草地学报 ›› 2023, Vol. 31 ›› Issue (5): 1293-1301.DOI: 10.11733/j.issn.1007-0435.2023.05.003
黄小芳1,2, 石培礼1,2, 余成群1,2, 孙维1,2, 侯阁1,2
收稿日期:
2022-11-21
修回日期:
2023-01-19
出版日期:
2023-05-15
发布日期:
2023-05-31
通讯作者:
石培礼,E-mail:shipl@igsnrr.ac.cn
作者简介:
黄小芳(1997-),女,汉族,湖南邵阳人,博士研究生,主要从事高寒草地生态研究,E-mail:huangxiaofang5960@igsnrr.ac.cn
基金资助:
HUANG Xiao-fang1,2, SHI Pei-li1,2, YU Cheng-qun1,2, SUN Wei1,2, HOU Ge1,2
Received:
2022-11-21
Revised:
2023-01-19
Online:
2023-05-15
Published:
2023-05-31
摘要: 非生物胁迫(低温、高温、干旱、水涝、盐害等)是影响牧草生长和发育的重要因素,因而探究牧草抗逆性响应特征、指标、评价方法和提升途径,对于提升和稳定牧草生产有重大意义。本文通过文献资料调研和计量分析方法,综述了牧草对温度、水分和盐分等非生物胁迫作用的响应,概述了牧草的形态结构、生理生化和生产性能抗逆性指标,总结了6类牧草综合评价方法的原理和优缺点,综述了4种牧草抗逆性提升途径,并对今后在非生物胁迫下牧草抗逆性方向上需开展的3个方面研究工作进行展望,以期为选取牧草抗逆性指标和评价方法,提升牧草质量和产量提供参考依据。
中图分类号:
黄小芳, 石培礼, 余成群, 孙维, 侯阁. 非生物胁迫下牧草抗逆性研究进展[J]. 草地学报, 2023, 31(5): 1293-1301.
HUANG Xiao-fang, SHI Pei-li, YU Cheng-qun, SUN Wei, HOU Ge. A Review of Abiotic Stress Resistance of Forages[J]. Acta Agrestia Sinica, 2023, 31(5): 1293-1301.
[1] LOKA D,HARPER J,HUMPHREYS M,et al. Impacts of abiotic stresses on the physiology and metabolism of cool-season grasses:a review[J]. Food and Energy Security,2019,8(1):e00152 [2] 胡自治. 人工草地在我国21世纪草业发展和环境治理中的重要意义[J]. 草原与草坪,2000(1):12-15 [3] 张自和,郭正刚,吴素琴. 西部高寒地区草业面临的问题与可持续发展[J]. 草业学报,2002(3):29-33 [4] HARRISON J,TONKINSON C,EAGLES C,et al. Acclimation to freezing temperatures in perennial ryegrass (Lolium perenne)[J]. Acta Physiologiae Plantarum,1997,19(4):505-515 [5] LARSEN A. Breeding winter hardy grasses[J]. Euphytica,1994,77(3):231-237 [6] 范洪文. 紫花苜蓿抗逆性评价的研究进展[J]. 安徽农业科学,2014,42(16):5054-5055,5145 [7] 屈璐璐,王俊杰. 白三叶抗逆性研究进展[J]. 中国草地学报,2020,42(2):155-161 [8] 张雅洁,乔丹丹,熊雪梅,等. 鸭茅抗逆性研究进展[J]. 草学,2019,(3):4-8,15 [9] 宋鑫,徐杉,熊芹. 狗牙根抗逆研究进展[J]. 草学,2021(6):9-14 [10] 龙建廷,高献磊,包赛很那,等. 垂穗披碱草抗逆性研究进展[J]. 草学,2022(3):1-8 [11] 韩福松,余成群,付刚,等. 低温和干旱胁迫下牧草的抗逆性机制[J]. 草地学报,2022,30(11):2856-2864 [12] ACUNA-RODRIGUEZ I S,NEWSHAM K K,GUNDEL P E,et al. Functional roles of microbial symbionts in plant cold tolerance[J]. Ecology Letters,2020,23(6):1034-1048 [13] TRISCHUK R G,SCHILLING B S,LOW N H,et al. Cold acclimation,de-acclimation and re-acclimation of spring canola,winter canola and winter wheat:The role of carbohydrates,cold-induced stress proteins and vernalization[J]. Environmental and Experimental Botany,2014(106):156-163 [14] HULKE B S,WATKINS E,WYSE D L,et al. Freezing tolerance of selected perennial ryegrass (Lolium perenne L.) accessions and its association with field winterhardiness and turf traits[J]. Euphytica,2008,163(1):131-141 [15] KALBERER S R,WISNIEWSKI M,ARORA R. Deacclimation and reacclimation of cold-hardy plants:current understanding and emerging concepts[J]. Plant Science,2006,171(1):3-16 [16] HOFFMAN L,DACOSTA M,BERTRAND A,et al. Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass[J]. Environmental and Experimental Botany,2014(106):197-206 [17] JØRGENSEN M,ØSTREM L,HÖGLIND M. De-hardening in contrasting cultivars of timothy and perennial ryegrass during winter and spring[J]. Grass and Forage Science,2010,65(1):38-48 [18] GAY A P,EAGLES C F. Quantitative-analysis of cold hardening and dehardening in Lolium[J]. Annals of Botany,1991,67(4):339-345 [19] ESPEVIG T,HOGLIND M,AAMLID T S. Dehardening resistance of six turfgrasses used on golf greens[J]. Environmental and Experimental Botany,2014(106):182-188 [20] COLLINS G G,NIE X L,SALTVEIT M E. Heat-shock proteins and chilling sensitivity of mung bean hypocotyls[J]. Journal of Experimental Botany,1995,46(288):795-802 [21] ZHANG J,LI X M,LIN H X,et al. Crop improvement through temperature resilience[J]. Annual Review of Plant Biology,2019(70):753-780 [22] 崔国文,马春平. 紫花苜蓿叶片形态结构及其与抗寒性的关系[J]. 草地学报,2007(1):70-75 [23] 朱爱民,张玉霞,王显国,等. 沙地生境不同苜蓿品种形态特征对低温的响应及其与抗寒性关系[J]. 草地学报,2018,26(6):1400-1408 [24] 陈玖红,王沛,王平,等. 6份披碱草属牧草种质材料抗寒性的比较[J]. 草业科学,2019,36(6):1591-1599 [25] 贾祥,多吉格桑,赵爱民,等. 4种禾本科牧草苗期抗寒性综合评价[J]. 草地学报,2020,28(5):1372-1378 [26] 张尚雄,尼玛平措,徐雅梅,等. 3个披碱草属牧草对低温胁迫的生理响应及苗期抗寒性评价[J]. 草业科学,2016,33(6):1154-1163 [27] 罗登,左福元,邱健东,等. 不同鸭茅品种的耐热性评价[J]. 草业科学,2015,32(6):952-960 [28] GERLOFF E,RICHARDSON T,STAHMANN M. Changes in fatty acids of alfalfa roots during cold hardening[J]. Plant Physiology,1966,41(8):1280-1284 [29] JIANG Y W,HUANG B R. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass[J]. Crop Science,2001,41(4):1168-1173 [30] LIU X,HUANG B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass[J]. Crop Science,2000,40(2):503-510 [31] ERICE G,LOUAHLIA S,IRIGOYEN J J,et al. Biomass partitioning,morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery[J]. Journal of Plant Physiology,2010,167(2):114-120 [32] JONES M,LEAFE E,STILES W. Water stress in field-grown perennial ryegrass. II. Its effect on leaf water status,stomatal resistance and leaf morphology[J]. Annals of Applied Biology,1980,96(1):103-110 [33] HURA T,HURA K,GRZESIAK M,et al. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants[J]. Acta Physiologiae Plantarum,2007,29(2):103-113 [34] JONES M,LEAFE E,STILES W. Water stress in field-grown perennial ryegrass. I. Its effect on growth,canopy photosynthesis and transpiration[J]. Annals of Applied Biology,1980,96(1):87-101 [35] DELTORO V I,CALATAYUD A,GIMENO C,et al. Changes in chlorophyll a fluorescence,photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts[J]. Planta,1998,207(2):224-228 [36] ESTILL K,DELANEY R,SMITH W,et al. Water relations and productivity of alfalfa leaf chlorophyll variants[J]. Crop Science,1991,31(5):1229-1233 [37] 张卫红,刘大林,苗彦军,等. 西藏3种野生牧草苗期对干旱胁迫的响应[J]. 生态学报,2017,37(21):7277-7285 [38] ERICE G,IRIGOYEN J J,SÁNCHEZ-DÍAZ M,et al. Effect of drought,elevated CO2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting[J]. Plant Science,2007,172(5):903-912 [39] AHMADI A,JOUDI M. Effects of timing and defoliation intensity on growth,yield and gas exchange rate of wheat grown under well-watered and drought conditions[J]. Parkistan Journal of Biological Sciences,2007,10(21):3794-3800 [40] 李京蓉,周学斌,马真,等. 6种高寒牧区禾本科牧草抗旱性研究与评价[J]. 草地学报,2018,26(3):659-665 [41] ZHANG M,JIN Z-Q,ZHAO J,et al. Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley[J]. Plant Growth Regulation,2015,75(2):567-574 [42] ZHANG T,KESOJU S,GREENE S L,et al. Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance[J]. Genetic Resources and Crop Evolution,2018,65(2):471-484 [43] 李怡,侯向阳,武自念,等. 羊草种质资源抗旱性综合评价[J]. 中国草地学报,2019,41(1):75-82 [44] ROMAISA A,KHALID H,UJALA M,et al. Effect of different levels of drought on growth,morphology and photosynthetic pigments of lady finger (Abelmoschus esculentus)[J]. World Journal of Agricultural Sciences,2015,11(4):198-201 [45] 贾蓉,庞妙甜,杜利霞,等. 5个苜蓿品种种子萌发期干旱耐受性研究[J]. 中国草地学报,2018,40(5):114-119 [46] 马海鸽,蒋齐,王占军,等. PEG胁迫下野生甘草种子萌发和幼苗生长[J]. 草业科学,2014,31(8):1487-1492 [47] 秦文静,梁宗锁. 四种豆科牧草萌发期对干旱胁迫的响应及抗旱性评价[J]. 草业学报,2010,19(4):61-70 [48] MUSTROPH A,ALBRECHT G. Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J]. Physiologia Plantarum,2003,117(4):508-520 [49] ISMAIL A M,ELLA E S,VERGARA G V,et al. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa)[J]. Annals of Botany,2009,103(2):197-209 [50] WANG K,JIANG Y. Waterlogging tolerance of Kentucky bluegrass cultivars[J]. Hort Science,2007,42(2):386-390 [51] MUNNS R,TERMAAT A. Whole-plant responses to salinity[J]. Functional Plant Biology,1986,13(1):143-160 [52] 刘友良,毛才良,汪良驹. 植物耐盐性研究进展[J]. 植物生理学通讯,1987(4):1-7 [53] NOBLE C,ROGERS M. Arguments for the use of physiological criteria for improving the salt tolerance in crops[J]. Plant and Soil,1992,146(1):99-107 [54] BAO A K,GUO Z G,ZHANG H F,et al. A procedure for assessing the salt tolerance of lucerne (Medicago sativa L.) cultivar seedlings by combining agronomic and physiological indicators[J]. New Zealand Journal of Agricultural Research,2009,52(4):435-442 [55] IRIGOYEN J,EINERICH D,SáNCHEZ-DíAZ M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants[J]. Physiologia Plantarum,1992,84(1):55-60 [56] QI W,ZHANG L,XU H,et al. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings[J]. Biochemical and Biophysical Research Communications,2014,450(2):1010-1015 [57] 王玉祥,张博,王涛. 盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响[J]. 草业科学,2009,26(3):53-56 [58] 李源,刘贵波,高洪文,等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报,2010,19(4):79-86 [59] PETRUSA L M,WINICOV I. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl[J]. Plant Physiology and Biochemistry (Paris),1997,35(4):303-310 [60] HANSON A D,NELSEN C E,EVERSON E H. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars 1[J]. Crop Science,1977,17(5):720-726 [61] RAO G,RAO G R. Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity[J]. Indian Journal of Experimental Biology,1981,19(8):768-770 [62] 吴欣明,王运琦,刘建宁,等. 羊茅属植物耐盐性评价及其对盐胁迫的生理反应[J]. 草业学报,2007(6):67-73 [63] TORABI M,HALIM R,SINNIAH U,et al. Influence of salinity on the germination of Iranian alfalfa ecotypes[J]. African Journal of Agricultural Research,2011,6(19):4624-4630 [64] QINGFANG H,CHONGWEI L. The study on salt tolerance of different alfalfa varieties in germ inating period[J]. Acta Botanica Boreali-Occidentalia Sinica,2003,23(4):597-602 [65] 宗俊勤,高艳芝,陈静波,等. 荻不同资源种子萌发期抗盐性评价[J]. 草地学报,2013,21(6):1148-1156 [66] 柴艳,孙宗玖,李培英,等. 新疆狗牙根种质芽期耐盐性综合评价[J]. 草业学报,2017,26(8):154-167 [67] MUNNS R. Comparative physiology of salt and water stress[J]. Plant,Cell and Environment,2002,25(2):239-250 [68] PAGTER M,ARORA R. Winter survival and deacclimation of perennials under warming climate:physiological perspectives[J]. Physiol Plant,2013,147(1):75-87 [69] CASTONGUAY Y,LABERGE S,BRUMMER E C,et al. Alfalfa winter hardiness:a research retrospective and integrated perspective[J]. Advances in Agronomy,2006(90):203-265 [70] 田小霞,毛培春,李杉杉,等. 紫花苜蓿苗期耐盐指标筛选及耐盐性综合评价[J]. 草地学报,2017,25(3):545-553 [71] 高献磊,包赛很那,周忠义,等. 4种牧草种子在不同逆境下的萌发特性[J]. 草业科学,2022,39(9):1823-1831 [72] CUI G W,JI G X,LIU S Y,et al. Physiological adaptations of Elymus dahuricus to high altitude on the Qinghai-Tibetan Plateau[J]. Acta Physiologiae Plantarum,2019,41(7):1-9 [73] 马琳. NaCl胁迫对牧草种子萌发与幼苗生理生化的影响及耐盐性评价[D]. 泰安:山东农业大学,2010:30 [74] 王国伟,叶彦辉,南吉斌,等. 5种牧草芽期耐盐性评价[J]. 高原农业,2020,4(6):575-579 [75] 孟林,毛培春,张国芳,等. 17个苜蓿品种苗期抗旱性鉴定[J]. 草业科学,2008(1):21-25 [76] 湛妲,孙鑫博,濮阳雪华,等. 16个草地早熟禾品种耐热性能的比较[J]. 中国草地学报,2012,34(6):54-60 [77] 马祎,王彩云. 几种引进冷季型草坪草的生长及抗旱生理指标[J]. 草业科学,2001(2):57-61 [78] 张鹤山,陈明新,田宏,等. 高温胁迫下白三叶种子萌发特性及耐热性研究[J]. 种子,2010,29(8):1-5 [79] 于洁,闫利军,冀晓婷,等. 苜蓿和扁蓿豆萌发期耐盐指标筛选及耐盐性综合评价[J]. 植物遗传资源学报,2017,18(3):449-460 [80] 李娟霞,白小明,张翠,等. 7个野生一年生早熟禾种质萌发期耐盐性综合评价[J]. 草地学报,2022,30(11)2937-2948 [81] 简令成. 植物抗寒机理研究的新进展[J]. 植物学通报,1992,(3):17-22,16 [82] TOMPKINS D K,ROSS J B,MOROZ D L. Dehardening of annual bluegrass and creeping bentgrass during late winter and early spring[J]. Agronomy Journal,2000,92(1):5-9 [83] HU T,LIU S Q,AMOMBO E,et al. Stress memory induced rearrangements of HSP transcription,photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb.) in response to high-temperature stress[J]. Frontiers in Plant Science,2015(6):403 [84] ZHANG X,XU Y,HUANG B. Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea)[J]. Plant Cell and Environment,2019,42(3):947-958 [85] 俞玲,马晖玲. 甘肃几种早熟禾内源激素水平及干旱适应性[J]. 中国沙漠,2015,35(1):182-188 [86] CHEN D,WANG S,CAO B,et al. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings[J]. Frontiers in Plant Science,2016(6):1241 [87] CHEN X,ZHANG Z,WU B. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage[J]. Scientia Agricultura Sinica,2014,47(10):2038-2046 [88] SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Gene expression and signal transduction in water-stress response[J]. Plant Physiology,1997,115(2):327 [89] MOHAMMADI M H S,ETEMADI N,ARAB M M,et al. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl,Paclobutrazol and Abscisic acid under drought stress[J]. Plant Physiology and Biochemistry,2017(111):129-143 [90] LU S Y,SU W,LI H H,et al. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2 and NO-induced antioxidant enzyme activities[J]. Plant Physiology and Biochemistry,2009,47(2):132-138 [91] LI Z,YU J,PENG Y,et al. Metabolic pathways regulated by abscisic acid,salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera)[J]. Physiologia Plantarum,2017,159(1):42-58 [92] HE Y,LIU Y,CAO W,et al. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass[J]. Crop Science,2005,45(3):988-995 [93] NABATI D,SCHMIDT R,PARRISH D. Alleviation of salinity stress in Kentucky bluegrass by plant growth regulators and iron[J]. Crop Science,1994,34(1):198-202 [94] 王慧,王冬梅,张泽洲,等. 外源褪黑素对干旱胁迫下黑麦草和苜蓿抗氧化能力及养分吸收的影响[J]. 应用生态学报,2022,33(5):1311-1319 [95] TARCZYNSKI M C,JENSEN R G,BOHNERT H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol[J]. Science,1993,259(5094):508-510 [96] DEVEREAUX A C. Transformation and overexpression of a MnSOD gene in perennial ryegrass (Lolium perenne L.)[D]. Guelph:University of Guelph,2000:35 [97] LIU Z H,ZHANG H M,LI G L,et al. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase[J]. Euphytica,2011,178(3):363-372 [98] WU G T,CHEN J Q,HU Z H,et al. Production of transgenic tall fescue plants with enhanced stress tolerances by Agrobacterium tumefaciens-mediated transformation[J]. Agricultural Sciences in China,2006,5(5):330-338 [99] JAMES V A,NEIBAUR I,ALTPETER F. Stress inducible expression of the DREB1A transcription factor from xeric,Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance[J]. Transgenic Research,2008,17(1):93-104 [100] ZONG X,YAN Q,WU F,et al. Genome-wide analysis of the role of NAC family in flower development and abiotic stress responses in Cleistogenes songorica[J]. Genes,2020,11(8):927 [101] LI Q,ZHAO H,WANG X,et al. Tartary buckwheat transcription factor FtbZIP5,regulated by FtSnRK2. 6,can improve salt/drought resistance in transgenic Arabidopsis[J]. International journal of molecular sciences,2020,21(3):1123 [102] 瞿宋林,吴一凡,刘忠宽,等. 丛枝菌根真菌对紫花苜蓿生长发育特性的影响[J]. 草地学报,2022,30(10):2529-2534 [103] NADEEM S M,AHMAD M,ZAHIR Z A,et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology advances,2014,32(2):429-448 [104] SMITH S E,READ D J. Mycorrhizal symbiosis[M]. London:Academic press,2010:48-54 [105] HE A L,NIU S Q,ZHAO Q,et al. Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron[J]. International Journal of Molecular Sciences,2018,19(2):469 [106] HAN Q Q,LYU X P,BAI J P,et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J]. Frontiers in Plant Science,2014(5):525 [107] 韩庆庆,贾婷婷,吕昕培,等. 枯草芽孢杆菌GB03对紫花苜蓿耐盐性的影响[J]. 植物生理学报,2014,50(9):1423-1428 [108] MALINOWSKI D P,BELESKY D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses:mechanisms of drought and mineral stress tolerance[J]. Crop Science,2000,40(4):923-940 [109] NAGABHYRU P,DINKINS R D,WOOD C L,et al. Tall fescue endophyte effects on tolerance to water-deficit stress[J]. BMC Plant Biology,2013,13(1):1-17 [110] 郭艳妮. 不同耐盐性苜蓿接种丛枝菌根真菌对盐胁迫的生理响应[D]. 太原:山西农业大学,2015:17-27 |
[1] | 谭瑶, 乔浪, 李玲, 杨佳乐, 韩海斌, 朱猛蒙, 张志强, 倪鹏. 不同诱虫色板及悬挂方式对紫花苜蓿田牧草盲蝽的诱集效果[J]. 草地学报, 2023, 31(4): 1226-1233. |
[2] | 张佳伟, 贾玉山, 格根图, 王志军, 包健, 李宇宇, 彭冬, 王宇, 孙鹏波, 岳晓明. 不同丙酸浓度对天然牧草青贮品质及有氧稳定性的影响[J]. 草地学报, 2022, 30(9): 2522-2528. |
[3] | 张辉辉, 师尚礼, 武蓓, 李自立, 李小龙, 吴芳, 康文娟, 陈新栋. 紫花苜蓿与不同生活型多年生禾本科牧草混播生长生理特征[J]. 草地学报, 2022, 30(8): 2144-2157. |
[4] | 石国庆, 隋晓青, 杨静, 刘毅, 崔国盈, 张博. 苦豆子根、茎、叶浸提液对4种牧草种子萌发的化感作用[J]. 草地学报, 2022, 30(8): 2223-2230. |
[5] | 张海娟, 芦光新, 范月君, 周华坤, 周学丽, 窦声云, 姚世庭, 颜珲璘, 赵阳安, 马坤, 祁岩慧, 邱鹏滢. AM真菌对高寒草地2种禾本科牧草的接种效果研究[J]. 草地学报, 2022, 30(7): 1684-1691. |
[6] | 耿远月, 徐田伟, 王循刚, 张骞, 张晓玲, 康生萍, 胡林勇, 刘宏金, 赵娜, 罗崇亮, 李英年, 徐世晓. 黄河源园区典型高寒草原牧草营养特征及家畜承载力研究[J]. 草地学报, 2022, 30(7): 1829-1835. |
[7] | 杜俊颖, 李鑫洋, 杨莉, 宋连昭, 周志明, 李军, 薛祝林, 刘贵河. 冀西北坝上地区豆禾混播草地建植第三年草地生产力变化研究[J]. 草地学报, 2022, 30(7): 1855-1861. |
[8] | 赵文, 尹亚丽, 李世雄, 刘晶晶, 董怡玲, 苏世锋. 祁连山不同类型草地植被群落及牧草营养特征研究[J]. 草地学报, 2022, 30(6): 1328-1335. |
[9] | 王明涛, 赵玉红, 苗彦军, 马素洁, 孙磊, 徐雅梅, 包赛很那, 周龙. 西藏林芝河谷地带紫花苜蓿和高羊茅混播牧草品质研究[J]. 草地学报, 2022, 30(6): 1590-1596. |
[10] | 孙建财, 杨沙, 武玉坤, 李孟玉, 赵国丁, 肖国涛, 邓得婷, 史惠兰. 高寒混播草地优势草种生态位与种间竞争力分析[J]. 草地学报, 2022, 30(5): 1273-1279. |
[11] | 张海娟, 芦光新, 范月君, 周华坤, 周学丽, 窦声云, 姚世庭, 颜珲璘, 马坤, 赵阳安, 祁岩慧, 苟恒瑞. 丛枝菌根真菌对高寒草地6种禾本科牧草生长的影响[J]. 草地学报, 2022, 30(4): 1013-1020. |
[12] | 王海瑾, 曾庆飞, 韦兴迪, 王佳楚函, 韦鑫, 陈超. 贵州尾矿区野生豆科牧草根瘤菌及其抗性测定[J]. 草地学报, 2022, 30(12): 3253-3262. |
[13] | 冯琴, 王斌, 王腾飞, 倪旺, 邓建强, 兰剑. 不同播种量毛苕子与燕麦混播对草地生产性能及营养品质的影响[J]. 草地学报, 2022, 30(12): 3439-3446. |
[14] | 邵春慧, 徐强, 史志强, 杜文华, 田新会. 夏河农牧交错区小黑麦与豆科牧草混播的生产性能研究[J]. 草地学报, 2022, 30(10): 2791-2801. |
[15] | 孙庆运, 于启娜, 贾振超, 武文璇, 赵峰, 韩梦龙, 王光辉. 牧草干燥技术与装备研究进展[J]. 草地学报, 2022, 30(1): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||