[1] SARKAR T T,MAHANTA C. Gain tuned sliding mode control based maximum power point tracking for solar PV systems[J]. IFAC-Papers on Line,2022,55(1):417-422 [2] 王青,江华,李嘉彤,等.中国及全球光伏产业发展形势分析[J].太阳能,2022(11):5-10 [3] 曲明.基于太阳能发电潜力的青藏高原地区节碳减排评估[D].天津:天津城建大学,2022:1-6 [4] 郑度,赵东升.青藏高原的自然环境特征[J].科技导报,2017,35(6):13-22 [5] 唐文君,徐姗,周旭,等.青藏高原新能源助力中国"碳中和"战略(英文)[J]. Science Bulletin,2023,68(1):39-42 [6] 国家新能源消费监测预警中心,国家新能源电力消费评估分析报告[R].国家能源局,2020 [7] 周华坤,周立,赵新全,等.青藏高原高寒草甸生态系统稳定性研究[J].科学通报,2006(1):63-69 [8] 刁周玮,石磊.中国光伏电池组件的生命周期评价[J].环境科学研究,2011,24(5):571-579 [9] 刘永杰,杨琴.青藏高原退化草地修复研究进展及展望[J].中国草地学报,2023,45(10):131-143 [10] LANGE M,AZIZI-RAD M,DITTMANN G,et al. Stability and carbon uptake of the soil microbial community is determined by differences between rhizosphere and bulk soil[J]. Soil Biology and Biochemistry,2024,189:109280 [11] 丁成翔,刘禹.光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J].草地学报,2021,29(5):1061-1069 [12] 暴家兵.小尺度下光环境不均一性对微生物群落特征的影响[D].太原:山西大学,2020:3-7 [13] BAI Z Y,JIA A M,BAl Z J,et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology,2022,13:1065899 [14] 王诗雯.光伏板阵列对松嫩草地土壤微生物群落组成与多样性的影响[D].长春:东北师范大学,2024:56-57 [15] 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000: [16] SHI Y J,WANG J F,AO Y N,et al. Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regimes and co-occurring wet N deposition in a semi-arid grassland[J]. Global Change Biology,2021,27(19):4894-4908 [17] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996-998 [18] MAIDAK B L,COLE J R,LILBURN T G,et al. The RDP (ribosomal database project) continues[J]. Nucleic Acids Research,2000,28(1):173-174 [19] BOLYEN E,RIDEOUT J R,DILLON M R,et al. Reproducible,interactive,scalable and extensible microbiome data science using QIIME 2[J]. Nature biotechnology,2019,37(8):852-857 [20] LOUCA S,PARFREY L W,DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science,2016,353(6305):1272-1277 [21] 章妮,陈克龙,祁闻.高寒草甸鼠兔活动对土壤微生物群落特征的影响[J].生态科学,2023,42(3):83-91 [22] 朱天琦,谷强,彭泽晨,等.土壤细菌结构和功能对团聚体碳、氮储量的响应:以高寒草甸、温性草原、荒漠为例[J].中国草地学报,2023,45(6):92-102 [23] 杨鹏年,李希来,李成一,等.黄河源区斑块化退化高寒草甸土壤微生物多样性对长期封育的响应[J].环境科学,2023,44(4):2293-2303 [24] BREWER T E, HANDLEY K M,CARINI P,et al. Genome reduction in an abundant and ubiquitous soil bacterium'Candidatus Udaeobacter copiosus'[J]. Nature Microbiology,2016,1(2):16198 [25] 程萌,马俊杰,刘丹,等. CO2封存泄漏的稻田土壤细菌监测指标筛选研究[J].环境科学学报,2021,41(6):2390-2401 [26] 郭娜,孙丽娜,孟越,等.辽河保护区河岸带土壤微生物群落结构特征[J].沈阳大学学报(自然科学版),2016,28(6):457-463 [27] 刘晶晶,李金花,季燕,等.辉河湿地河岸带土壤微生物群落组成与土壤理化关系[J].草地学报,2023,31(5):1393-1405 [28] DU Y G,KE X,DAI L C,et al. Moderate grazing increased alpine meadow soils bacterial abundance and diversity index on the Tibetan Plateau[J]. Ecology and Evolution,2020,10(16):8681-8687 [29] LI J J,YANG C,ZHOU H K,et al. Responses of plant diversity and soil microorganism diversity to water and nitrogen additions in the Qinghai-Tibetan Plateau[J]. Global Ecology and Conservation,2020,22:e1003 [30] 王安林,马瑞,马彦军,等.民勤荒漠绿洲过渡带人工梭梭林土壤细菌群落结构及功能预测[J].环境科学,2024,45(1):508-519 [31] YE Z C,WANG J, LI J,et al. Ecoenzymatic stoichiometry reflects the regulation of microbial carbon and nitrogen limitation on soil nitrogen cycling potential in arid agriculture ecosystems[J]. Journal of Soils and Sediments,2022,22(4):1228-1241 [32] YUAN Y L,SI G C,WANG J,et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau[J]. FEMS Microbiology Ecology,2014,87(1):121-132 [33] 安芳娇,牛子儒,刘婷娜,等.西北荒漠绿洲过渡带土壤细菌结构和氮代谢对梭梭恢复的响应[J].生态学报,2023,43(20):8454-8464 [34] PROSSER J I,HEAD I M,STEIN L Y. The family Nitrosomonadaceae[M]. Berlin/Heidelberg:Springer,2014:901-918 [35] 李林山,王梓瑜,白慧慧,等.毛乌素沙地4种不同植物根际土壤细菌群落结构和多样性特征[J].干旱区资源与环境,2024,38(2):142-149 [36] 林建城,王丽英,林娟娟.中国鲎几丁质酶的酶学性质研究[J].水产科学,2019,38(5):702-709 [37] JING Y Y,BAI M M,XU C L,et al. Advancing the spring rest-grazing time until the critical period when soil thaws promotes soil recovery and bacterial diversity in alpine meadows[J]. Ecological Indicators,2022,139:108929 [38] 叶国辉.高原鼢鼠(Eospalax baileyi)干扰对高寒草甸植物和土壤生物物种及功能多样性的影响[D].兰州:甘肃农业大学,2023:63-67 [39] HAEI M,ROUSK J,ILSTEDT U,et al. Effects of soil frost on growth,composition and respiration of the soil microbial decomposer community[J]. Soil Biology and Biochemistry,2011,43(10):2069-2077 [40] 谢姆西努尔·图尔贡,张经博,董正武,等.干旱区高寒湿地逆行演替下土壤微生物群落结构的研究[J].微生物学报,2023,63(4):1603-1617 [41] 徐飞,蔡体久,杨雪,等.三江平原沼泽湿地垦殖及自然恢复对土壤细菌群落多样性的影响[J].生态学报,2016,36(22):7412-7421 [42] ZECHMEISTER-BOLTENSTERN S,MICHEL K,PFEFFER M. Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition[J]. Plant and Soil,2011,343(1):37-50 [43] GUO X,FENG J J,SHI Z,et al. Climate warming leads to divergent succession of grassland microbial communities[J]. Nature Climate Change,2018,8:813-818 [44] 王光华,刘俊杰,于镇华,等.土壤酸杆菌门细菌生态学研究进展[J].生物技术通报,2016,32(2):14-20 [45] DAVIES L O,SCHÄFER H,MARSHALL S,et al. Light structures phototroph,bacterial and fungal communities at the soil surface[J]. PLoS One,2013,8(7):e69048 [46] 王永宏,田黎明,艾鷖,等.短期牦牛放牧强度对川西北高原高寒草甸土壤细菌群落的影响[J].生态学报,2022,42(4):1549-1559 [47] 李邵宇,张彬,陈大岭,等.典型草原区弃耕恢复过程中土壤细菌群落结构变化及其驱动因素[J].中国草地学报,2023,45(6):83-91 [48] FIERER N,BRADFORD M A,JACKSON R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354-1364 [49] 张杰雪,王占青,全小龙,等.高寒地区人工草地土壤微生物群落对不同种植方式和年限的响应[J].草地学报,2021,29(2):270-280 |