[1] BARDGETT R D,VAN DER PUTTEN W H. Belowground Biodiversity and Ecosystem Functioning[J]. Nature,2014,515(7528):505-511 [2] PELLEGRINI M,PAGNANI G,BERNARDI M,et al. Cell-Free Supernatants of Plant Growth-Promoting Bacteria:A Review of Their Use As Biostimulant and Microbial Biocontrol Agents in Sustainable Agriculture[J]. Sustainablity,2020,12(23):9917 [3] 蒋婧,宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报,2010,34(8):979-988 [4] KOHLER F,HAMELIN J,GILLET F,et al. Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing[J]. Plant and Soil,2005,278(1-2):327-340 [5] GUITIAN R,BARDGETT R D. Plant and Soil Microbial Responses to Defoliation in Temperate Semi-Natural Grassland[J]. Plant and Soil,2000,220:271-277 [6] 王震洪,段昌群,侯永平,等. 植物多样性与生态系统土壤保持功能关系及其生态学意义[J]. 植物生态学报,2006(3):392-403 [7] 周睿,宋梅玲,王玉琴,等. 不同放牧方式下防除黄帚橐吾对高寒草地植物群落的影响[J]. 草地学报,2022,30(7):1819-1828 [8] ZHANG R,WANG Z,NIU S,et al. Diversity of Plant and Soil Microbes Mediates the Response of Ecosystem Multifunctionality to Grazing Disturbance[J]. Science of The Total Environment,2021,776:145730 [9] ZHANG R,WANG Z,HAN G,et al. Grazing Induced Changes in Plant Diversity is a Critical Factor Controlling Grassland Productivity in the Desert Steppe,Northern China[J]. Agriculture,Ecosystems & Environment,2018,265:73-83 [10] RHODES A C,RUTLEDGE J,DUPONT B,et al. Targeted Grazing of an Invasive Grass Improves Outcomes for Native Plant Communities and Wildlife Habitat[J]. Rangeland Ecology & Management,2021,75(1):41-50 [11] WU J,LI M,FIEDLER S,et al. Impacts of Grazing Exclusion on Productivity Partitioning Along Regional Plant Diversity and Climatic Gradients in Tibetan Alpine Grasslands[J]. Journal of Environmental Management,2019,231:635-645 [12] LURGI M,THOMAS T,WEMHEUER B,et al. Modularity and Predicted Functions of the Global Sponge-Microbiome Network[J]. Nature Communication,2019,10(1):992 [13] FAN X,FU Y,NIE Y,et al. Keystone Taxa-Mediated Bacteriome Response Shapes the Resilience of The Paddy Ecosystem to Fungicide Triadimefon Contamination[J]. Journal of Hazardous Materials,2021,417:126061 [14] WANG Y,HONG Y,TIAN Y,et al. Changes in Bacterial Community Composition and Soil Properties Altered the Response of Soil Respiration to Rain Addition in Desert Biological Soil Crusts[J]. Geoderma,2022,409:115635 [15] XUN W,LIU Y,LI W,et al. Specialized Metabolic Functions of Keystone Taxa Sustain Soil Microbiome Stability[J]. Microbiome,2021,9(1):35 [16] WANG X,BIAN Q,JIANG Y,et al. Organic Amendments Drive Shifts in Microbial Community Structure and Keystone Taxa Which Increase C Mineralization Across Aggregate Size Classes[J]. Soil Biology and Biochemistry,2021,153:108062 [17] ZHANG Y,WU X,CHEN C,et al. Application of Thifluzamide Alters Microbial Network Structure and Affects Methane Cycle Genes in Rice-Paddy Soil[J]. Science of The Total Environment,2022,838:155769 [18] WAGG C,SCHLAEPPI K,BANERJEE S,et al. Fungal-Bacterial Diversity and Microbiome Complexity Predict Ecosystem Functioning[J]. Nature Communication,2019,10(1):4841 [19] DE VRIES F T,LIIRI M E,BJØ RNLUND L,et al. Land Use Alters the Resistance and Resilience of Soil Food Webs to Drought[J]. Nature Climate Change,2012,2(4):276-280 [20] DE VRIES F T,GRIFFITHS R I,BAILEY M,et al. Soil Bacterial Networks are Less Stable Under Drought Than Fungal Networks[J]. Nature Communication,2018,9:3033 [21] 邱丽丽,李丹丹,张佳宝,等. 基于共现网络的关键微生物对秸秆还田土壤小麦产量的影响[J]. 土壤学报,2021:1-13 [22] YANG Y,WU L,LIN Q,et al. Responses of the Functional Structure of Soil Microbial Community to Livestock Grazing in the Tibetan Alpine Grassland[J]. Global Change Biology,2013,19(2):637-648 [23] 费璇,锁才序,向双,等. 青藏东缘高寒草甸植物群落结构及功能群特征对长期季节放牧的响应[J]. 草地学报,2022,30(8):1954-1963 [24] YU L,LIU S,WANG F,et al. Effects of Agricultural Activities on Energy-Carbon-Water Nexus of the Qinghai-Tibet Plateau[J]. Journal of Cleaner Production,2022,331:129995 [25] 柴林荣,孙义,王宏,等. 牦牛放牧强度对甘南高寒草甸群落特征与牧草品质的影响[J]. 草业科学,2018,35(1):18-26 [26] 申波,马青青,程云湘,等. 不同放牧制度对土壤种子库的影响:以青藏高原东缘高寒草甸为例[J]. 草业科学,2018,35(4):791-799 [27] CHEN L,JIANG Y,LIANG C,et al. Competitive Interaction with Keystone Taxa Induced Negative Priming Under Biochar Amendments[J]. Microbiome,2019,7:77 [28] MENG L,XU C,WU F,et al. Microbial Co-Occurrence Networks Driven by Low-Abundance Microbial Taxa During Composting Dominate Lignocellulose Degradation[J]. Science of The Total Environment,2022,845:157197 [29] HUANG R,CROWTHER T W,SUI Y,et al. High Stability and Metabolic Capacity of Bacterial Community Promote the Rapid Reduction of Easily Decomposing Carbon in Soil[J]. Communications Biology,2021,4(1):1376 [30] COBAN O,DE DEYN G B,VAN DER PLOEG M. Soil Microbiota As Game-Changers in Restoration of Degraded Lands[J]. Science,2022,375(6584):abe0725 [31] HUHE,CHEN X,HOU F,et al. Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities[J]. Frontiers in Microbiology,2017,8:606 [32] 侯扶江,任继周. 甘肃马鹿冬季放牧践踏作用及其对土壤理化性质影响的评价[J]. 生态学报,2003,23(3):486-495 [33] 任强,艾鷖,胡健,等. 不同强度牦牛放牧对青藏高原高寒草地土壤和植物生物量的影响[J]. 生态学报,2021,41(17):6862-6870 [34] 邵建翔,刘育红,马辉,等. 退化高寒草地浅层土壤理化性质Meta分析[J]. 草地学报,2022,30(6):1370-1378 [35] 郑佳华,赵萌莉,王琪,等. 利用方式对大针茅草原土壤微生物群落结构及多样性的影响[J]. 生态学报,2022(12):1-11 [36] MAESTRE F T,DELGADO-BAQUERIZO M,JEFFRIES T C,et al. Increasing Aridity Reduces Soil Microbial Diversity and Abundance in Global Drylands[J]. Proceedings of the National Academy of Sciences,2015,112(51):15684-15689 [37] SOKOL N W,SLESSAREV E,MARSCHMANN G L,et al. Life and Death in the Soil Microbiome:How Ecological Processes Influence Biogeochemistry[J]. Nature Reviews Microbiology,2022,20(7):415-430 [38] 王永宏,田黎明,艾鷖,等. 短期牦牛放牧强度对川西北高原高寒草甸土壤细菌群落的影响[J]. 生态学报,2022,42(4):1549-1559 [39] 李宏,张青青,江康威,等. 山地草甸不同放牧强度对土壤细菌群落特征的影响[J]. 中国草地学报,2021,43(11):37-44 [40] VESELÁ A B,FRANC M,PELANTOVÁ H,et al. Hydrolysis of Benzonitrile Herbicides by Soil Actinobacteria and Metabolite Toxicity[J]. Biodegradation,2010,21(5):761-770 [41] HARANTOVÁ L,MUDRÁK O,KOHOUT P,et al. Development of Microbial Community During Primary Succession in Areas Degraded by Mining Activities[J]. Land Degradation & Development,2017,28(8):2574-2584 [42] SALLES,FALCAO J,MALLON,et al. Microbial Invasions:The Process,Patterns,and Mechanisms[J]. Trends in Microbiology,2015,23(11):719-729 [43] BARBERAN A,BATES S T,CASAMAYOR E O,et al. Using Network Analysis to Explore Co-Occurrence Patterns in Soil Microbial Communities[J]. The ISME Journal,2012,6(2):343-351 [44] 杜子银,蔡延江,张斌,等. 牲畜排泄物返还对草地土壤氮转化和氧化亚氮(N2O)排放的影响研究进展[J]. 生态学报,2022,42(1):45-57 [45] 吴宪,胡菏,王蕊,等. 化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J]. 土壤学报,2021,59(2):545-556 [46] XUN W,HUANG T,LI W,et al. Alteration of Soil Bacterial Interaction Networks Driven by Different Long-Term Fertilization Management Practices in the Red Soil of South China[J]. Applied Soil Ecology,2017,120:128-134 [47] 马垒,赵文慧,郭志彬,等. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响[J]. 生态学报,2019,39(11):4158-4167 [48] STEVENS R J Q U,LAUGHLIN R J. Measurement of Nitrous Oxide and Di-Nitrogen Emissions from Agricultural Soils[J]. Nutrient Cycling in Agroecosystems,1998,52(2-3):131-139 [49] LIU X,YANG T,SHI Y,et al. Strong Partitioning of Soil Bacterial Community Composition and Co-Occurrence Networks Along a Small-Scale Elevational Gradient on Zijin Mountain[J]. Soil Ecology Letters,2021,3(4):290-302 [50] 曲艳,宋倩,杨合龙,等. 呼伦贝尔草原不同利用方式对土壤微生物群落结构的影响[J]. 草地学报,2021,29(8):1621-1627 |