISTI O, KUDLA J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta, 2012, 820(8):1283-1293 [3] ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016(167):313-324 [4] KIM B, WAADT R, CHEONG Y, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. The Plant Journal, 2007, 52(3):473-484 [5] YANG Y, HANG C, TANG R, et al. Calcineurin B-Like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis[J]. International Journal of Molecular Sciences, 2019, 20(10):2421 [6] EGEA I, PINEDA B, ORTIZ A A, et al. The SlCBL10 calcineurin B-Like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis[J]. Plant physiology, 2018, 176(2):1676-1693 [7] KANG H, NAM K. Reverse function of ROS-induced CBL10 during salt and drought stress responses[J]. Plant Science, 2016(243):49-55 [8] FU J J, MIAO Y J, SHAO L H, et al. De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress[J]. BMC Genomics, 2016, 17(1):870 [9] 姜惠娜, 敬松, 李晗玉, 等. 西藏野生垂穗披碱草EnPLA1基因克隆与表达分析[J]. 草地学报, 2021, 29(10):2141-2148 [10] 其美拉姆, 普布卓玛, 崔彤彤, 等. 外源钙对低温胁迫下西藏野生垂穗披碱草生理及相关基因表达的影响[J]. 草地学报, 2021, 29(5):919-928 [11] KENNETH J. L, THOMAS D. S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408 [12] SONG L, DING W, ZHAO M, et al. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed[J]. Plant Science, 2006, 171(4):449-458 [13] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000:279-298 [14] ORMANCEY M, THULEAU P, MAZARS C, et al. CDPKs and 14-3-3 Proteins:emerging duo in signaling[J]. Trends in Plant Science, 2017, 22(3):263-272 [15] TANG R, WANG C, LI K, et al. The CBL-CIPK calcium signaling network:unified paradigm from 20 years of discoveries[J]. Trends in Plant Science, 2020, 25(6):604-617 [16] SANYAL S. Plant stress responses mediated by CBL-CIPK phosphorylation network Enzymes[J]. 2016(40):31-64 [17] WEINL S, KUDLA J. The CBL-CIPK Ca2+-Decoding Signaling Network:Function and Perspectives[J]. New Phytologist, 2009, 184(3):517-528 [18] OLIVER B, RAINER W, LEONIE S, et al. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores[J]. The Plant Journal, 2010, 61(2):211-222 [19] PLASENCIA F A, ESTEADA Y, FLORES F B, et al. The Ca2+ sensor calcineurin B-Like protein 10 in plants:Emerging new crucial roles for plant abiotic stress tolerance[J]. Frontiers in Plant Science, 2021(11):599944 [20] 孙玉珺, 闫冬, 朱晶桓, 等. 外源油菜素内酯对低温胁迫下玉米发芽及幼苗生理特性的影响[J]. 华北农学报, 2019, (3):119-128 [21] 陈汇林, 侯伟. 低温对豇豆幼苗抗氧化酶系统的影响[J]. 气象与环境科学, 2018, 41(3):47-50 [22] CARVALHO M H C D. Drought stress and reactive oxygen species[J]. Plant Signal Behavior, 2008, 3(3):156-165 [23] FU J J, SUN P Y, LUO Y L, et al. Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis[J]. Environmental and Experimental Botany, 2019, 167(11):103831 [24] KAMEL A T, SAHAR A. Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions[J]. Scientia Horticulturae, 2011, 130(4):862-868 [25] 郭燕, 张树航, 李颖, 等. 板栗抗寒性相关指标筛选与评价方法建立[J]. 西北农林科技大学学报, 2018, 46(10):40-48 [26] 项洪涛, 齐德强, 李琬, 等. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响[J]. 草业学报, 2019, 28(4):81-94 [27] MAROK M A, TARRAGO L, KSAS B, et al. A drought-sensitive barleyvariety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety[J]. Journal of Plant Physiology, 2013, 170(7):633-645 [28] WANG W B, KIM Y H, LEE H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J]. Plant Physiology and Biochemistry, 2009, 47(7):570-577 [29] KAUL S, SHARMA S, MEHTA I. Free radical scavenging potential of L-proline:evidence from in vitro assays[J]. Amino Acids, 2008, 34(2):315-320 [30] 韩忠明, 胥苗苗, 王云贺, 等. 干旱胁迫对防风叶片保护酶活性、渗透调节物质含量及药材品质的影响[J]. 华南农业大学学报, 2016, 37(6):91-97 [31] CHEN X X, DING Y L, YANG Y Q, et al. Protein kinases in plant responses to drought, salt, and cold stress[J]. Journal of Integrative Plant Biology, 2021, 63(1):53-78 [32] LIU Y, XU C J, ZHU Y F, et al.The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice[J]. Journal of Integrative Plant Biology, 2018, 60(2):173-188 [33] ZOU J J, LI X D, RATNASEKERA D, et al. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-Mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress[J]. Plant Cell, 2015, 27(5):1445-1460 |